Adverse Health Effects in Women Farmers Indirectly Exposed to Pesticides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Study Population
2.3. Sample Collection
2.4. Assay of Cholinesterase’s Activities
2.5. Hematological and Biochemical Analysis
2.6. Hormonal Analysis
2.7. Oxidative Stress Biomarkers
2.8. Urinary Early Kidney Damage Biomarkers
2.9. Statistical Analysis
3. Results
3.1. Characteristics of the Studied Population
3.2. Effects on Cholinesterase’s Activities
3.3. Effects on Hematological and Biochemical Parameters
3.4. Effects on Hormonal Analysis
3.5. Effects on Lipid and Protein Oxidation
3.6. Effects on Early Renal Function Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cestonaro, L.V.; Garcia, S.C.; Nascimento, S.; Gauer, B.; Sauer, E.; Göethel, G.; Peruzzi, C.; Nardi, J.; Fão, N.; Piton, Y.; et al. Biochemical, hematological and immunological parameters and relationship with occupational exposure to pesticides and metals. Environ. Sci. Pollut. Res. 2020, 27, 29291–29302. [Google Scholar] [CrossRef]
- Kori, R.K.; Hasan, W.; Jain, A.K.; Yadav, R.S. Cholinesterase inhibition and its association with hematological, biochemical and oxidative stress markers in chronic pesticide exposed agriculture workers. J. Biochem. Mol. Toxicol. 2019, 33, e22367. [Google Scholar] [CrossRef]
- Curl, C.L.; Spivak, M.; Phinney, R.; Montrose, L. Synthetic Pesticides and Health in Vulnerable Populations: Agricultural Workers. Curr. Environ. Health Rep. 2020, 7, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Wafa, T.; Nadia, K.; Amel, N.; Ikbal, C.; Insaf, T.; Asma, K.; Hedi, M.A.; Mohamed, H. Oxidative stress, hematological and biochemical alterations in farmers exposed to pesticides. J. Environ. Sci. Health Part B 2013, 48, 1058–1069. [Google Scholar] [CrossRef]
- García-García, C.R.; Parrón, T.; Requena, M.D.M.; Alarcón, R.; Tsatsakis, A.M.; Hernández, A.F. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci. 2016, 145, 274–283. [Google Scholar] [CrossRef]
- Hernández, A.F.; Parrón, T.; Tsatsakis, A.M.; Requena, M.D.M.; Alarcón, R.; López-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef]
- Fareed, M.; Kesavachandran, C.; Bihari, V.; Kamal, R.; Kuddus, M. Oxidative stress and cholinesterase depression among farm workers occupationally exposed to pesticides in India. J. Environ. Biol. 2017, 38, 305–311. [Google Scholar] [CrossRef]
- Jacobsen-Pereira, C.H.; Dos Santos, C.R.; Maraslis, F.T.; Pimentel, L.; Feijó, A.J.L.; Silva, C.I.; Medeiros, G.D.S.D.; Zeferino, R.C.; Pedrosa, R.C.; Maluf, S.W. Markers of genotoxicity and oxidative stress in farmers exposed to pesticides. Ecotoxicol. Environ. Saf. 2018, 148, 177–183. [Google Scholar] [CrossRef]
- Cortina, C.C.; Fonnegra, L.M.F.; Pineda, K.M.; Muñoz, M.P.; Fonnegra, J.R.; Díaz, J.P.Z. Efectos de la intoxicación por glifosato en la población agrícola: Revisión de tema. Revista CES Salud Pública 2017, 8, 121–133. [Google Scholar]
