A Bibliometric and Visualized Overview for the Evolution of Process Safety and Environmental Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bibliographic Data
2.2. Bibliometric Methods and Analysis Tool
3. Results and Discussion
3.1. Publication Trend and Citation Distribution
3.2. Leading Authors, Institutions, and Countries/Regions
3.2.1. Leading Authors and Collaborations
3.2.2. Leading Countries/Regions and Collaboration
3.2.3. Leading Institutions and Collaborations
3.3. Influential Works
3.3.1. Influential Works Published by PSEP
3.3.2. Influential Works Cited by PSEP
3.4. Research Fields Identification and Research Trends Evolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Merigó, J.M.; Miranda, J.; Modak, N.M.; Boustras, G.; de la Sotta, C. Forty years of Safety Science: A bibliometric overview. Saf. Sci. 2019, 115, 66–88. [Google Scholar] [CrossRef]
- Singh, S.; Dhir, S.; Das, V.M.; Sharma, A. Bibliometric overview of the Technological Forecasting and Social Change journal: Analysis from 1970 to 2018. Technol. Forecast. Soc. Change 2020, 154, 119963. [Google Scholar] [CrossRef]
- Broadus, R.N. Toward a definition of “bibliometrics”. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Wang, C.; Lim, M.K.; Zhao, L.; Tseng, M.-L.; Chien, C.-F.; Lev, B. The evolution of omega-the international journal of management science over the past 40 years: A bibliometric overview. Omega 2020, 93, 102098. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Bindra, S.; Parameswar, N.; Dhir, S. Strategic management: The evolution of the field. Strategic Change 2019, 28, 469–478. [Google Scholar] [CrossRef]
- Singh, S.; Akbani, I.; Dhir, S. Service innovation implementation: A systematic review and research agenda. Serv. Ind. J. 2020, 40, 491–517. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Yan, B. The hotspots of life cycle assessment for bioenergy: A review by social network analysis. Sci. Total Environ. 2018, 625, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Zhi, W.; Ji, G. Constructed wetlands, 1991–2011: A review of research development, current trends, and future directions. Sci. Total Environ. 2012, 441, 19–27. [Google Scholar] [CrossRef]
- Mao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environ. Pollut. 2021, 275, 115785. [Google Scholar] [CrossRef]
- Li, J.; Goerlandt, F.; Reniers, G. An overview of scientometric mapping for the Safety Science community: Methods, tools, and processes. Saf. Sci. 2020, 134, 105093. [Google Scholar] [CrossRef]
- Krauskopf, E. A bibiliometric analysis of the Journal of Infection and Public Health: 2008–2016. J. Infect. Public Health 2018, 11, 224–229. [Google Scholar] [CrossRef]
- Laengle, S.; Modak, N.M.; Merigo, J.M.; Zurita, G. Twenty-five years of group decision and negotiation: A bibliometric overview. Gr. Decis. Negot. 2018, 27, 505–542. [Google Scholar] [CrossRef]
- Flores, P. The journal of Mechanism and Machine Theory: Celebrating 55 years since its foundation. Mech. Mach. Theory 2019, 142, 103599. [Google Scholar] [CrossRef]
- Laengle, S.; Merigó, J.M.; Miranda, J.; Słowiński, R.; Bomze, I.; Borgonovo, E.; Dyson, R.G.; Oliveira, J.F.; Teunter, R. Forty years of the European Journal of Operational Research: A bibliometric overview. Eur. J. Oper. Res. 2017, 262, 803–816. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Liu, C.; Huang, L.; Huang, G. The evolution of resources conservation and recycling over the past 30 years: A bibliometric overview. Resour. Conserv. Recycl. 2018, 134, 34–43. [Google Scholar] [CrossRef]
- Modak, N.M.; Merigó, J.M.; Weber, R.; Manzor, F.; Ortúzar, J.d.D. Fifty years of Transportation Research journals: A bibliometric overview. Transp. Res. Part A Policy Pract. 2019, 120, 188–223. [Google Scholar] [CrossRef]
- Cancino, C.; Merigó, J.M.; Coronado, F.; Dessouky, Y.; Dessouky, M. Forty years of computers & industrial engineering: A bibliometric analysis. Comput. Ind. Eng. 2017, 113, 614–629. [Google Scholar]
- Cobo, M.J.; Martínez, M.A.; Gutiérrez-Salcedo, M.; Fujita, H.; Herrera-Viedma, E. 25 years at knowledge-based systems: A bibliometric analysis. Knowl. Based Syst. 2015, 80, 3–13. [Google Scholar] [CrossRef]
- Tang, M.; Liao, H.; Su, S.-F. A Bibliometric overview and visualization of the international journal of fuzzy systems between 2007 and 2017. Int. J. Fuzzy Syst. 2018, 20, 1403–1422. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, L.; Vilela, A.L.M.; Lim, M.K. The evolution of Industrial Management & Data Systems over the past 25 years. Ind. Manag. Data Syst. 2019, 119, 2–34. [Google Scholar]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Mingers, J.; Leydesdorff, L. A review of theory and practice in scientometrics. Eur. J. Oper. Res. 2015, 246, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Merigó, J.M.; Herrera-Viedma, E.; Cobo, M.J.; Laengle, S.; Rivas, D. A Bibliometric analysis of the first twenty years of soft computing. In Advances in Fuzzy Logic and Technology 2017; Springer: Cham, Switzerland, 2017; pp. 517–528. [Google Scholar]
- Van Nunen, K.; Li, J.; Reniers, G.; Ponnet, K. Bibliometric analysis of safety culture research. Saf. Sci. 2018, 108, 248–258. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, G.; Reniers, G.; Goerlandt, F. A bibliometric analysis of process safety research in China:Understanding safety research progress as a basis for making China’s chemical industry more sustainable. J. Cleaner Prod. 2020, 263, 121433. [Google Scholar] [CrossRef]
- Li, J. Scientometrics and Knowledge Network Analysis; Capital University of Economics and Business Press: Beijing, China, 2017. [Google Scholar]
