Technostress of Chilean Teachers in the Context of the COVID-19 Pandemic and Teleworking
Abstract
:1. Introduction
2. Materials and Methods
3. Results
Moderating Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Factor: Theoretical Constructs | Variable | Components |
Skepticism | r_1 | S1. With the time passage, technologies interest me less and less |
r_2 | S2. Every time I feel less involved in the use of ICT | |
r_3 | S3. I am more skeptical about the technology’s contribution in my work | |
r_4 | S4. I doubt the working meaning with these technologies | |
Fatigue | r_5 | F1. I find it difficult to relax after a workday using them |
r_6 | F.2 When I finish working with ICT, I feel exhausted | |
r_7 | F3. I’m so tired when I just work with them that I cannot do anything else | |
r_8 | A3. I doubt when using technologies for fear of making mistakes | |
Anxiety | r_9 | A1. I feel tense and anxious when working with technologies |
r_10 | A2. It scares me to think that I can destroy a lot of information by the improper use | |
r_11 | A3. I doubt when using technologies for fear of making mistakes | |
r_12 | A4. Working with them makes me feel uncomfortable, irritable, and impatient | |
Inefficacy | r_13 | I1. In my opinion, I am inefficient using technologies |
r_14 | I2. It is difficult to work with information and communication technologies | |
r_15 | I3. People say that I am inefficient using technologies | |
r_16 | I4. I am unsure of finishing my tasks well when I use ICT |
References
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Bottiani, J.H.; Duran, C.A.K.; Pas, E.T.; Bradshaw, C.P. Teacher stress and burnout in urban middle schools: Associations with job demands, resources, and effective classroom practices. J. Sch. Psychol. 2019, 77, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, N.; Bonell, C.; Jamal, F.; Allen, E.; Mathiot, A.; Elbourne, D.; Viner, R. Teacher Burnout and Contextual and Compositional Elements of School Environment. J. Sch. Health 2019, 89, 977–993. [Google Scholar] [CrossRef] [PubMed]
- Alvites-Huamaní, C.G. Estrés docente y factores psicosociales en docentes de Latinoamérica, Norteamérica y Europa. Propósitos Represent. 2019, 7, 141–178. [Google Scholar] [CrossRef]
- Mondal, J.; Shrestha, S.; Bhaila, A. School Teachers: Job Stress and Job Satisfaction, Kaski, Nepal. Int. J. Occup. Saf. Health 2011, 1, 27–33. [Google Scholar] [CrossRef]
- Agai-Demjaha, T.; Minov, J.; Stoleski, S.; Zafirova, B. Stress Causing Factors Among Teachers in Elementary Schools and Their Relationship with Demographic and Job Characteristics. Open Access Maced. J. Med. Sci 2015, 3, 493–499. Available online: https://oamjms.eu/index.php/mjms/article/view/oamjms.2015.077 (accessed on 7 May 2021). [CrossRef] [Green Version]
- Von Der Embse, N.; Ryan, S.V.; Gibbs, T.; Mankin, A. Teacher stress interventions: A systematic review. Psychol. Sch. 2019, 56, 1328–1343. [Google Scholar] [CrossRef]
- Brod, C. Managing Technostress-Optimizing the Use of Computer-Technology. Pers. J. 1982, 61, 753–757. [Google Scholar]
- Tarafdar, M.; Tu, Q.; Ragu-Nathan, B.S.; Ragu-Nathan, T.S. The impact of technostress on role stress and productivity. J. Manag. Inf. Syst. 2007, 24, 301–328. [Google Scholar] [CrossRef]
- Salanova, S.M. Trabajando con tecnologías y afrontando el tecnoestrés: El rol de las creencias de eficacia. Rev. Psicol. Trab. Organ. 2003, 19, 225–246. Available online: http://www.redalyc.org/articulo.oa?id=231318057001 (accessed on 7 May 2021).