- Lozano-Paniagua, D.; Parrón, T.; Alarcón, R.; Requena, M.D.M.; Gil, F.; López-Guarnido, O.; Lacasaña, M.; Hernández, A.F. Biomarkers of oxidative stress in blood of workers exposed to non-cholinesterase inhibiting pesticides. Ecotoxicol. Environ. Saf. 2018, 162, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Gunatilake, S.; Seneff, S.; Orlando, L. Glyphosate’s Synergistic Toxicity in Combination with Other Factors as a Cause of Chronic Kidney Disease of Unknown Origin. Int. J. Environ. Res. Public Health 2019, 16, 2734. [Google Scholar] [CrossRef] [Green Version]
- Kass, L.; Gomez, A.L.; Altamirano, G.A. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol. Cell. Endocrinol. 2020, 508, 110789. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. [Google Scholar] [CrossRef]
- Bretveld, R.W.; Thomas, C.M.G.; Scheepers, P.T.J.; Zielhuis, G.A.; Roeleveld, N. Pesticide exposure: The hormonal function of the female reproductive system disrupted? Reprod. Biol. Endocrinol. 2006, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Frazier, L.M. Reproductive Disorders Associated with Pesticide Exposure. J. Agromed. 2007, 12, 27–37. [Google Scholar] [CrossRef]
- Ma, Y.; He, X.; Qi, K.; Wang, T.; Qi, Y.; Cui, L.; Wang, F.; Song, M. Effects of environmental contaminants on fertility and reproductive health. J. Environ. Sci. 2019, 77, 210–217. [Google Scholar] [CrossRef]
- Arnal, N.; Astiz, M.; de Alaniz, M.J.; Marra, C.A. Clinical parameters and biomarkers of oxidative stress in agricultural workers who applied copper-based pesticides. Ecotoxicol. Environ. Saf. 2011, 74, 1779–1786. [Google Scholar] [CrossRef]
- Manfo, F.P.T.; Mboe, S.A.; Nantia, E.A.; Ngoula, F.; Telefo, P.B.; Moundipa, P.F.; Cho-Ngwa, F. Evaluation of the Effects of Agro Pesticides Use on Liver and Kidney Function in Farmers from Buea, Cameroon. J. Toxicol. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Johnson, R.J.; Wesseling, C.; Newman, L.S. Chronic Kidney Disease of Unknown Cause in Agricultural Communities. N. Engl. J. Med. 2019, 380, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Bernieri, T.; Moraes, M.F.; Ardenghi, P.G.; Da Silva, L.B. Assessment of DNA damage and cholinesterase activity in soybean farmers in southern Brazil: High versus low pesticide exposure. J. Environ. Sci. Health Part B 2019, 55, 355–360. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Guimarães, A.; De Assis, H.S.; Boeger, W. The effect of trichlorfon on acetylcholinesterase activity and histopathology of cultivated fish Oreochromis niloticus. Ecotoxicol. Environ. Saf. 2007, 68, 57–62. [Google Scholar] [CrossRef]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. RNA Interf. 1990, 186, 407–421. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.-G.; Ahn, B.-W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-Dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Adedeji, A.O.; Pourmohamad, T.; Chen, Y.; Burkey, J.; Betts, C.J.; Bickerton, S.J.; Sonee, M.; McDuffie, J.E. Investigating the Value of Urine Volume, Creatinine, and Cystatin C for Urinary Biomarkers Normalization for Drug Development Studies. Int. J. Toxicol. 2019, 38, 12–22. [Google Scholar] [CrossRef]
