Application of Green Nanoemulsion for Elimination of Rifampicin from a Bulk Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Analysis
2.2.2. Pseudo-Ternary Phase Diagrams (PTDs) and Nanoemulsions
2.2.3. Evaluation Parameters of Nanoemulsions
2.2.4. Prepared Stock Solution: For a Calibration Curve
2.2.5. An Adsorptive Study: RIF Removal from Aqueous Solution
2.2.6. Assessment of Treated Water
3. Results and Discussion
3.1. Preparation of GNE by PTDs
3.2. Characterizations of Water/DMSOT/IPA/CMC8 GNEs
3.3. Removal Efficiency and Impact of Factors Affecting Adsorption of RIF
3.4. Proposed Mechanistic Perspective
3.5. Assessment of Treated Water
3.6. Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oosterhuis, M.; Sacher, F.; Laak, T.L.T. Prediction of concentration levels of metformin and other high consumption pharmaceuticals in wastewater and regional surface water based on sales data Sci. Total Environ. 2013, 442, 380–388. [Google Scholar] [CrossRef]
- Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect 1999, 107, 907–938. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M.; Barcelo, D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal. Bioanal. Chem. 2007, 387, 1365–1377. [Google Scholar] [CrossRef] [Green Version]
- Rosal, R.; Rodriguez, A.; Perdigon-Melon, J.A.; Petre, A.; Garcia-Calvo, E.; Gomez, M.J.; Aguera, A.; Fernandez-Alba, A.R. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res. 2010, 44, 578–588. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M.; Barcelo, D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009, 43, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, N.; Tuhkanen, T.; Kronberg, L. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters. Water Res. 2005, 39, 2219–2228. [Google Scholar] [CrossRef] [PubMed]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P.; Ancona, V.; Caracciolo, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al-Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Fontela, M.; Galceran, M.T.; Ventura, F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res. 2011, 45, 1432–1442. [Google Scholar] [CrossRef]
- Sanderson, H. Presence and risk assessment of pharmaceuticals in surface water and drinking water. Water Sci. Technol. 2011, 63, 2143–2148. [Google Scholar] [CrossRef]
- De Jongh, C.M.; Kooij, P.J.; De Voogt, P.; Laak, T.L.T. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water. Sci. Total Environ. 2012, 427–428, 70–77. [Google Scholar] [CrossRef]
- Jjemba, P.K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol. Environ. Saf. 2006, 63, 113–130. [Google Scholar] [CrossRef]
- Gagné, F.; Blaise, C.; André, C. Occurrence of pharmaceutical products in a municipal effluent and toxicity to rainbow trout (Oncorhynchus mykiss) hepatocytes. Ecotoxicol. Environ. Saf. 2006, 64, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Chen, H.; Reinhard, M.; Mao, F.; Gin, K.Y.H. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. 2016, 104, 461–472. [Google Scholar] [CrossRef]
- da Silva Duarte, J.L.; Solano, A.M.S.; Arguelho, M.L.P.M.; Tonholo, J.; Martínez-Huitle, C.A.; de Paiva, C.L.; Zanta, S. Evaluation of treatment of effluents contaminated with rifampicin by Fenton, electrochemical and associated processes. J. Water Process. Eng. 2018, 22, 250–257. [Google Scholar] [CrossRef]
- Kushwaha, H.S.; Kumar, A.; Kumar, R.; Vaish, R. A Water-Driven Triboelectric Generator for Electrocatalytic Wastewater Treatment. Energy Technol. 2018, 6, 670–676. [Google Scholar] [CrossRef]
- Encarnação, T.; Palito, C.; Pais, A.A.C.C.; Valente, A.J.M.; Burrows, H.D. Removal of Pharmaceuticals from Water by Free and Imobilised Microalgae. Molecules 2020, 25, 3639. [Google Scholar] [CrossRef]