- Li, J. Principles and Applications of Mapping Knowledge Domains: A Beginner’s Guide to VOSviewer and CitNetExplorer; Higher Education Press: Beijing, China, 2018. [Google Scholar]
- Verrall, B.; Pickering, C.M. Alpine vegetation in the context of climate change: A global review of past research and future directions. Sci. Total Environ. 2020, 748, 141344. [Google Scholar] [CrossRef] [PubMed]
- Nazaripour, M.; Reshadi, M.A.M.; Mirbagheri, S.A.; Nazaripour, M.; Bazargan, A. Research trends of heavy metal removal from aqueous environments. J. Environ. Manag. 2021, 287, 112322. [Google Scholar] [CrossRef]
- Su, Y.; Yu, Y.; Zhang, N. Carbon emissions and environmental management based on Big Data and Streaming Data: A bibliometric analysis. Sci. Total Environ. 2020, 733, 138984. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Manzano-Agugliaro, F. Global trends in nitrate leaching research in the 1960–2017 period. Sci. Total Environ. 2018, 643, 400–413. [Google Scholar] [CrossRef]
- Li, H.; Jiang, H.D.; Yang, B.; Liao, H. An analysis of research hotspots and modeling techniques on carbon capture and storage. Sci. Total Environ. 2019, 687, 687–701. [Google Scholar] [CrossRef]
- Vanzetto, G.V.; Thome, A. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation. Environ. Pollut. 2019, 252, 74–83. [Google Scholar] [CrossRef]
- Jin, R.; Zou, P.X.W.; Piroozfar, P.; Wood, H.; Yang, Y.; Yan, L.; Han, Y. A science mapping approach based review of construction safety research. Saf. Sci. 2019, 113, 285–297. [Google Scholar] [CrossRef]
- Akram, R.; Thaheem, M.J.; Nasir, A.R.; Ali, T.H.; Khan, S. Exploring the role of building information modeling in construction safety through science mapping. Saf. Sci. 2019, 120, 456–470. [Google Scholar] [CrossRef]
- Amin, M.T.; Khan, F.; Amyotte, P. A bibliometric review of process safety and risk analysis. Process Saf. Environ. Protect. 2019, 126, 366–381. [Google Scholar] [CrossRef]
- Li, J.; Reniers, G.; Cozzani, V.; Khan, F. A bibliometric analysis of peer-reviewed publications on domino effects in the process industry. J. Loss Prev. Process Ind. 2017, 49, 103–110. [Google Scholar] [CrossRef]
- Yang, Y.; Reniers, G.; Chen, G.; Goerlandt, F. A bibliometric review of laboratory safety in universities. Saf. Sci. 2019, 120, 14–24. [Google Scholar] [CrossRef]
- Zou, X.; Yue, W.L.; Vu, H.L. Visualization and analysis of mapping knowledge domain of road safety studies. Accid. Anal. Prev. 2018, 118, 131–145. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.; Hong, R.; Liu, H.; You, W. Mapping knowledge structure and research trends of emergency evacuation studies. Saf. Sci. 2020, 121, 348–361. [Google Scholar] [CrossRef]
- Tao, J.; Yang, F.; Qiu, D.; Reniers, G. Analysis of safety leadership using a science mapping approach. Process Saf. Environ. Protect. 2020, 140, 244–257. [Google Scholar] [CrossRef]
- Merigó, J.M.; Gil-Lafuente, A.M.; Yager, R.R. An overview of fuzzy research with bibliometric indicators. Appl. Soft Comput. 2015, 27, 420–433. [Google Scholar] [CrossRef]
- Merigó, J.M.; Mas-Tur, A.; Roig-Tierno, N.; Ribeiro-Soriano, D. A bibliometric overview of the Journal of Business Research between 1973 and 2014. J. Bus. Res. 2015, 68, 2645–2653. [Google Scholar] [CrossRef]
- Ho, Y.; McKay, G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. Protect. 1998, 76, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Lagergren, S. About the theory of so called adsorption of soluble substances. Kungliga Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.-S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part, I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Meel, A.; Seider, W.D. Plant-specific dynamic failure assessment using Bayesian theory. Chem. Eng. Sci. 2006, 61, 7036–7056. [Google Scholar] [CrossRef]
- Khakzad, N.; Khan, F.; Amyotte, P. Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Saf. Environ. Protect. 2013, 91, 46–53. [Google Scholar] [CrossRef]
- Khakzad, N.; Khan, F.; Amyotte, P. Dynamic risk analysis using bow-tie approach. Reliab. Eng. Syst. Saf. 2012, 104, 36–44. [Google Scholar] [CrossRef]
- Khan, F.I.; Abbasi, S. Techniques and methodologies for risk analysis in chemical process industries. J. Loss Prev. Process Ind. 1998, 11, 261–277. [Google Scholar] [CrossRef]
- Khan, F.; Rathnayaka, S.; Ahmed, S. Methods and models in process safety and risk management: Past, present and future. Process Saf. Environ. Prot. 2015, 98, 116–147. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Rathnayaka, S.; Khan, F.; Amyotte, P. SHIPP methodology: Predictive accident modeling approach. Part I: Methodology and model description. Process Saf. Environ. Prot. 2011, 89, 151–164. [Google Scholar] [CrossRef]
- Khakzad, N.; Khan, F.; Amyotte, P. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 2011, 96, 925–932. [Google Scholar] [CrossRef]
- Bobbio, A.; Portinale, L.; Minichino, M.; Ciancamerla, E. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliab. Eng. Syst. Saf. 2001, 71, 249–260. [Google Scholar] [CrossRef]
- Edwards, D.W.; Lawrence, D. Assessing the inherent safety of chemical process routes: Is there a relation between plant costs and inherent safety? Process Saf. Environ. Prot. 1993, 71, 252–258. [Google Scholar]
- Khan, F.I.; Abbasi, S. Multivariate hazard identification and ranking system. Process Saf. Prog. 1998, 17, 157–170. [Google Scholar] [CrossRef]
- Gupta, J.; Edwards, D.W. A simple graphical method for measuring inherent safety. J. Hazard. Mater. 2003, 104, 15–30. [Google Scholar] [CrossRef]