- Analytical Methods Committee. Using the Grubbs and Cochran tests to identify outliers. Anal. Methods 2015, 7, 7948–7950. [Google Scholar] [CrossRef] [PubMed]
- Dhananjayan, V.; Ravichandran, B.; Panjakumar, K.; Kalaiselvi, K.; Rajasekar, K.; Mala, A.; Avinash, G.; Shridhar, K.; Manju, A.; Wilson, R. Assessment of genotoxicity and cholinesterase activity among women workers occupationally exposed to pesticides in tea garden. Mutat. Res. Toxicol. Environ. Mutagen. 2019, 841, 1–7. [Google Scholar] [CrossRef]
- Vikkey, H.A.; Fidel, D.; Elisabeth, Y.P.; Hilaire, H.; Hervé, L.; Badirou, A.; Alain, K.; Parfait, H.; Fabien, G.; Benjamin, F. Risk Factors of Pesticide Poisoning and Pesticide Users’ Cholinesterase Levels in Cotton Production Areas: Glazoué and Savè Townships, in Central Republic of Benin. Environ. Health Insights 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Zepeda-Arce, R.; Rojas-García, A.E.; Benitez-Trinidad, A.; Herrera-Moreno, J.F.; Medina-Díaz, I.M.; Barrón-Vivanco, B.S.; Villegas, G.P.; Hernández-Ochoa, I.; Heredia, M.D.J.S.; Bernal-Hernández, Y.Y. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environ. Toxicol. 2017, 32, 1754–1764. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, N.M.; Awad, O.M.; El-Fiki, S.; Abou-Shanab, R.A.I.; Abou-Shanab, A.R.A.; Amer, R.A. Association between exposure to pesticides and disorder on hematological parameters and kidney function in male agricultural workers. Environ. Sci. Pollut. Res. 2017, 25, 30802–30807. [Google Scholar] [CrossRef] [PubMed]
- Prudente, I.R.G.; Cruz, C.L.; Nascimento, L.D.C.; Kaiser, C.C.; Guimarães, A.G. Evidence of risks of renal function reduction due to occupational exposure to agrochemicals: A systematic review. Environ. Toxicol. Pharmacol. 2018, 63, 21–28. [Google Scholar] [CrossRef]
- Sine, H.; El Grafel, K.; Alkhammal, S.; Achbani, A.; Filali, K. Serum cholinesterase biomarker study in farmers—Souss Massa region-, Morocco: Case–control study. Biomarkers 2019, 24, 771–775. [Google Scholar] [CrossRef]
- Valcke, M.; Levasseur, M.-E.; Da Silva, A.S.; Wesseling, C. Pesticide exposures and chronic kidney disease of unknown etiology: An epidemiologic review. Environ. Health 2017, 16, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, S.M.; Bellomo, R. Early diagnosis of acute kidney injury. Curr. Opin. Crit. Care 2007, 13, 638–644. [Google Scholar] [CrossRef]
- Bonventre, J.V.; Vaidya, V.S.; Schmouder, R.; Feig, P.; Dieterle, F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 2010, 28, 436–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirota, J.C.; Klawitter, J.; Edelstein, C.L. Biomarkers of Acute Kidney Injury. J. Toxicol. 2011, 2011, 328120. [Google Scholar] [CrossRef] [Green Version]
- Vaidya, V.S.; Ferguson, M.A.; Bonventre, J.V. Biomarkers of Acute Kidney Injury. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 463–493. [Google Scholar] [CrossRef] [Green Version]
- Waikar, S.S.; Bonventre, J.V. Biomarkers for the Diagnosis of Acute Kidney Injury. Nephron 2008, 109, c192–c197. [Google Scholar] [CrossRef]