- Bondanini, G.; Giorgi, G.; Ariza-Montes, A.; Vega-Muñoz, A.; Andreucci-Annunziata, P. Technostress Dark Side of Technology in the Workplace: A Scientometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8013. [Google Scholar] [CrossRef]
- Wang, X.; Tan, S.C.; Li, L. Measuring university students’ technostress in technology-enhanced learning: Scale development and validation. Australas. J. Educ. Technol. 2020, 36, 96–112. [Google Scholar] [CrossRef]
- Penado-Abilleira, M.; Rodicio-García, M.L.; Ríos-de-Deus, M.P.; Mosquera-González, M.J. Technostress in Spanish University Students: Validation of a Measurement Scale. Front. Psychol. 2020, 11, 582317. [Google Scholar] [CrossRef]
- Çoklar, A.N.; Efilti, E.; Şahin, Y.L.; Akçay, A. Determining the Reasons of Technostress Experienced by Teachers: A Qualitative Study. Turk. Online J. Qual. Inq. 2016, 7, 71–96. [Google Scholar] [CrossRef]
- De’, R.; Pandey, N.; Pal, A. Impact of digital surge during Covid-19 pandemic: A viewpoint on research and practice. Int. J. Inf. Manag. 2020, 55, 102171. [Google Scholar] [CrossRef]
- Molino, M.; Cortese, C.G.; Ghislieri, C. The Promotion of Technology Acceptance and Work Engagement in Industry 4.0: From Personal Resources to Information and Training. Int. J. Environ. Res. Public Health 2020, 17, 2438. [Google Scholar] [CrossRef] [Green Version]
- Oksa, R.; Saari, T.; Kaakinen, M.; Oksanen, A. The Motivations for and Well-Being Implications of Social Media Use at Work among Millennials and Members of Former Generations. Int. J. Environ. Res. Public Health 2021, 18, 803. [Google Scholar] [CrossRef]
- Dhawan, S. Online Learning: A Panacea in the Time of COVID-19 Crisis. J. Educ. Technol. Syst. 2020, 49, 5–22. [Google Scholar] [CrossRef]
- Noor, S.; Isa, F.M.d.; Mazhar, F.F. Online Teaching Practices During the COVID-19 Pandemic. Educ. Process. Int. J. 2020, 9, 169–184. [Google Scholar] [CrossRef]
- Espino-Díaz, L.; Fernandez-Caminero, G.; Hernandez-Lloret, C.M.; Gonzalez-Gonzalez, H.; Alvarez-Castillo, J.L. Analyzing the Impact of COVID-19 on Education Professionals. Toward a Paradigm Shift: ICT and Neuroeducation as a Binomial of Action. Sustainability 2020, 12, 5646. [Google Scholar] [CrossRef]
- Al-Fudail, M.; Mellar, H. Investigating teacher stress when using technology. Comput. Educ. 2008, 51, 1103–1110. [Google Scholar] [CrossRef]
- Panisoara, I.O.; Lazar, I.; Panisoara, G.; Chirca, R.; Ursu, A.S. Motivation and Continuance Intention towards Online Instruction among Teachers during the COVID-19 Pandemic: The Mediating Effect of Burnout and Technostress. Int. J. Environ. Res. Public Health 2020, 17, 8002. [Google Scholar] [CrossRef]
- Moreira-Fontán, E.; García-Señorán, M.; Conde-Rodríguez, A.; González, A. Teachers’ ICT-related self-efficacy, job resources, and positive emotions: Their structural relations with autonomous motivation and work engagement. Comput. Educ. 2019, 134, 63–77. [Google Scholar] [CrossRef]
- Califf, C.; Brooks, S.L. An empirical study of techno-stressors, literacy facilitation, burnout, and turnover intention as experienced by K-12 teachers. Comput. Educ. 2020, 157, 103971. [Google Scholar] [CrossRef]
- Joo, Y.J.; Lim, K.Y.; Kim, N.H. The effects of secondary teachers’ technostress on the intention to use technology in South Korea. Comput. Educ. 2016, 95, 114–122. [Google Scholar] [CrossRef]
- Syvänen, A.; Mäkiniemi, J.P.; Syrjä, S.; Heikkilä-Tammi, K.; ViteliWh, J. When does the educational use of ICT become a source of technostress for Finnish teachers? Seminar. Net 2016, 12, 95–109. Available online: https://journals.oslomet.no/index.php/seminar/article/view/2281 (accessed on 7 May 2021).
- Wang, X.; Li, B. Technostress Among University Teachers in Higher Education: A Study Using Multidimensional Person-Environment Misfit Theory. Front. Psychol. 2019, 10, 1791. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, X. Technostress inhibitors and creators and their impacts on university teachers’ work performance in higher education. Cogn. Technol. Work 2020. [Google Scholar] [CrossRef]
- Vega-Muñoz, A.; Estrada-Muñoz, C. Evaluating Technostress to Improve Teaching Performance: Chilean Higher Education Case. In Evaluating Mental Workload for Improved Workplace Performance; Realyvásquez-Vargas, A., Arredondo-Soto, K., Hernández-Escobedo, G., González-Reséndiz, J., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 161–183. [Google Scholar] [CrossRef]
- Estrada-Muñoz, C.; Castillo, D.; Vega-Muñoz, A.; Boada-Grau, J. Teacher Technostress in the Chilean School System. Int. J. Environ. Res. Public Health 2020, 17, 5280. [Google Scholar] [CrossRef]
- Ministry of Education—Chile. Download of Teachers by Course and Subsector. Available online: http://datos.mineduc.cl/dashboards/21110/descarga-de-docentes-por-curso-y-subsector/ (accessed on 29 April 2021).