- Khan, F.I.; Amyotte, P.R. I2SI: A comprehensive quantitative tool for inherent safety and cost evaluation. J. Loss Prev. Process Ind. 2005, 18, 310–326. [Google Scholar] [CrossRef]
- Koller, G.; Fischer, U.; Hungerbühler, K. Assessing safety, health, and environmental impact early during process development. Ind. Eng. Chem. Res. 2000, 39, 960–972. [Google Scholar] [CrossRef]
- Khan, F.I.; Husain, T.; Abbasi, S.A. Safety weighted hazard index (SWeHI): A new, user-friendly tool for swift yet comprehensive hazard identification and safety evaluation in chemical process industries. Process Saf. Environ. Prot. 2001, 79, 65–80. [Google Scholar] [CrossRef]
- Lees, F.P. Loss Prevention in the Process Industries, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1996. [Google Scholar]
- Crowl, D.A.; Louvar, J.F. Chemical Process Safety Fundamentals with Applications, 3rd ed.; Pearson Education: Bosotn, MA, USA, 2011. [Google Scholar]
- CCPS. Guidelines for Chemical Process Quantitative Risk Analysis, 2nd ed.; American Institute of Chemical Engineers (AIChE): New York, NY, USA, 2000. [Google Scholar]
- Eckhoff, R.K. Dust explosions in the Process Industries, 3rd ed.; Gulf Professional Publishing: Oxford, UK, 2003. [Google Scholar]
- Khan, F.I.; Abbasi, S. Major accidents in process industries and an analysis of causes and consequences. J. Loss Prev. Process Ind. 1999, 12, 361–378. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005; Volume 2. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998; Volume 2. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef]
- Cheng, W.; Hu, X.; Xie, J.; Zhao, Y. An intelligent gel designed to control the spontaneous combustion of coal: Fire prevention and extinguishing properties. Fuel 2017, 210, 826–835. [Google Scholar] [CrossRef]
- Wang, H.; Nie, W.; Cheng, W.; Liu, Q.; Jin, H. Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel’s fully-mechanized working face. Adv. Powder Technol. 2018, 29, 230–244. [Google Scholar] [CrossRef]
- Karacan, C.Ö.; Ruiz, F.A.; Cotè, M.; Phipps, S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 2011, 86, 121–156. [Google Scholar] [CrossRef]
- Reason, J. Human Error; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Rasmussen, J. Risk management in a dynamic society: A modelling problem. Safety Sci. 1997, 27, 183–213. [Google Scholar] [CrossRef]
- Wang, Y.P.; Smith, R. Wastewater Minimization. Chem. Eng. Sci. 1994, 49, 981–1006. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.t.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Cozzani, V.; Gubinelli, G.; Salzano, E. Escalation thresholds in the assessment of domino accidental events. J. Hazard. Mater. 2006, 129, 1–21. [Google Scholar] [CrossRef]
- Darbra, R.; Palacios, A.; Casal, J. Domino effect in chemical accidents: Main features and accident sequences. J. Hazard. Mater. 2010, 183, 565–573. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Nasserzadeh, V.; Swithenbank, J.; Lawrence, D.; Garrod, N.P. Emission testing and design optimization of the Sheffield clinical incinerator plant. Process Saf. Environ. Prot. 1995, 73, 212–222. [Google Scholar]
- Jørgensen, K.; Madsen, O.H. Modern control systems for MSW plants. Process Saf. Environ. Prot. 2000, 78, 15–20. [Google Scholar] [CrossRef]
- Nasserzadeh, V.; Swithenbank, J.; Schofield, C.; Scott, D.W.; Loader, A.; Leonard, A.; Russell, R.; Winn, D. Three-dimensional modelling of the Coventry MSW incinerator using computational fluid dynamics and experimental data. Process Saf. Environ. Prot. Trans. Inst. Chem. Eng. Part B 1993, 71, 269–279. [Google Scholar]
- Goh, Y.R.; Lim, C.N.; Zakaria, R.; Chan, K.H.; Reynolds, G.; Yang, Y.B.; Siddall, R.G.; Nasserzadeh, V.; Swithenbank, J. Mixing, Modelling and measurements of incinerator bed combustion. Process Saf. Environ. Prot. 2000, 78, 21–32. [Google Scholar] [CrossRef]
- Zheng, G.; Di Lalla, S.; Koziński, J. Experimental methodology and determination of optimum operating parameters during solid waste burning. Process Saf. Environ. Prot. 1998, 76, 19–30. [Google Scholar] [CrossRef]
- Choy, K.K.H.; Ko, D.C.K.; Cheung, W.-H.; Fung, J.S.C.; Hui, D.C.W.; Porter, J.F.; Mckay, G. Municipal solid waste utilization for integrated cement processing with waste minimization: A pilot scale proposal. Process Saf. Environ. Prot. 2004, 82, 200–207. [Google Scholar] [CrossRef]
- Wayman, M.; Chen, S.; Doan, K. Production of fuel ethanol from the waste paper in garbage. Process Saf. Environ. Prot. 1993, 71, 141–143. [Google Scholar]
- Ward, D.; Goh, Y.; Clarkson, P.; Lee, P.; Nasserzadeh, V.; Swithenbank, J. A novel energy-efficient process utilizing regenerative burners for the detoxification of fly ash. Process Saf. Environ. Prot. 2002, 80, 315–324. [Google Scholar] [CrossRef]
- Chagger, H.; Jones, J.; Pourkashanian, M.; Williams, A. The formation of VOC, PAH and dioxins during incineration. Process Saf. Environ. Prot. 2000, 78, 53–59. [Google Scholar] [CrossRef]
- Lee, P.; Nasserzadeh, V.; Swithenbank, J.; Laming, J.; Goodfellow, J.; Mcleod, C.; Argent, B.; Lawrence, D.; Garrod, N. Sintering of the APC residue from municipal waste incinerators. Process Saf. Environ. Prot. 1999, 77, 212–218. [Google Scholar] [CrossRef]
- Golonka, K.A.; Brennan, D.J. Costs and environmental impacts in pollutant treatment: A case study of sulphur dioxide emissions from metallurgical smelters. Process Saf. Environ. Prot. 1997, 75, 232–244. [Google Scholar] [CrossRef]
