Effects of a Rehabilitation Program Using a Wearable Device on the Upper Limb Function, Performance of Activities of Daily Living, and Rehabilitation Participation in Patients with Acute Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures and Intervention
2.3. Outcome Measurements
2.4. Sample Size Estimation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke statistics—2021 update: A report from the american heart association. Circulation 2021, 141, 139. [Google Scholar] [CrossRef]
- Radomski, M.V.; Latham, C.A.T. Occupational Therapy for Physical Dysfunction; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Shin, M.J.; Kim, S.H.; Lee, C.-H.; Shin, Y.-I. Optimal strategies of upper limb motor rehabilitation after stroke. Brain Neurorehabilit. 2014, 7, 21–29. [Google Scholar] [CrossRef]
- Michaelsen, S.M.; Dannenbaum, R.; Levin, M.F. Task-specific training with trunk restraint on arm recovery in stroke: Randomized control trial. Stroke 2006, 37, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Peurala, S.H.; Kantanen, M.P.; Sjögren, T.; Paltamaa, J.; Karhula, M.; Heinonen, A. Effectiveness of constraint-induced movement therapy on activity and participation after stroke: A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2012, 26, 209–223. [Google Scholar] [CrossRef]
- Thieme, H.; Morkisch, N.; Mehrholz, J.; Pohl, M.; Behrens, J.; Borgetto, B.; Dohle, C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Winstein, C.J.; Wolf, S.L.; Dromerick, A.W.; Lane, C.J.; Nelsen, M.A.; Lewthwaite, R.; Cen, S.Y.; Azen, S.P. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: The ICARE randomized clinical trial. JAMA 2016, 315, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhou, Y.; Zuo, C.; Fan, X. Design of an upper limb rehabilitation robot based on medical theory. Procedia Eng. 2011, 15, 688–692. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.L.; Winstein, C.J.; Miller, J.P.; Taub, E.; Uswatte, G.; Morris, D.; Giuliani, C.; Light, K.E.; Nichols-Larsen, D.; EXCITE Investigators. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: The EXCITE randomized clinical trial. JAMA 2006, 296, 2095–2104. [Google Scholar] [CrossRef]
- Esquenazi, A.; Packel, A. Robotic-assisted gait training and restoration. Am. J. Phys. Med. Rehabil. 2012, 91, S217–S231. [Google Scholar] [CrossRef]
- Kim, J.; Oh, M.; Lee, J.; Ahn, H. The effects of training using virtual reality games on stroke patients’ functional recovery. J. Korean Soc. Occup. Ther. 2011, 19, 101–114. [Google Scholar]
- Butler, D.P.; Willett, K. Wii-habilitation: Is there a role in trauma? Injury 2010, 41, 883–885. [Google Scholar] [CrossRef]
- Rutkowski, S.; Kiper, P.; Cacciante, L.; Cieślik, B.; Mazurek, J.; Turolla, A.; Szczepańska-Gieracha, J. Use of virtual reality-based training in different fields of rehabilitation: A systematic review and meta-analysis. J. Rehabil. Med. 2020. [Google Scholar] [CrossRef]
- Karamians, R.; Proffitt, R.; Kline, D.; Gauthier, L.V. Effectiveness of virtual reality- and gaming-based interventions for upper extremity rehabilitation poststroke: A meta-analysis. Arch. Phys. Med. Rehabil. 2020, 101, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Téllez, P.; Moral-Muñoz, J.A.; Salazar, A.; Casado-Fernández, E.; Lucena-Antón, D. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: Systematic review and meta-analysis. Games Health J. 2020, 9, 1–10. [Google Scholar] [CrossRef]
- Jack, D.; Boian, R.; Merians, A.; Tremaine, M.; Burdea, G.; Adamovich, S.; Recce, M.; Poizner, H. Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Kim, K. Effect of virtual reality rehabilitation program with RAPAEL smart glove on stroke patient’s upper extremity functions and activities of daily living. J. Korean Soc. Integr. Med. 2019, 7, 69–76. [Google Scholar]
- Bae, W.; Kam, K. Effects of immersive virtual reality intervention on upper extremity function in post-stroke patients. J. Korean Soc. Integr. Med. 2017, 5, 1–9. [Google Scholar]
- Lee, H.-S.; Lim, J.-H.; Jeon, B.-H.; Song, C.-S. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: A randomized controlled trial. Restor. Neurol. Neurosci. 2020, 38, 165–172. [Google Scholar] [CrossRef]