- Ministry of Education—Chile. Law 21,125 Create the Ministry of Science, Technology, Knowledge, and Innovation; Presidency of the Republic: Santiago de Chile, Chile, 2018. Available online: http://bcn.cl/2oxjq (accessed on 29 April 2021).
- Salanova, M.; Llorens, S.; Cifre, E. The dark side of technologies: Technostress among users of information and communication technologies. Intern. J. Psychol. 2013, 48, 422–436. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Lee, S.C.; Suh, Y.H. Technostress from mobile communication and its impact on quality of life and productivity. Total Qual. Manag. Bus. Excell. 2016, 27, 775–790. [Google Scholar] [CrossRef]
- Nimrod, G. Technostress: Measuring a new threat to well-being in later life. Aging Mental. Health 2018, 22, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Xu, C.; Chai, C.S.; Zhai, X. Exploring the Structural Relationship Among Teachers’ Technostress, Technological Pedagogical Content Knowledge (TPACK), Computer Self-efficacy and School Support. Asia-Pac. Educ. Res. 2020, 29, 147–157. [Google Scholar] [CrossRef]
- Rosseel, Y. Lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Aldás-Manzano, J.; Uriel-Jiménez, E. Análisis Multivariante Aplicado con R; Ediciones Paraninfo: Madrid, Spain, 2017; pp. 505–518. [Google Scholar]
- Bollen, K.A. Structural Equations with Latent Variables; Willey: New York, NY, USA, 1989; pp. 505–518. [Google Scholar]
- Chou, C.-P.; Bentler, P.M. Estimates and tests in structural equation modeling. In Structural Equation Modeling: Concepts, Issues, and Applications; Hoyle, R.H., Ed.; Sage Publications: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Hair, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis; Pearson Education: London, UK, 2014; pp. 226–318. [Google Scholar]
- Hu, L.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Tucker, L.R.; Lewis, C. A reliability coefficient for maximum likelihood factor analysis. Psychometrika 1973, 38, 1–10. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, Y. RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behav. Res. Methods 2019, 51, 409–428. [Google Scholar] [CrossRef]
- Kateri, M. Contingency Table Analysis: Methods and Implementation Using R; Springer: New York, NY, USA, 2014; pp. 11–22. [Google Scholar] [CrossRef]
- Wheaton, B. Assessment of fit in overidentified models with latent variables. Sociol. Methods Res. 1987, 16, 118–154. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Superintendencia de Seguridad Social del Gobierno de Chile. Noviembre 2020. Panor. Mens. Segur. Salud Trab. 2020, 6, 1–16. Available online: https://www.suseso.cl/607/w3-article-613985.html (accessed on 7 May 2021).
- Lambert, E.G.; Altheimer, I.; Hogan, N.L. An exploratory examination of a gendered model of the effects of role stressors. Women Crim. Justice 2010, 20, 193–217. [Google Scholar] [CrossRef]
- Torre, G.L.; De Leonardis, V.; Chiappetta, M. Technostress: How does it affect the productivity and life of an individual? Results of an observational study. Public Health 2020, 189, 60–65. [Google Scholar] [CrossRef]
- García-González, M.A.; Torrano, F.; García-González, G. Analysis of Stress Factors for Female Professors at Online Universities. Int. J. Environ. Res. Public Health 2020, 17, 2958. [Google Scholar] [CrossRef]
- Tarafdar, M.; Tu, Q.; Ragu-Nathan, T.S.; Ragu-Nathan, B.S. Crossing to the dark side: Examining, creators, outcomes, and inhibitors of technostress. Commun. ACM 2011, 54, 113–120. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, L.; Lu, Y.; Yang, J. Do you get tired of socializing? An empirical explanation of discontinuous usage behaviour in social network services. Inf. Manag. 2016, 53, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Salanova, M.; Llorens, S.; Ventura, M. Guía de Intervención Tecnoestrés; Editorial Síntesis: Madrid, Spain, 2011; pp. 25–26. [Google Scholar]
- Jena, R.K. Technostress in ICT enabled collaborative learning environment: An empirical study among Indian academician. Comput. Hum. Behav. 2015, 51, 1116–1123. [Google Scholar] [CrossRef]
- Ayyagari, R.; Grover, V.; Purvis, R. Technostress: Technological Antecedents and Implications. MIS Q. 2011, 35, 831–858. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, M.; Cooper, C.L.; Stich, J.-F. The technostress trifecta-techno eustress, techno distress and design: Theoretical directions and an agenda for research. Inf. Syst. J. 2019, 29, 6–42. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Education—Chile. Law 20.903 Create the Teacher Professional Development System and Modifies Other Standards; Presidency of the Republic: Santiago de Chile, Chile, 2016. Available online: http://bcn.cl/2f72c (accessed on 29 April 2021).