- Narayanan, D.; Zhang, Y.; Mannan, M.S. Engineering for Sustainable Development (ESD) in bio-diesel production. Process Saf. Environ. Prot. 2007, 85, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Azapagic, A. Systems approach to corporate sustainability: A general management framework. Process Saf. Environ. Prot. 2003, 81, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Azapagic, A.; Perdan, S. Indicators of sustainable development for industry: A general framework. Process Saf. Environ. Prot. 2000, 78, 243–261. [Google Scholar] [CrossRef]
- Cullis, C.F.; Hirschler, M.M.; Stroud, M.A.M. Control of solid and gaseous pollutants formed during diesel fuel combustion. Process Saf. Environ. Prot. 1995, 73, 278–284. [Google Scholar]
- Andrews, J.; Smith, R.; Gregory, J. Procedure to calculate the explosion frequency for a module on an offshore platform. Process Saf. Environ. Prot. Trans. Inst. Chem. Eng. Part B 1994, 72, 69–82. [Google Scholar]
- Pula, R.; Khan, F.I.; Veitch, B.; Amyotte, P.R. A Grid based approach for fire and explosion consequence analysis. Process Saf. Environ. Prot. 2006, 84, 79–91. [Google Scholar] [CrossRef]
- Haastrup, P.; Rasmussen, K. A study of f-N curves for accidents involving highly flammable gases and some toxic gases. Process Saf. Environ. Prot. 1994, 72, 205–210. [Google Scholar]
- Roberts, T.; Gosse, A.; Hawksworth, S. Thermal radiation from fireballs on failure of liquefied petroleum gas storage vessels. Process Saf. Environ. Prot. 2000, 78, 184–192. [Google Scholar] [CrossRef]
- Khan, F.I.; Sadiq, R.; Haddara, M.M. Risk-Based Inspection and Maintenance (RBIM): Multi-attribute decision-making with aggregative risk analysis. Process Saf. Environ. Prot. 2004, 82, 398–411. [Google Scholar] [CrossRef]
- Ferdous, R.; Khan, F.I.; Veitch, B.; Amyotte, P.R. Methodology for computer-aided fault tree analysis. Process Saf. Environ. Prot. 2007, 85, 70–80. [Google Scholar] [CrossRef]
- Woods, H.F. Assessing the risks to human health associated with exposure to dioxins. Process Saf. Environ. Prot. 1995, 73, S32–S35. [Google Scholar]
- Rew, P.J.; Hulbert, W.G.; Deaves, D.M. Modelling of thermal radiation from external hydrocarbon pool fires. Process Saf. Environ. Prot. 1997, 75, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Snee, T.J.; Cusco, L. Pilot-Scale Evaluation of the Inhibition of Exothermic Runaway. Process Saf. Environ. Prot. 2005, 83, 135–144. [Google Scholar] [CrossRef]
- Sarkar, C.; Abbasi, S.A. Enhancing the accuracy of forecasting impact of accidents in chemical process industry by the application of cellular automata technique. Process Saf. Environ. Prot. 2006, 84, 355–370. [Google Scholar] [CrossRef]
- Ménard, Y.; Asthana, A.; Patisson, F.; Sessiecq, P.; Ablitzer, D. Thermodynamic study of heavy metals behaviour during municipal waste incineration. Process Saf. Environ. Prot. 2006, 84, 290–296. [Google Scholar] [CrossRef]
- Doyle, J.D.; Philp, R.; Churchley, J.; Parsons, S.A. Analysis of struvite precipitation in real and synthetic liquors. Process Saf. Environ. Prot. 2000, 78, 480–488. [Google Scholar] [CrossRef]
- Kolaczkowski, S.T.; Perera, S.P.; Crittenden, B.D.; Rankin, A.J.; Hayes, R.E. Catalytic combustion of polychlorinated biphenyls in monolith reactors. Process Saf. Environ. Prot. 1994, 72, 172–184. [Google Scholar]
- Peregrina, C.A.; Lecomte, D.; Arlabosse, P.; Rudolph, V. Life Cycle Assessment (LCA) applied to the design of an innovative drying process for sewage sludge. Process Saf. Environ. Prot. 2006, 84, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, M.J.; Clift, R.; Azapagic, A.; Walker, F.C.; Porter, D.E. Determination of ‘Best Available Techniques’ for integrated pollution prevention and control: A life cycle approach. Process Saf. Environ. Prot. 2000, 78, 193–203. [Google Scholar] [CrossRef]
- McCoy, S.A.; Wakeman, S.J.; Larkin, F.D.; Chung, P.W.H.; Rushton, A.G.; Lees, F.P. Hazid, A computer aid for hazard identification: 4. Learning set, main study system, output quality and validation trials. Process Saf. Environ. Prot. 2000, 78, 91–119. [Google Scholar] [CrossRef]
- Švandová, Z.; Jelemenský, L.; Markoš, J.; Molnár, A. Steady states analysis and dynamic simulation as a complement in the hazop study of chemical reactors. Process Saf. Environ. Prot. 2005, 83, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Harris, J. On system condition auditing. Process Saf. Environ. Prot. 2002, 80, 197–203. [Google Scholar] [CrossRef]
- Paralikas, A.N.; Lygeros, A.I. A multi-criteria and fuzzy logic based methodology for the relative ranking of the fire hazard of chemical substances and installations. Process Saf. Environ. Prot. 2005, 83, 122–134. [Google Scholar] [CrossRef]
- Hall, G.M.; Howe, J. Energy from waste and the food processing industry. Process Saf. Environ. Prot. 2012, 90, 203–212. [Google Scholar] [CrossRef]
- Long, J.H.; Aziz, T.N.; Francis III, L.; Ducoste, J.J. Anaerobic co-digestion of fat, oil, and grease (FOG): A review of gas production and process limitations. Process Saf. Environ. Prot. 2012, 90, 231–245. [Google Scholar] [CrossRef]
- Kralj, D. Experimental study of recycling lightweight concrete with aggregates containing expanded glass. Process Saf. Environ. Prot. 2009, 87, 267–273. [Google Scholar] [CrossRef]
- Aviso, K.B.; Tan, R.R.; Culaba, A.B.; Cruz, J.B., Jr. Bi-level fuzzy optimization approach for water exchange in eco-industrial parks. Process Saf. Environ. Prot. 2010, 88, 31–40. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Zheng, H.-X.; Juan, M.-L. Biohydrogen production using waste activated sludge as a substrate from fructose-processing wastewater treatment. Process Saf. Environ. Prot. 2012, 90, 221–230. [Google Scholar] [CrossRef]
- Huang, M.-h.; Yang, Y.-d.; Chen, D.-h.; Chen, L.; Guo, H.-d. Removal mechanism of trace oxytetracycline by aerobic sludge. Process Saf. Environ. Prot. 2012, 90, 141–146. [Google Scholar] [CrossRef]