- Casanova, A.G.; Vicente-Vicente, L.; Hernández-Sánchez, M.T.; Prieto, M.; Rihuete, M.I.; Ramis, L.M.; Del Barco, E.; Cruz, J.J.; Ortiz, A.; Cruz-González, I.; et al. Urinary transferrin pre-emptively identifies the risk of renal damage posed by subclinical tubular alterations. Biomed. Pharmacother. 2020, 121, 109684. [Google Scholar] [CrossRef]
- Vicente-Vicente, L.; Sánchez-Juanes, F.; García-Sánchez, O.; Blanco-Gozalo, V.; Pescador, M.; Sevilla, M.A.; González-Buitrago, J.M.; López-Hernández, F.J.; López-Novoa, J.M.; Morales, A.I. Sub-nephrotoxic cisplatin sensitizes rats to acute renal failure and increases urinary excretion of fumarylacetoacetase. Toxicol. Lett. 2015, 234, 99–109. [Google Scholar] [CrossRef]
- Vicente-Vicente, L.; Ferreira, L.; González-Buitrago, J.M.; López-Hernández, F.J.; Lopez-Novoa, J.M.; Morales, A.I. Increased urinary excretion of albumin, hemopexin, transferrin and VDBP correlates with chronic sensitization to gentamicin nephrotoxicity in rats. Toxicology 2013, 304, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.M.-W.; Bonventre, J.V. Acute kidney injury and maladaptive tubular repair leading to renal fibrosis. Curr. Opin. Nephrol. Hypertens. 2020, 29, 310–318. [Google Scholar] [CrossRef]
- Orantes-Navarro, C.M.; Herrera-Valdés, R.; Almaguer-López, M.; López-Marín, L.; Vela, X.; Hernandez-Cuchillas, M.; Barba, L.M. Toward a Comprehensive Hypothesis of Chronic Interstitial Nephritis in Agricultural Communities. Adv. Chronic Kidney Dis. 2017, 24, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Santarpia, L.; Grandone, I.; Contaldo, F.; Pasanisi, F. Butyrylcholinesterase as a prognostic marker: A review of the literature. J. Cachex. Sarcopenia Muscle 2012, 4, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Lukaszewicz-Hussain, A. Role of oxidative stress in organophosphate insecticide toxicity—Short review. Pestic. Biochem. Physiol. 2010, 98, 145–150. [Google Scholar] [CrossRef]
Date of Sampling (Day/Month/Year) | Crop Collected in the Previous Three Months | Pesticides Applied | Target Pest |
---|---|---|---|
5 October 2017 | Pepper Garlic Artichoke | Pendimethalin | Herbicide |
Fluazifop-P-butyl | Herbicide | ||
λ-Cyhalothrin | Insecticide | ||
8 February 2018 | Garlic Artichoke Broccoli Green beans Olives Wheat | Bromoxynil | Herbicide |
Fluazifop-P-butyl | Herbicide | ||
Glyphosate | Herbicide | ||
Dimethylamine | Herbicide | ||
Diflufenican | Herbicide | ||
Chlortoluron | Herbicide | ||
Tritosulfuron | Herbicide | ||
Imidacloprid | Insecticide | ||
λ-Cyhalothrin | Insecticide | ||
Mancozeb | Fungicide | ||
Azoxystrobin | Fungicide | ||
Copper oxychloride | Fungicide | ||
6 June 2018 | Pepper Garlic Artichoke Broccoli Green beans Olives Wheat Cotton Zucchini Chickpeas Sunflowers Chamomile | Cycloxydim | Herbicide |
Fluazifop-P-butyl | Herbicide | ||
Pendimethalin | Herbicide | ||
Glyphosate | Herbicide | ||
Imazamox | Herbicide | ||
Dimethylamine | Herbicide | ||
Fluometuron | Herbicide | ||
Ethofumesate | Herbicide | ||
Fluroxypyr | Herbicide | ||
Napropamide | Herbicide | ||
Tritosulfuron | Herbicide | ||
Bromoxynil | Herbicide | ||
Pinoxaden | Herbicide | ||
λ-Cyhalothrin | Insecticide | ||