- Buyn, P.-S.; Chon, M.-Y. The effects of rehabilitation training using video game on improvement range of motion for upper-extremity, shoulder pain and stress in stroke patients with hemiplegia. J. Muscle Jt. Health 2012, 19, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Padua, L.; Imbimbo, I.; Aprile, I.; Loreti, C.; Germanotta, M.; Coraci, D.; Piccinini, G.; Pazzaglia, C.; Santilli, C.; Cruciani, A.; et al. Cognitive reserve as a useful variable to address robotic or conventional upper limb rehabilitation treatment after stroke: A multicentre study of the Fondazione Don Carlo Gnocchi. Eur. J. Neurol. 2019, 27, 392–398. [Google Scholar] [CrossRef]
- Shin, J.-H.; Kim, M.-Y.; Lee, J.-Y.; Jeon, Y.-J.; Kim, S.; Lee, S.; Seo, B.; Choi, Y. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: A single-blinded, randomized controlled trial. J. Neuroeng. Rehabil. 2016, 13, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, G.-b.; Park, E.-c. Comparison of the effects of task-oriented training and virtual reality training on upper extremity function, balance ability, and depression in stroke patients. J. Korean Soc. Phys. Med. 2016, 11, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H. Correlation between ACLT and FIM, MMSE-K, and MFT in stroke patients. J. Korea Contents Assoc. 2009, 9, 287–294. [Google Scholar] [CrossRef]
- Singer, B.; Garcia-Vega, J. The fugl-meyer upper extremity scale. J. Physiother. 2017, 63, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathiowetz, V.; Kashman, N.; Volland, G.; Weber, K.; Dowe, M.; Rogers, S. Grip and pinch strength: Normative data for adults. Arch. Phys. Med. Rehabil. 1985, 66, 69–74. [Google Scholar]
- Sears, E.D.; Chung, K.C. Validity and responsiveness of the Jebsen-Taylor hand function test. J. Hand Surg. 2010, 35, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.Y.; Park, B.K.; Shin, H.S.; Kang, Y.K.; Pyun, S.B.; Paik, N.J.; Kim, S.H.; Kim, T.H.; Han, T.R. Development of the Korean version of Modified Barthel Index (K-MBI): Multi-center study for subjects with stroke. J. Korean Acad. Rehabil. Med. 2007, 31, 283–297. [Google Scholar]
- Lenze, E.J.; Munin, M.C.; Quear, T.; Dew, M.A.; Rogers, J.C.; Begley, A.E.; Reynolds, C.F., III. The pittsburgh rehabilitation participation scale: Reliability and validity of a clinician-rated measure of participation in acute rehabilitation. Arch. Phys. Med. Rehabil. 2004, 85, 380–384. [Google Scholar] [CrossRef]
- Piron, L.; Turolla, A.; Agostini, M.; Zucconi, C.; Cortese, F.; Zampolini, M.; Zannini, M.; Dam, M.; Ventura, L.; Battauz, M.; et al. Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. J. Rehabil. Med. 2009, 41, 1016–1102. [Google Scholar] [CrossRef] [Green Version]
- Cheung, M. Therapeutic Games and Guided Imagery, Volume II: Tools for Professionals Working with Children and Adolescents with Specific Needs and in Multicultural Settings; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Kim, H. Rehabilitation and serious games. J. Digit. Converg. 2014, 12, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef] [Green Version]
- Givon, N.; Zeilig, G.; Weingarden, H.; Rand, D. Video-games used in a group setting is feasible and effective to improve indicators of physical activity in individuals with chronic stroke: A randomized controlled trial. Clin. Rehabil. 2015, 30, 383–392. [Google Scholar] [CrossRef]
- Lee, M.; Koo, H. The effect of virtual reality-based sitting balance training program on ability of sitting balance and activities of daily living in hemiplegic patients. J. Korean Soc. Integr. Med. 2017, 5, 11–19. [Google Scholar]
- Adie, K.; Schofield, C.; Berrow, M.; Wingham, J.; Humfryes, J.; Pritchard, C.; James, M.; Allison, R. Does the use of Nintendo Wii SportsTM improve arm function? Trial of WiiTM in Stroke: A randomized controlled trial and economics analysis. Clin. Rehabil. 2017, 31, 173–185. [Google Scholar] [CrossRef]
- Türkbey, T.; Kutlay, S.; Gök, H. Clinical feasibility of Xbox KinectTM training for stroke rehabilitation: A single-blind randomized controlled pilot study. J. Rehabil. Med. 2017, 49, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yavuzer, G.; Senel, A.; Atay, M.B.; Stam, H.J. “Playstation eyetoy games” improve upper extremity-related motor functioning in subacute stroke: A randomized controlled clinical trial. Eur. J. Phys. Rehabil. Med. 2008, 44, 237–244. [Google Scholar]