- Chen, K.; Lei, H.; Li, Y.; Li, H.; Zhang, X.; Yao, C. Physical and chemical characteristics of waste activated sludge treated with electric field. Process Saf. Environ. Prot. 2011, 89, 327–333. [Google Scholar] [CrossRef]
- Papalexandrou, M.A.; Pilavachi, P.A.; Chatzimouratidis, A.I. Evaluation of liquid bio-fuels using the Analytic Hierarchy Process. Process Saf. Environ. Prot. 2008, 86, 360–374. [Google Scholar] [CrossRef]
- Kossoy, A.A.; Akhmetshin, Y.G. Simulation-based approach to design of inherently safer processes. Process Saf. Environ. Prot. 2012, 90, 349–356. [Google Scholar] [CrossRef]
- Banimostafa, A.; Papadokonstantakis, S.; Hungerbühler, K. Evaluation of EHS hazard and sustainability metrics during early process design stages using principal component analysis. Process Saf. Environ. Prot. 2012, 90, 8–26. [Google Scholar] [CrossRef]
- Hassim, M.H.; Hurme, M. Occupational chemical exposure and risk estimation in process development and design. Process Saf. Environ. Prot. 2010, 88, 225–235. [Google Scholar] [CrossRef]
- Atkinson, G.; Cusco, L. Buncefield: A violent, episodic vapour cloud explosion. Process Saf. Environ. Prot. 2011, 89, 360–370. [Google Scholar] [CrossRef]
- Cheng, J.-w.; Yang, S.-q. Improved Coward explosive triangle for determining explosibility of mixture gas. Process Saf. Environ. Prot. 2011, 89, 89–94. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, L.; Liang, W. Opportunistic predictive maintenance for complex multi-component systems based on DBN-HAZOP model. Process Saf. Environ. Prot. 2012, 90, 376–388. [Google Scholar] [CrossRef]
- Falcke, T.J.; Hoadley, A.F.A.; Brennan, D.J.; Sinclair, S.E. The sustainability of clean coal technology: IGCC with/without CCS. Process Saf. Environ. Prot. 2011, 89, 41–52. [Google Scholar] [CrossRef]
- Vaughen, B.K.; Klein, J.A. What you don’t manage will leak: A tribute to Trevor Kletz. Process Saf. Environ. Prot. 2012, 90, 411–418. [Google Scholar] [CrossRef]
- Thomas, P.J.; Taylor, R.H. J-value analysis of different regulatory limits for workers and the public. Process Saf. Environ. Prot. 2012, 90, 285–294. [Google Scholar] [CrossRef]
- Thomas, P.J.; Jones, R.D. Extending the J-value framework for safety analysis to include the environmental costs of a large accident. Process Saf. Environ. Prot. 2010, 88, 297–317. [Google Scholar] [CrossRef]
- Guštin, S.; Marinšek-Logar, R. Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Saf. Environ. Prot. 2011, 89, 61–66. [Google Scholar] [CrossRef]
- Doan, H.D.; Lohi, A.; Dang, V.B.H.; Dang-Vu, T. Removal of Zn+2 and Ni+2 by adsorption in a fixed bed of wheat straw. Process Saf. Environ. Prot. 2008, 86, 259–267. [Google Scholar] [CrossRef]
- Dellavedova, M.; Derudi, M.; Biesuz, R.; Lunghi, A.; Rota, R. On the gasification of biomass: Data analysis and regressions. Process Saf. Environ. Prot. 2012, 90, 246–254. [Google Scholar] [CrossRef]
- An, H.-S.; Park, S.-S.; Kim, K.-H.; Park, S.-U.; Ohm, T.-I. Treatment of PCB-contaminated pole transformers by vacuum thermal recycling with voltage adjuster. Process Saf. Environ. Prot. 2011, 89, 268–274. [Google Scholar] [CrossRef]
- Coldrick, S.; Gant, S.E.; Atkinson, G.T.; Dakin, R. Factors affecting vapour production in large scale evaporating liquid cascades. Process Saf. Environ. Prot. 2011, 89, 371–381. [Google Scholar] [CrossRef]
- Arslan, O. Quantitative evaluation of precautions on chemical tanker operations. Process Saf. Environ. Prot. 2009, 87, 113–120. [Google Scholar] [CrossRef]
- Ferdous, R.; Khan, F.; Sadiq, R.; Amyotte, P.; Veitch, B. Handling data uncertainties in event tree analysis. Process Saf. Environ. Prot. 2009, 87, 283–292. [Google Scholar] [CrossRef]
- Azapagic, A.; Chalabi, Z.; Fletcher, T.; Grundy, C.; Jones, M.; Leonardi, G.; Osammor, O.; Sharifi, V.; Swithenbank, J.; Tiwary, A.; et al. An integrated approach to assessing the environmental and health impacts of pollution in the urban environment: Methodology and a case study. Process Saf. Environ. Prot. 2013, 91, 508–520. [Google Scholar] [CrossRef]
- Arenas, C.N.; Vasco, A.; Betancur, M.; Martínez, J.D. Removal of indigo carmine (IC) from aqueous solution by adsorption through abrasive spherical materials made of rice husk ash (RHA). Process Saf. Environ. Prot. 2017, 106, 224–238. [Google Scholar] [CrossRef]
- Zanin, E.; Scapinello, J.; de Oliveira, M.; Rambo, C.L.; Franscescon, F.; Freitas, L.; de Mello, J.M.M.; Fiori, M.A.; Oliveira, J.V.; Dal Magro, J. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Saf. Environ. Prot. 2017, 105, 194–200. [Google Scholar] [CrossRef]
- Demirbas, E.; Kobya, M. Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Saf. Environ. Prot. 2017, 105, 79–90. [Google Scholar] [CrossRef]
- Daud, N.M.; Sheikh Abdullah, S.R.; Abu Hasan, H.; Yaakob, Z. Production of biodiesel and its wastewater treatment technologies: A review. Process Saf. Environ. Prot. 2015, 94, 487–508. [Google Scholar] [CrossRef]
- Aziz, H.A.; Shariff, A.M.; Rusli, R.; Yew, K.H. Managing process chemicals, technology and equipment information for pilot plant based on Process Safety Management standard. Process Saf. Environ. Prot. 2014, 92, 423–429. [Google Scholar] [CrossRef]
- Yuan, Z.; Khakzad, N.; Khan, F.; Amyotte, P. Domino effect analysis of dust explosions using Bayesian networks. Process Saf. Environ. Prot. 2016, 100, 108–116. [Google Scholar] [CrossRef]
- Bonvicini, S.; Antonioni, G.; Morra, P.; Cozzani, V. Quantitative assessment of environmental risk due to accidental spills from onshore pipelines. Process Saf. Environ. Prot. 2015, 93, 31–49. [Google Scholar] [CrossRef]