Chlorpyrifos | Insecticide | ||
Deltamethrin | Insecticide | ||
Betacyfluthrin | Insecticide | ||
Propanocarb | Fungicide | ||
Chlorthanolil | Fungicide | ||
Copper oxychloride | Fungicide | ||
Azoxystrobin | Fungicide | ||
Tebuconazole | Fungicide | ||
10 October 2018 | Pepper Garlic Artichoke | Pendimethalin | Herbicide |
Fluazifop-P-butyl | Herbicide | ||
λ-Cyhalothrin | Insecticide |
Farmers (n = 22) | NOE (n = 17) | p-Value | |
---|---|---|---|
Age | 0.175 | ||
18–28 years | 3 (13.6) | 3 (17.6) | |
29–38 years | 3 (13.6) | 6 (35.3) | |
39–45 years | 16 (72.7) | 8 (47.1) | |
Smoking habits | 1.000 | ||
Smokers | 8 (36.4) | 6 (35.3) | |
Non-smokers | 14 (63.6) | 11 (64.7) | |
Alcohol consumption | 0.015 | ||
Non-consumer | 10 (45.5) | 11 (64.7) | |
Sporadic | 8 (36.4) | 0 (0) | |
Weekend | 4 (18.2) | 6 (35.3) | |
Number of years working at that job | 0.006 | ||
<5 | 2 (9.1) | 0 (0) | |
5–10 | 0 (0) | 5 (29.4) | |
>10 | 20 (90.9) | 12 (70.6) | |
Use of PPE | 0.184 | ||
Yes | 22 (100) | 15 (88.2) | |
No | 0 (0) | 2 (11.8) | |
Type of PPE | |||
Mask | 0 (0) | 0 (0) | n.c. |
Gloves | 22 (100) | 15 (88.2) | 0.184 |
Glasses | 0 (0) | 0 (0) | n.c. |
October 2017 | February 2018 | June 2018 | October 2018 | Normal Range | |||||
---|---|---|---|---|---|---|---|---|---|
Farmers | NOE | Farmers | NOE | Farmers | NOE | Farmers | NOE | ||
Glucose (mg/dL) | 91.6 ± 2.8 * | 81.7 ± 1.7 | 79.0 ± 3.1 | 76.7 ± 1.6 | 75.8 ± 1.5 | 77.4 ± 1.6 | 82.1 ± 4.9 *** | 61.1 ± 2.0 | 75–110 |
Total proteins (g/dL) | 7.0 ± 0.1 | 6.9 ± 0.1 | 7.5 ± 0.1 | 7.4 ± 0.0 | 7.0 ± 0.1 *** | 7.4 ± 0.0 | 7.6 ± 0.1 | 7.4 ± 0.1 | 6.5–8.0 |
Lipid profile | |||||||||
Total cholesterol (mg/dL) | 187.6 ± 3.4 | 174.7 ± 12.1 | 193.3 ± 4.8 | 199.9 ± 13.8 | 186.6 ± 4.3 | 200.4 ± 13.7 | 185.3 ± 6.6 | 218.3 ± 17.1 | 90–220 |
HDL (mg/dL) | 55.0 ± 2.7 ** | 43.3 ± 2.6 | 59.3 ± 2.1 *** | 42.4 ± 2.8 | 60.2 ± 2.3 *** | 42.3 ± 2.8 | 58.0 ± 2.3 ** | 46.8 ± 1.6 | 35–65 |
LDL (mg/dL) | 119.4 ± 3.2 | 116.8 ± 10.0 | 125.7 ± 3.9 | 144.1 ± 11.8 | 105.3 ± 3.4 ** | 144.2 ± 11.8 | 100.4 ± 5.1 ** | 142.1 ± 11.7 | <129 |
Triglycerides (mg/dL) | 137.5 ± 11.2 | 128.2 ± 10.0 | 135.9 ± 9.1 ** | 198.1 ± 14.8 | 106.7 ± 8.2 *** | 198.2 ± 14.7 | 136.4 ± 9.6 | 148.9 ± 20.1 | 50–200 |
Hepatic function biomarkers | |||||||||
LDH (U/L) | 401.8 ± 11.6 | 376.7 ± 15.9 | 371.0 ± 10.7 | 373.3 ± 14.4 | 355.7 ± 10.1 | 373.9 ± 14.3 | 412.7 ± 11.0 | 437.7 ± 13.3 | 230–460 |
AST (U/L) | 20.6 ± 2.4 | 19.1 ± 1.5 | 23.0 ± 2.3 | 19.3 ± 0.9 | 17.2 ± 1.3 | 19.4 ± 1.0 | 18.3 ± 1.1 | 21.0 ± 1.1 | 10–37 |
ALT (U/L) | 20.1 ± 2.9 | 18.3 ± 3.2 | 23.7 ± 3.6 | 18.4 ± 2.9 | 17.7 ± 1.9 | 18.8 ± 2.8 | 15.6 ± 1.5 | 14.6 ± 1.1 | 10–40 |
Renal function biomarkers | |||||||||
Urea (mg/dL) | 33.8 ± 1.9 *** | 22.0 ± 1.2 | 30.1 ± 0.7 *** | 21.2 ± 0.6 | 33.5 ± 1.7 *** | 21.6 ± 0.7 | 34.0 ± 1.2 *** | 23.9 ± 1.4 | 15–50 |
Creatinine (mg/dL) | 0.8 ± 0.0 *** | 0.7 ± 0.0 | 0.7 ± 0.0 * | 0.6 ± 0.0 | 0.7 ± 0.0 | 0.6 ± 0.0 | 0.7 ± 0.2 | 0.7 ± 0.0 | 0.6–1.2 |
October 2017 | February 2018 | June 2018 | October 2018 | Normal Range | |||||
---|---|---|---|---|---|---|---|---|---|