- Yin, C.W.; Sien, N.Y.; Ying, L.A.; Chung, S.F.-C.M.; Leng, D.T.M. Virtual reality for upper extremity rehabilitation in early stroke: A pilot randomized controlled trial. Clin. Rehabil. 2014, 28, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.K.; Dyar, T. Virtual environment training-a new tool for neurorehabilitation? Neurol. Rep. 2002, 26, 62–71. [Google Scholar] [CrossRef]
- Merians, A.S.; Jack, D.; Boian, R.; Tremaine, M.; Burdea, G.C.; Adamovich, S.V.; Recce, M.; Poizner, H. Virtual reality—Augmented rehabilitation for patients following stroke. Phys. Ther. 2002, 82, 898–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laver, K.; George, S.; Thomas, S.; Deutsch, J.; Crotty, M. Cochrane review: Virtual reality for stroke rehabilitation. Eur. J. Phys. Rehabil. Med. 2012, 48, 523–530. [Google Scholar] [CrossRef]
- Aprile, I.; Germanotta, M.; Cruciani, A.; Loreti, S.; Pecchioli, C.; Cecchi, F.; Montesano, A.; Galeri, S.; Diverio, M.; Falsini, C.; et al. Upper limb robotic rehabilitation after stroke: A multicenter, randomized clinical trial. J. Neurol. Phys. Ther. 2020, 44, 3–14. [Google Scholar] [CrossRef] [PubMed]
Category | Experimental Group (n = 22) | Control Group (n = 22) | χ2/t (p) |
---|---|---|---|
Sex, male/female (%) | 12/10 (54.5/45.5) a | 12/10 (54.5/45.5) | −0.298 (0.767) |
Paretic side, right/left (%) | 14/8 (68.2/31.8) | 13/9 (54.5/45.5) | −0.303 (0.764) |
Age (years) | 60.59 ± 18.12 | 62.29 ± 13.97 | −1.009 (0.319) |
Height (cm) | 160.31 ± 10.55 | 161.53 ± 8.57 | −0.420 (0.676) |
Weight (kg) | 59.52 ± 11.47 | 57.40 ± 11.37 | 0.615 (0.542) |
Length of stay (days) | 17.73 ± 5.98 | 16.82 ± 7.28 | 0.453 (0.653) |
MMSE-K (point) | 21.91 ± 4.80 | 22.45 ± 4.86 | −0.375 (0.710) |
Variables | Experimental Group (n = 22) | Control Group (n = 22) | Time × Group | |||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | F | p | ηp2 | ||
Upper limb function | ||||||||
Fugl-Meyer assessment scale | 66.50 ± 24.43 | 87.95 ± 14.16 | 62.95 ± 28.81 | 86.00 ± 15.97 | 0.123 | 0.728 | 0.003 | |
Hand strength test | Grip power | 18.68 ± 15.85 | 31.50 ± 18.46 | 16.50 ± 21.51 | 24.88 ± 26.39 | 4.135 | 0.048 | 0.090 |
Palmar pinch | 2.86 ± 3.36 | 8.00 ± 5.17 | 3.38 ± 4.09 | 6.40 ± 5.46 | 4.346 | 0.043 | 0.094 | |
Lateral pinch | 5.18 ± 4.23 | 9.90 ± 5.99 | 5.00 ± 5.16 | 7.02 ± 6.72 | 5.831 | 0.020 | 0.122 | |
Tip pinch | 2.41 ± 3.02 | 5.45 ± 4.29 | 2.63 ± 2.92 | 4.18 ± 3.98 | 5.595 | 0.023 | 0.118 | |
Jebsen–Taylor hand function test | 14.09 ± 15.63 | 39.91 ± 29.55 | 20.68 ± 22.74 | 33.04 ± 27.06 | 6.893 | 0.012 | 0.141 | |
Activities of daily living | ||||||||
Korean version of the modified Barthel Index | 46.00 ± 25.83 | 77.68 ± 19.79 | 49.55 ± 19.88 | 71.18 ± 17.94 | 4.318 | 0.044 | 0.093 | |
Rehabilitation participation | ||||||||
Pittsburgh rehabilitation participation scale | 3.50 ± 1.10 | 3.95 ± 1.13 | 3.82 ± 1.00 | 4.23 ± 0.81 | 0.042 | 0.839 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.-S.; An, C.-S.; Lim, C.-G. Effects of a Rehabilitation Program Using a Wearable Device on the Upper Limb Function, Performance of Activities of Daily Living, and Rehabilitation Participation in Patients with Acute Stroke. Int. J. Environ. Res. Public Health 2021, 18, 5524. https://doi.org/10.3390/ijerph18115524
Park Y-S, An C-S, Lim C-G. Effects of a Rehabilitation Program Using a Wearable Device on the Upper Limb Function, Performance of Activities of Daily Living, and Rehabilitation Participation in Patients with Acute Stroke. International Journal of Environmental Research and Public Health. 2021; 18(11):5524. https://doi.org/10.3390/ijerph18115524
Chicago/Turabian StylePark, Yun-Sang, Chang-Sik An, and Chae-Gil Lim. 2021. "Effects of a Rehabilitation Program Using a Wearable Device on the Upper Limb Function, Performance of Activities of Daily Living, and Rehabilitation Participation in Patients with Acute Stroke" International Journal of Environmental Research and Public Health 18, no. 11: 5524. https://doi.org/10.3390/ijerph18115524
APA StylePark, Y. -S., An, C. -S., & Lim, C. -G. (2021). Effects of a Rehabilitation Program Using a Wearable Device on the Upper Limb Function, Performance of Activities of Daily Living, and Rehabilitation Participation in Patients with Acute Stroke. International Journal of Environmental Research and Public Health, 18(11), 5524. https://doi.org/10.3390/ijerph18115524