- Zaviska, F.; Drogui, P.; Grasmick, A.; Azais, A.; Héran, M. Nanofiltration membrane bioreactor for removing pharmaceutical compounds. J. Membr. Sci. 2013, 429, 121–129. [Google Scholar] [CrossRef]
- Mariello, M.; Guido, F.; Mastronardi, V.M.; De Donato, F.; Salbini, M.; Brunetti, V.; Qualtieri, A.; Rizzi, F.; De Vittorio, M. Captive-air-bubble aerophobicity measurements of antibiofouling coatings for underwater MEMS devices. Nanomater. Nanotechnol. 2019, 9, 184798041986207. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.; Baek, I.; Choi, H. Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem. Eng. J. 2017, 307, 670–678. [Google Scholar] [CrossRef]
- Wehrli, W. Rifampin: Mechanisms of action and resistance, reviews of infectious diseases. Rev. Infect. Dis. 1983, 5, S407–S411. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Altamimi, M.A.; Alshehri, S.; Imam, S.S.; Shakeel, F.; Singh, S.K. Novel approach for transdermal delivery of rifampicin to induce synergistic antimycobacterial effects against cutaneous and systemic tuberculosis using a cationic nanoemulsion gel. Int. J. Nanomed. 2020, 15, 1073–1094. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.K.; Verma, S.; Hazarika, D.A. Clinicopathological study of cutaneous tuberculosis at dibrugarh district, assam, Indian. J. Derm. 2012, 57, 63–65. [Google Scholar]
- Caon, T.; Campos, C.E.M.; Simões, C.M.O.; Silva, M.A.S. Novel perspectives in the tuberculosis treatment: Administration of isoniazid through the skin. Int. J. Pharm. 2015, 494, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Begum, K.; Shahid, M.S.; Jalil, R. Topical nanoemulsion of rifampicin with benzoic acid and salicylic acid: Activity against staphylococcus aureus, stap. epidermis and candida albicans, Bangladesh. Pharm. J. 2019, 22, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Arpin-Pont, L.; Martínez-Bueno, M.J.; Gomez, E.; Fenet, H. Occurrence of PPCPs in the marine environment: A review. Environ. Sci. Pollut. Res. 2016, 23, 4978–4991. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Du, J.; Qu, Y.; Shen, C.; Tan, F.; Chen, J.; Quan, X. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China. Environ. Sci. Pollut. Res. 2017, 24, 16478–16487. [Google Scholar] [CrossRef] [PubMed]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. Sci. Total Environ. 2020, 727, 138788. [Google Scholar] [CrossRef]
- Gao, B.; Dong, S.; Liu, J.; Liu, L.; Feng, Q.; Tan, N.; Liu, T.; Bo, L.; Wang, L. Identification of intermediates and transformation pathways derived from photocatalytic degradation of five antibiotics on ZnIn2S4. Chem. Eng. J. 2016, 304, 826–840. [Google Scholar] [CrossRef]
- Stets, S.; do Amaral, B.; Schneider, J.T.; de Barros, I.R.; de Liz, M.V.; Ribeiro, R.R.; Nagata, N.; Peralta-Zamora, P. Anti-tuberculosis drugs degradation by UV-based advanced oxidation processes. J. Photochem. Photobiol. A Chem. 2018, 353, 26–33. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Sumague, T.S.; Alanazi, F.K.; Alsarra, I.A. Removal of indomethacin from aqueous solution using multicomponent green nanoemulsions. J. Mol. Liq. 2014, 198, 329–333. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Ahmed, M.A.; Gambhir, D.; Alanazi, F.K.; Alsarra, I.A. Removal of diclofenac sodium from aqueous solution using water/Transcutol/ethylene glycol/Capryol-90 green nanoemulsions. J. Mol. Liq. 2014, 199, 102–107. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Box-Behnken statistical design for removal of methylene blue from its aqueous solution using SDS self-microemulsifying systems. Ind. Eng. Chem. Res. 2014, 53, 1179–1188. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Removal of methyl orange from aqueous solution by EA/Triton-X100/EG/water green nanoemulsions. Desalination Water Treat. 2014, 57, 747–753. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 2012, 46, 1933–1946. [Google Scholar] [CrossRef]