- Salanova, M.; Llorens, S.; Cifre, E.; Nogareda, C. The Technostress: Concept, Measurement, and Psychosocial Intervention; Prevention Technical Note, 730; 21th Serie; National Institute for Safety and Hygiene at Work: Madrid, Spain, 2007; Available online: http://www.want.uji.es/download/el-tecnoestres-concepto-medida-e-intervencion-psicosocial/ (accessed on 7 May 2021).
Convergent Validity | Load | >0.70 |
Communality | >0.50 | |
Average variance extracted (AVE) | >0.50 | |
Discriminant (Divergent) Validity | Heterotrait-monotrait ratio of correlations (HTMT) | <0.90 |
Internal Consistency Reliability | Cronbach’s alpha | 0.70–0.90 |
Composite reliability (CR) | 0.70–0.90 |
Adjustment Indices | Quality of Model Adjustment | |||
---|---|---|---|---|
Chi-squared test | p-value | >0.05 Good | ||
Standardized root mean square residual | SRMR | <0.08 Good | ||
Root mean square error of approximation | RMSEA | ≤0.05 Very good | 0.05 < RMSEA ≤ 0.08 Good | 0.08 < RMSEA ≤ 0.10 Suffering |
Comparative fit index | CFI | ≥0.95 Very good | 0.90 ≤ CFI < 0.95 Good | 0.80 ≤ CFI < 0.90 Suffering |
Tucker–Lewis index | TLI | ≥0.95 Very good | 0.90 ≤ CFI < 0.95 Good | 0.80 ≤ CFI < 0.90 Suffering |
Factor | Variable * | Convergent Validity | Discriminant Validity | Internal Consistency Reliability | |||
---|---|---|---|---|---|---|---|
Load | Communality | AVE | HTMT | Cronbach Alpha | CR | ||
Skepticism (S) | r_1 | 0.767 | 0.589 | 0.704 | 0.667 | 0.856 | 0.905 |
r_2 | 0.812 | 0.659 | |||||
r_3 | 0.879 | 0.773 | |||||
r_4 | 0.893 | 0.797 | |||||
Fatigue (F) | r_5 | 0.880 | 0.774 | 0.853 | 0.868 | 0.942 | 0.959 |
r_6 | 0.923 | 0.853 | |||||
r_7 | 0.936 | 0.875 | |||||
r_8 | 0.953 | 0.909 | |||||
Anxiety (A) | r_9 | 0.932 | 0.868 | 0.785 | 0.804 | 0.899 | 0.931 |
r_10 | 0.834 | 0.695 | |||||
r_11 | 0.877 | 0.768 | |||||
r_12 | 0.899 | 0.809 | |||||
Inefficacy (I) | r_13 | 0.883 | 0.78 | 0.713 | 0.722 | 0.861 | 0.911 |
r_14 | 0.902 | 0.813 | |||||
r_15 | 0.749 | 0.561 | |||||
r_16 | 0.835 | 0.697 |
Levels a | % | Skepticism | TRS * | Fatigue | TRF * | Anxiety | TRA * | Inefficacy | TRI * |
---|---|---|---|---|---|---|---|---|---|
Very low | >5% | 0.00 | 0.000 | 0.00 | 0.081 | 0.00 | 0.146 | 0.00 | 0.243 |
Low | 5–25% | 0.00 | 0.262 | 0.01–1.00 | 0.170 | 0.00–0.50 | 0.114 | 0.01–1.00 | 0.278 |
Medium (low) | 25–50% | 0.01–1.00 | 0.243 | 1.01–3.00 | 0.252 | 0.51–1.75 | 0.257 | 1.01–1.50 | 0.108 |
Medium (high) | 50–75% | 1.01–2.75 | 0.264 | 3.01–5.00 | 0.295 | 1.76–3.75 | 0.247 | 1.51–2.50 | 0.149 |
High | 75–95% | 2.76–5.00 | 0.189 | 5.01–5.99 | 0.108 | 3.76–5.75 | 0.194 | 2.51–4.74 | 0.178 |
Very high | >95% | >5 | 0.043 | >5.99 | 0.094 | >5.75 | 0.042 | >4.75 | 0.045 |
Mean | 1.61 | – | 3.07 | – | 2.21 | – | 2.87 | – | |