- Bubbico, R.; Carbone, F.; Ramírez-Camacho, J.G.; Pastor, E.; Casal, J. Conditional probabilities of post-release events for hazardous materials pipelines. Process Saf. Environ. Prot. 2016, 104, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Abuswer, M.; Amyotte, P.; Khan, F.; Imtiaz, S. Retrospective risk analysis and controls for Semabla grain storage hybrid mixture explosion. Process Saf. Environ. Prot. 2016, 100, 49–64. [Google Scholar] [CrossRef]
- Yang, Q.; Zhong, Y.; Zhong, H.; Li, X.; Du, W.; Li, X.; Chen, R.; Zeng, G. A novel pretreatment process of mature landfill leachate with ultrasonic activated persulfate: Optimization using integrated Taguchi method and response surface methodology. Process Saf. Environ. Prot. 2015, 98, 268–275. [Google Scholar] [CrossRef]
- Aziz, A.R.A.; Asaithambi, P.; Daud, W.M.A.B.W. Combination of electrocoagulation with advanced oxidation processes for the treatment of distillery industrial effluent. Process Saf. Environ. Prot. 2016, 99, 227–235. [Google Scholar] [CrossRef]
- Sivakumar Natarajan, T.; Bajaj, H.C.; Tayade, R.J. Palmyra tuber peel derived activated carbon and anatase TiO2 nanotube based nanocomposites with enhanced photocatalytic performance in rhodamine 6G dye degradation. Process Saf. Environ. Prot. 2016, 104, 346–357. [Google Scholar] [CrossRef]
- Matsushita, T.; Hirai, S.; Ishikawa, T.; Matsui, Y.; Shirasaki, N. Decomposition of 1,4-dioxane by vacuum ultraviolet irradiation: Study of economic feasibility and by-product formation. Process Saf. Environ. Prot. 2015, 94, 528–541. [Google Scholar] [CrossRef]
- Gajera, H.P.; Bambharolia, R.P.; Hirpara, D.G.; Patel, S.V.; Golakiya, B.A. Molecular identification and characterization of novel Hypocrea koningii associated with azo dyes decolorization and biodegradation of textile dye effluents. Process Saf. Environ. Prot. 2015, 98, 406–416. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Yang, F.; Li, S.; Wu, J.; Liu, J.; Zhong, S.; Zeng, J. The effects of activated Al2O3 on the recycling of light oil from the catalytic pyrolysis of waste printed circuit boards. Process Saf. Environ. Prot. 2015, 98, 276–284. [Google Scholar] [CrossRef]
- Jardak, K.; Dirany, A.; Drogui, P.; El Khakani, M.A. Statistical optimization of electrochemical oxidation of ethylene glycol using response surface methodology. Process Saf. Environ. Prot. 2017, 105, 12–20. [Google Scholar] [CrossRef]
- Bernechea, E.J.; Arnaldos, J. Optimizing the design of storage facilities through the application of ISD and QRA. Process Saf. Environ. Prot. 2014, 92, 598–615. [Google Scholar] [CrossRef]
- González Dan, J.R.; Guix, A.; Martí, V.; Arnaldos, J.; Darbra, R.M. Monte Carlo simulation as a tool to show the influence of the human factor into the quantitative risk assessment. Process Saf. Environ. Prot. 2016, 102, 441–449. [Google Scholar] [CrossRef]
- Eini, S.; Shahhosseini, H.R.; Javidi, M.; Sharifzadeh, M.; Rashtchian, D. Inherently safe and economically optimal design using multi-objective optimization: The case of a refrigeration cycle. Process Saf. Environ. Prot. 2016, 104, 254–267. [Google Scholar] [CrossRef]
- Lavasani, S.M.; Zendegani, A.; Celik, M. An extension to Fuzzy Fault Tree Analysis (FFTA) application in petrochemical process industry. Process Saf. Environ. Prot. 2015, 93, 75–88. [Google Scholar] [CrossRef]
- Widiatmojo, A.; Sasaki, K.; Sugai, Y.; Suzuki, Y.; Tanaka, H.; Uchida, K.; Matsumoto, H. Assessment of air dispersion characteristic in underground mine ventilation: Field measurement and numerical evaluation. Process Saf. Environ. Prot. 2015, 93, 173–181. [Google Scholar] [CrossRef]
- Haoran, Z.; Sanmiquel Pera, L.; Zhao, Y.; Vintro Sanchez, C. Researches and applications on geostatistical simulation and laboratory modeling of mine ventilation network and gas drainage zone. Process Saf. Environ. Prot. 2015, 94, 55–64. [Google Scholar] [CrossRef]
- Abu Bakar, S.N.H.; Abu Hasan, H.; Mohammad, A.W.; Abdullah, S.R.S.; Ngteni, R.; Yusof, K.M.M. Performance of a laboratory-scale moving bed biofilm reactor (MBBR) and its microbial diversity in palm oil mill effluent (POME) treatment. Process Saf. Environ. Prot. 2020, 142, 325–335. [Google Scholar] [CrossRef]
- Botta, L.S.; Delforno, T.P.; Rabelo, C.A.B.S.; Silva, E.L.; Varesche, M.B.A. Microbial community analyses by high-throughput sequencing of rumen microorganisms fermenting office paper in mesophilic and thermophilic lysimeters. Process Saf. Environ. Prot. 2020, 136, 182–193. [Google Scholar] [CrossRef]
- Xi, X.; Shi, Q.; Jiang, S.; Zhang, W.; Wang, K.; Zhengyan, W. Study on the effect of ionic liquids on coal spontaneous combustion characteristic by microstructure and thermodynamic. Process Saf. Environ. Prot. 2020, 140, 190–198. [Google Scholar] [CrossRef]
- Andrade, L.R.S.; Cruz, I.A.; de Melo, L.; Vilar, D.d.S.; Fuess, L.T.; Reis e Silva, G.; Silva Manhães, V.M.; Torres, N.H.; Soriano, R.N.; Bharagava, R.N.; et al. Oyster shell-based alkalinization and photocatalytic removal of cyanide as low-cost stabilization approaches for enhanced biogas production from cassava starch wastewater. Process Saf. Environ. Prot. 2020, 139, 47–59. [Google Scholar] [CrossRef]
- Thanekar, P.; Lakshmi, N.; Shah, M.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of dimethoate using combined approaches based on hydrodynamic cavitation and advanced oxidation processes. Process Saf. Environ. Prot. 2020, 143, 222–230. [Google Scholar] [CrossRef]