- Shakeel, F.; Ramadan, W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf. B. 2010, 75, 356–362. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Al-Dhfyan, A.; Alanazi, F.K.; Alsarra, I.A. Chemoprevention of skin cancer using low HLB surfactant nanoemulsion of 5-fluorouracil: A preliminary study. Drug Deliv. 2015, 22, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Carballa, M.; Omil, F.; Lema, J.M.; Llompart, M.; García-Jares, C.; Rodríguez, I.; Gómez, M.; Ternes, T. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004, 38, 2918–2926. [Google Scholar] [CrossRef] [PubMed]
- Evgenidou, E.N.; Konstantinou, I.K.; Lambropoulou, D.A. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review. Sci. Total Environ. 2015, 505, 905–926. [Google Scholar] [CrossRef] [PubMed]
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Human pharmaceuticals in wastewater treatment processes. Crit. Rev. Environ. Sci. Technol. 2005, 35, 401–427. [Google Scholar] [CrossRef]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef]
- Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef] [PubMed]
Code | Composition (%w/w) | ||||
---|---|---|---|---|---|
Water | DMSOT | IPA | CMC8 | Smix | |
NF1 | 3 | 15 | 45 | 37 | 1:3 |
NF2 | 6 | 15 | 45 | 34 | 1:3 |
NF3 | 9 | 15 | 45 | 31 | 1:3 |
NF4 | 12 | 15 | 45 | 28 | 1:3 |
NF5 | 15 | 15 | 45 | 25 | 1:3 |
Code | Stability Cycles | ||||
---|---|---|---|---|---|
Zeta Potential (mV) | Centrifugation | Heating (40 °C) | Freezing (−21 °C) | Smix | |
NF1 | −29.3 | √ | √ | √ | 1:3 |
NF2 | −27.8 | √ | √ | √ | 1:3 |
NF3 | −27.1 | √ | √ | √ | 1:3 |
NF4 | −25.4 | √ | √ | √ | 1:3 |
NF5 | −24.9 | √ | √ | √ | 1:3 |
Code | Characterization Parameters (Mean ± Standard Deviation) | |||
---|---|---|---|---|
Globular Size (nm) | PDI | Viscosity (η) (cP) | Refractive Index | |
NF1 | 98.65 ± 11.5 | 0. 283 | 138.9 ± 10.4 | 1.381 ± 0.004 |
NF2 | 73.92 ± 8.4 | 0.252 | 131.3 ± 9.3 | 1.374 ± 0.003 |
NF3 | 56.03 ± 7.1 | 0.241 | 102.0 ± 8.6 | 1.355 ± 0.006 |
NF4 | 41.19 ± 4.9 | 0.189 | 98.7 ± 7.12 | 1.351 ± 0.008 |
NF5 | 38.78 ± 1.2 | 0.112 | 81.9 ± 5.6 | 1.325 ± 0.001 |
Code | %RE at Varied Time of Exposure (min) | ||
---|---|---|---|
10 | 30 | 60 | |
NF5 | 90.1 ± 0.454 | 90. 8 ± 0.451 | 91.7 ± 0.456 |
NF4 | 87.1 ± 0.439 | 87.3 ± 0.441 | 88.5 ± 0.443 |
NF3 | 83.6 ± 0.428 | 84.3 ± 0.436 | 85.2 ±0.431 |
NF2 | 80.2 ± 0.411 | 80.7 ± 0.409 | 81.4 ± 0.413 |
NF1 | 73.8 ± 0.383 | 74.3 ± 0.387 | 75.1 ± 0.384 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Mahdi, W.A.; Alshehri, S.; Bukhari, S.I.; Almaniea, M.A. Application of Green Nanoemulsion for Elimination of Rifampicin from a Bulk Aqueous Solution. Int. J. Environ. Res. Public Health 2021, 18, 5835. https://doi.org/10.3390/ijerph18115835
Hussain A, Mahdi WA, Alshehri S, Bukhari SI, Almaniea MA. Application of Green Nanoemulsion for Elimination of Rifampicin from a Bulk Aqueous Solution. International Journal of Environmental Research and Public Health. 2021; 18(11):5835. https://doi.org/10.3390/ijerph18115835
Chicago/Turabian StyleHussain, Afzal, Wael A. Mahdi, Sultan Alshehri, Sarah I. Bukhari, and Mohammad A. Almaniea. 2021. "Application of Green Nanoemulsion for Elimination of Rifampicin from a Bulk Aqueous Solution" International Journal of Environmental Research and Public Health 18, no. 11: 5835. https://doi.org/10.3390/ijerph18115835
APA StyleHussain, A., Mahdi, W. A., Alshehri, S., Bukhari, S. I., & Almaniea, M. A. (2021). Application of Green Nanoemulsion for Elimination of Rifampicin from a Bulk Aqueous Solution. International Journal of Environmental Research and Public Health, 18(11), 5835. https://doi.org/10.3390/ijerph18115835