Standard Deviation | 1.65 | – | 2.00 | – | 1.87 | – | 1.57 | – |
Levels | Both Daytime Journeys | Evening Journey |
---|---|---|
Very low | 0.074 * | 0.156 * |
Low | 0.167 | 0.172 |
Medium (low) | 0.235 * | 0.359 * |
Medium (high) | 0.294 | 0.188 |
High | 0.115 | 0.031 |
Very high | 0.115 | 0.094 |
Dimension | p-Value |
---|---|
Skepticism | 0.040 * |
Fatigue | 0.003 * |
Anxiety | 0.024 * |
Inefficacy | 0.000 * |
Techno anxiety | 0.491 |
Techno fatigue | 0.505 |
Levels | Skepticism | Fatigue | Anxiety | Inefficacy | Techno Anxiety | Techno Fatigue | Techno Stress | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | F | M | F | M | F | M | F | M | F | M | F | M | F | |
Very low | 0.000 | 0.000 | 0.105 * | 0.073 * | 0.181 * | 0.136 * | 0.272 * | 0.234 * | – | – | – | – | – | – |
Low | 0.278 | 0.260 | 0.167 | 0.174 | 0.119 | 0.118 | 0.262 | 0.286 | – | – | – | – | – | – |
Medium (low) | 0.202 * | 0.258 * | 0.293 | 0.241 | 0.253 | 0.259 | 0.117 | 0.105 | – | – | – | – | – | – |
Medium (high) | 0.285 | 0.258 | 0.293 | 0–294 | 0.253 | 0.243 | 0.133 | 0.154 | – | – | – | – | – | – |
High (H) | 0.189 | 0.188 | 0.084 * | 0.115 * | 0.170 * | 0.205 * | 0.171 | 0.182 | – | – | – | – | – | – |
Very high (VH) | 0.058 * | 0.037 * | 0.071 * | 0.103 * | 0.036 | 0.044 | 0.058 * | 0.040* | – | – | – | – | – | – |
H + VH | 0.247 | 0.225 | 0.155 * | 0.218 * | 0.205 * | 0.248 * | 0.229 | 0.221 | 0.115 | 0.108 | 0.065 | 0.074 | 0.064 | 0.070 |
Dominant gender | – | – | – | F(+) | – | F(+) | – | – | – | – | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrada-Muñoz, C.; Vega-Muñoz, A.; Castillo, D.; Müller-Pérez, S.; Boada-Grau, J. Technostress of Chilean Teachers in the Context of the COVID-19 Pandemic and Teleworking. Int. J. Environ. Res. Public Health 2021, 18, 5458. https://doi.org/10.3390/ijerph18105458
Estrada-Muñoz C, Vega-Muñoz A, Castillo D, Müller-Pérez S, Boada-Grau J. Technostress of Chilean Teachers in the Context of the COVID-19 Pandemic and Teleworking. International Journal of Environmental Research and Public Health. 2021; 18(10):5458. https://doi.org/10.3390/ijerph18105458
Chicago/Turabian StyleEstrada-Muñoz, Carla, Alejandro Vega-Muñoz, Dante Castillo, Sheyla Müller-Pérez, and Joan Boada-Grau. 2021. "Technostress of Chilean Teachers in the Context of the COVID-19 Pandemic and Teleworking" International Journal of Environmental Research and Public Health 18, no. 10: 5458. https://doi.org/10.3390/ijerph18105458
APA StyleEstrada-Muñoz, C., Vega-Muñoz, A., Castillo, D., Müller-Pérez, S., & Boada-Grau, J. (2021). Technostress of Chilean Teachers in the Context of the COVID-19 Pandemic and Teleworking. International Journal of Environmental Research and Public Health, 18(10), 5458. https://doi.org/10.3390/ijerph18105458