Farmers | NOE | Farmers | NOE | Farmers | NOE | Farmers | NOE | ||
TSH (mIU/L) | 1.33 ± 0.16 | 1.86 ± 0.27 | 1.87 ± 0.17 | 1.61 ± 0.16 | 1.41 ± 0.12 | 1.62 ± 0.17 | 1.88 ± 0.18 | 2.70 ± 0.78 | 0.27–5.50 |
FT4 (ng/dL) | 1.16 ± 0.01 | 1.27 ± 0.06 | 1.18 ± 0.03 | 1.22 ± 0.07 | 1.04 ± 0.02 ** | 1.23 ± 0.07 | 1.19 ± 0.02 | 1.23 ± 0.04 | 0.93–1.70 |
LH (U/L) | 24.2 ± 6.8 | 38.7 ± 11.0 | 31.5 ± 10.1 | 56.3 ± 14.6 | 25.3 ± 7.3 | 55.6 ± 14.5 | 18.5 ± 6.6 *** | 97.8 ± 12.4 | <25 U/L |
FSH (U/L) | 19.1 ± 4.7 | 51.8 ± 28.4 | 21.6 ± 5.4 | 29.3 ± 5.5 | 17.0 ± 4.1 | 29.2 ± 5.5 | 12.8 ± 3.2 | 42.6 ± 4.3 | 3.8–8.8 U/L (follicular phase); 1.8–5.1 U/L (luteal phase); 4.5–22.5 U/L (menstrual cycle) |
AMH (ng/mL) | n.m. | n.m. | 1.0 ± 0.3 | 1.1 ± 0.3 | 0.9 ± 0.2 | 1.1 ± 0.3 | 1.1 ± 0.2 | 1.4 ± 0.7 | 0.7–2.3 ng/mL enough levels of ovarian reserve |
Farmers | Proteinuria | Urinary NAG | Urinary KIM-1 | Urinary NGAL | Urinary Albumin | Urinary Transferrin | |
---|---|---|---|---|---|---|---|
Exposure to pesticides | Blood BuChE | −0.29 * | 0.14 | 0.23 | 0.14 | −0.26 * | −0.18 |
Blood AChE | 0.08 | 0.01 | −0.43 *** | −0.33 ** | 0.38 ** | −0.27 * | |
Oxidative stress | Blood lipoperoxidase | −0.09 | −0.03 | −0.09 | −0.02 | 0.21 | −0.47 *** |
Blood proteins oxidation | −0.22 | −0.15 | 0.06 | 0.14 | −0.09 | 0.12 | |
NOE | Proteinuria | Urinary NAG | Urinary KIM-1 | Urinary NGAL | Urinary albumin | Urinary transferrin | |
Exposure to pesticides | Blood BuChE | −0.14 | −0.20 | 0.61 *** | −0.16 | −0.36 *** | 0.13 |
Blood AChE | 0.05 | −0.08 | −0.03 | −0.36 ** | 0.04 | −0.35 ** | |
Oxidative stress | Blood lipoperoxidase | 0.09 | −0.16 | 0.08 | 0.05 | 0.20 | 0.08 |
Blood proteins oxidation | −0.08 | −0.02 | 0.09 | −0.14 | −0.27* | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin-Reina, J.; Casanova, A.G.; Dahiri, B.; Fernández, I.; Fernández-Palacín, A.; Bautista, J.; Morales, A.I.; Moreno, I. Adverse Health Effects in Women Farmers Indirectly Exposed to Pesticides. Int. J. Environ. Res. Public Health 2021, 18, 5909. https://doi.org/10.3390/ijerph18115909
Martin-Reina J, Casanova AG, Dahiri B, Fernández I, Fernández-Palacín A, Bautista J, Morales AI, Moreno I. Adverse Health Effects in Women Farmers Indirectly Exposed to Pesticides. International Journal of Environmental Research and Public Health. 2021; 18(11):5909. https://doi.org/10.3390/ijerph18115909
Chicago/Turabian StyleMartin-Reina, Jose, Alfredo G. Casanova, Bouchra Dahiri, Isaías Fernández, Ana Fernández-Palacín, Juan Bautista, Ana I. Morales, and Isabel Moreno. 2021. "Adverse Health Effects in Women Farmers Indirectly Exposed to Pesticides" International Journal of Environmental Research and Public Health 18, no. 11: 5909. https://doi.org/10.3390/ijerph18115909
APA StyleMartin-Reina, J., Casanova, A. G., Dahiri, B., Fernández, I., Fernández-Palacín, A., Bautista, J., Morales, A. I., & Moreno, I. (2021). Adverse Health Effects in Women Farmers Indirectly Exposed to Pesticides. International Journal of Environmental Research and Public Health, 18(11), 5909. https://doi.org/10.3390/ijerph18115909