- Shukla, N.; Dhawan, N. Rapid microwave processing of discarded tubular lights for extraction of rare earth values. Process Saf. Environ. Prot. 2020, 142, 238–249. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Z.; Sun, L.; Li, Y.; Fu, J. Application of microwave/electrodeless discharge ultraviolet/ozone sterilization technology in water reclamation. Process Saf. Environ. Prot. 2020, 138, 148–156. [Google Scholar] [CrossRef]
- Shahi, N.K.; Maeng, M.; Kim, D.; Dockko, S. Removal behavior of microplastics using alum coagulant and its enhancement using polyamine-coated sand. Process Saf. Environ. Prot. 2020, 141, 9–17. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C.; Gao, T.; Gao, L.; Saxén, H.; Zevenhoven, R. Remediation of stainless steel slag with MnO for CO2 mineralization. Process Saf. Environ. Prot. 2019, 127, 1–8. [Google Scholar] [CrossRef]
- Telukdarie, A.; Buhulaiga, E.; Bag, S.; Gupta, S.; Luo, Z. Industry 4.0 implementation for multinationals. Process Saf. Environ. Prot. 2018, 118, 316–329. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Ali, S.M.; Kusi-Sarpong, S.; Shaikh, M.A.A. Assessing challenges for implementing Industry 4.0: Implications for process safety and environmental protection. Process Saf. Environ. Prot. 2018, 117, 730–741. [Google Scholar] [CrossRef]
- Logan, M.; Safi, M.; Lens, P.; Visvanathan, C. Investigating the performance of internet of things based anaerobic digestion of food waste. Process Saf. Environ. Prot. 2019, 127, 277–287. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y.; Shi, S.; Wang, G.G.X.; Li, H.; Wang, T. Micro-particles stabilized aqueous foam for coal spontaneous combustion control and its flow characteristics. Process Saf. Environ. Prot. 2020, 139, 262–272. [Google Scholar] [CrossRef]
- Liu, W.; Qin, Y.; Shi, C.; Guo, D. Dynamic evolution of spontaneous combustion of coal in longwall gobs during mining-stopped period. Process Saf. Environ. Prot. 2019, 132, 11–21. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, Q.; Guo, L. Air-leakage Model and sealing technique with sealing–isolation integration for gas-drainage boreholes in coal mines. Process Saf. Environ. Prot. 2020, 140, 258–272. [Google Scholar] [CrossRef]
- Liu, T.; Lin, B.; Fu, X.; Zhu, C. Modeling air leakage around gas extraction boreholes in mining-disturbed coal seams. Process Saf. Environ. Prot. 2020, 141, 202–214. [Google Scholar] [CrossRef]
- Zeng, T.; Chen, G.; Yang, Y.; Chen, P.; Reniers, G. Developing an advanced dynamic risk analysis method for fire-related domino effects. Process Saf. Environ. Prot. 2020, 134, 149–160. [Google Scholar] [CrossRef]
- Eslami Baladeh, A.; Cheraghi, M.; Khakzad, N. A multi-objective model to optimal selection of safety measures in oil and gas facilities. Process Saf. Environ. Prot. 2019, 125, 71–82. [Google Scholar] [CrossRef]
- Ghuge, S.P.; Saroha, A.K. Catalytic ozonation of dye industry effluent using mesoporous bimetallic Ru-Cu/SBA-15 catalyst. Process Saf. Environ. Prot. 2018, 118, 125–132. [Google Scholar] [CrossRef]
- Volpin, F.; Fons, E.; Chekli, L.; Kim, J.E.; Jang, A.; Shon, H.K. Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: Understanding the optimal feed solution to minimise fouling. Process Saf. Environ. Prot. 2018, 117, 523–532. [Google Scholar] [CrossRef]
- Sidik, D.A.B.; Hairom, N.H.H.; Ahmad, M.K.; Madon, R.H.; Mohammad, A.W. Performance of membrane photocatalytic reactor incorporated with ZnO-Cymbopogon citratus in treating palm oil mill secondary effluent. Process Saf. Environ. Prot. 2020, 143, 273–284. [Google Scholar] [CrossRef]
- Jia, Z.; Zeng, W.; Xu, H.; Li, S.; Peng, Y. Adsorption removal and reuse of phosphate from wastewater using a novel adsorbent of lanthanum-modified platanus biochar. Process Saf. Environ. Prot. 2020, 140, 221–232. [Google Scholar] [CrossRef]
- Dragoi, E.N.; Kovács, Z.; Juzsakova, T.; Curteanu, S.; Cretescu, I. Environmental assesment of surface waters based on monitoring data and neuro-evolutive modelling. Process Saf. Environ. Prot. 2018, 120, 136–145. [Google Scholar] [CrossRef]
- Zaranezhad, A.; Asilian Mahabadi, H.; Dehghani, M.R. Development of prediction models for repair and maintenance-related accidents at oil refineries using artificial neural network, fuzzy system, genetic algorithm, and ant colony optimization algorithm. Process Saf. Environ. Prot. 2019, 131, 331–348. [Google Scholar] [CrossRef]
- Li, F.; Hemmati, A.; Rashidi, H. Industrial CO2 absorption into methyldiethanolamine/piperazine in place of monoethanolamine in the absorption column. Process Saf. Environ. Prot. 2020, 142, 83–91. [Google Scholar] [CrossRef]
- Tong, R.; Cheng, M.; Yang, X.; Yang, Y.; Shi, M. Exposure levels and health damage assessment of dust in a coal mine of Shanxi Province, China. Process Saf. Environ. Prot. 2019, 128, 184–192. [Google Scholar] [CrossRef]
- Azimi, S.C.; Shirini, F.; Pendashteh, A. Evaluation of COD and turbidity removal from woodchips wastewater using biologically sequenced batch reactor. Process Saf. Environ. Prot. 2019, 128, 211–227. [Google Scholar] [CrossRef]
- Tolba, A.; Gar Alalm, M.; Elsamadony, M.; Mostafa, A.; Afify, H.; Dionysiou, D.D. Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe3O4-MWCNTs. Process Saf. Environ. Prot. 2019, 128, 273–283. [Google Scholar] [CrossRef]
- Schmitz, P.; Swuste, P.; Reniers, G.; van Nunen, K. Mechanical integrity of process installations: Barrier alarm management based on bowties. Process Saf. Environ. Prot. 2020, 138, 139–147. [Google Scholar] [CrossRef]
- Li, M.; Wang, D.; Shan, H. Risk assessment of mine ignition sources using fuzzy Bayesian network. Process Saf. Environ. Prot. 2019, 125, 297–306. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Wang, D.; Shao, Z.; He, S. Risk assessment of gas explosion in coal mines based on fuzzy AHP and bayesian network. Process Saf. Environ. Prot. 2020, 135, 207–218. [Google Scholar] [CrossRef]
- Abubakirov, R.; Yang, M.; Khakzad, N. A risk-based approach to determination of optimal inspection intervals for buried oil pipelines. Process Saf. Environ. Prot. 2020, 134, 95–107. [Google Scholar] [CrossRef]
Years | NP | % of 3152 | CNP | % of CNP | TC | CPP |
---|---|---|---|---|---|---|
1990 | 16 | 0.51% | 16 | 0.51% | 14 | 0.88 |
1991 | 31 | 0.98% | 47 | 1.49% | 186 | 6.00 |
1992 | 34 | 1.08% | 81 | 2.57% | 204 | 6.00 |
1993 | 38 | 1.21% | 119 | 3.78% | 275 | 7.24 |
1994 | 37 | 1.17% | 156 | 4.95% | 249 | 6.73 |
1995 | 57 | 1.81% | 213 | 6.76% | 219 | 3.84 |
1996 | 37 | 1.17% | 250 | 7.93% | 276 | 7.46 |
1997 | 36 | 1.14% | 286 | 9.07% | 560 | 15.56 |
1998 | 41 | 1.30% | 327 | 10.37% | 3266 | 79.66 |
1999 | 49 | 1.55% | 376 | 11.93% | 519 | 10.59 |
2000 | 57 | 1.81% | 433 | 13.74% | 1028 | 18.04 |
2001 | 42 | 1.33% | 475 | 15.07% | 656 | 15.62 |
2002 | 44 | 1.40% | 519 | 16.47% | 353 | 8.02 |
2003 | 52 | 1.65% | 571 | 18.12% | 957 | 18.40 |
2004 | 56 | 1.78% | 627 | 19.89% | 785 | 14.02 |
2005 | 64 | 2.03% | 691 | 21.92% | 1033 | 16.14 |
2006 | 58 | 1.84% | 749 | 23.76% | 1194 | 20.59 |
2007 | 71 | 2.25% | 820 | 26.02% | 1660 | 23.38 |
2008 | 49 | 1.55% | 869 | 27.57% | 1516 | 30.94 |
2009 | 56 | 1.78% | 925 | 29.35% | 1026 | 18.32 |
2010 | 53 | 1.68% | 978 | 31.03% | 1360 | 25.66 |
2011 | 57 | 1.81% | 1035 | 32.84% | 1720 | 30.18 |
2012 | 58 | 1.84% | 1093 | 34.68% | 1527 | 26.33 |
2013 | 56 | 1.78% | 1149 | 36.45% | 1297 | 23.16 |
2014 | 102 | 3.24% | 1251 | 39.69% | 2005 | 19.66 |
2015 | 183 | 5.81% | 1434 | 45.49% | 3863 | 21.11 |
2016 | 247 | 7.84% | 1681 | 53.33% | 4508 | 18.25 |
2017 | 309 | 9.80% | 1990 | 63.13% | 5062 | 16.38 |
2018 | 344 | 10.91% | 2334 | 74.05% | 4275 | 12.43 |
2019 | 432 | 13.71% | 2766 | 87.75% | 2742 | 6.35 |
2020 | 386 | 12.25% | 3152 | 100.00% | 544 | 1.41 |
Rank | Author | EBMs | C/R | Institution | NP | TC | APY | CPP |
---|---|---|---|---|---|---|---|---|
1 | Khan, Faisal | Y | Canada | Mem. Univ. Newfoundland | 62 | 1938 | 2014.50 | 31.26 |
2 | Amyotte, Paul | N | Canada | Dalhousie Univ. | 28 | 1101 | 2011.96 | 39.32 |
3 | Thomas, P. J. | Y | UK | Univ. Bristol | 27 | 251 | 2012.48 | 9.30 |
4 | Forster, CF | N | UK | Univ. Birmingham | 24 | 243 | 1996.17 | 10.13 |
5 | Mannan, M. Sam | N | USA | Texas A&M Univ. | 24 | 346 | 2012.13 | 14.42 |
6 | Shu, Chi-Min | N | Taiwan | Natl. Yunlin Univ. Sci. & Technol. | 23 | 172 | 2015.26 | 7.48 |
7 | Tan, Raymond R. | N | Philippines | De La Salle Univ. | 17 | 417 | 2014.12 | 24.53 |
8 | Reniers, Genserik | N | Belgium | Univ. Antwerp/Delft Univ. Technol. | 16 | 137 | 2018.25 | 8.56 |
9 | Richardson, SM | N | UK | Imperial Coll. London | 16 | 97 | 1996.00 | 6.06 |
10 | Hassim, Mimi H. | Y | Malaysia | Univ. Teknol. Malaysia | 15 | 197 | 2015.00 | 13.13 |
11 | Mckay, Gordon | N | Qatar | Hamad Bin Khalifa Univ. | 15 | 2897 | 2003.00 | 193.13 |
12 | Streat, M | N | UK | Univ. Loughborough | 15 | 443 | 2001.47 | 29.53 |
13 | Yang, Ming | N | Netherlands | Delft Univ. Technol. | 15 | 250 | 2016.07 | 16.67 |
14 | Edwards, DW | Y | UK | Univ. Loughborough | 14 | 307 | 2000.71 | 21.93 |
15 | Jiang, Juncheng | N | China | Changzhou Univ. | 14 | 51 | 2018.79 | 3.64 |
16 | Wang, Deming | N | China | China Univ. Min. & Technol. | 14 | 240 | 2017.93 | 17.14 |
17 | Abbassi, Rouzbeh | Y | Australia | Macquarie Univ. | 13 | 106 | 2017.69 | 8.15 |
18 | Jones, JC | N | UK | Univ. Aberdeen | 13 | 19 | 2005.85 | 1.46 |
19 | Pasman, Hans J. | N | USA | Texas A&M Univ. | 13 | 249 | 2012.15 | 19.15 |
20 | Stephenson, T | N | UK | Cranfield Univ. | 13 | 189 | 1999.77 | 14.54 |
21 | Swithenbank, J | N | UK | Univ. Sheffield | 13 | 163 | 2001.62 | 12.54 |
22 | Wang, Kai | N | China | China Univ. Min. & Technol. | 13 | 76 | 2019.00 | 5.85 |
23 | Cozzani, Valerio | N | Italy | Univ. Bologna | 12 | 139 | 2016.42 | 11.58 |
24 | Khakzad, Nima | N | Canada | Ryerson Univ. | 12 | 376 | 2017.58 | 31.33 |
25 | Chen, Guoming | N | China | China Univ. Petr. | 11 | 152 | 2017.82 | 13.82 |
26 | Jones, R. D. | N | UK | City Univ. London | 11 | 106 | 2009.73 | 9.64 |
27 | Shu, Li | N | Australia | RMIT Univ. | 11 | 111 | 2017.18 | 10.09 |
28 | Fabiano, Bruno | Y | Italy | Univ. Genoa | 10 | 271 | 2013.80 | 27.10 |
29 | Foo, Dominic C. Y. | Y | Malaysia | Univ. Nottingham | 10 | 136 | 2015.10 | 13.60 |
30 | Halder, Gopinath | N | India | Natl. Inst. Technol. Durgapur | 10 | 76 | 2018.50 | 7.60 |
31 | Shon, Ho Kyong | Y | Australia | Univ. Technol. Sydney | 10 | 60 | 2017.80 | 6.00 |
32 | Yang, Shengqiang | N | China | China Univ. Min. & Technol. | 10 | 67 | 2018.90 | 6.70 |
33 | Zhang, Laibin | N | China | China Univ. Petr. | 10 | 128 | 2016.60 | 12.80 |
Rank | C/R | Continent | NP | TC | APY | CPP |
---|---|---|---|---|---|---|
1 | China | Asia | 678 | 9615 | 2017.27 | 14.18 |
2 | UK | Europe | 476 | 7517 | 2006.32 | 15.79 |
3 | India | Asia | 240 | 4251 | 2015.92 | 17.71 |
4 | Iran | Asia | 228 | 3514 | 2017.00 | 15.41 |
5 | USA | North America | 160 | 2357 | 2013.86 | 14.73 |
6 | Australia | Oceania | 152 | 1739 | 2013.55 | 11.44 |
7 | Canada | North America | 147 | 2957 | 2013.82 | 20.12 |
8 | Malaysia | Asia | 136 | 3181 | 2016.00 | 23.39 |
9 | Italy | Europe | 113 | 1431 | 2014.58 | 12.66 |
10 | Spain | Europe | 102 | 1227 | 2015.61 | 12.03 |
11 | France | Europe | 91 | 1285 | 2012.60 | 14.12 |
12 | Brazil | South America | 82 | 784 | 2016.99 | 9.56 |
13 | Taiwan | Asia | 82 | 865 | 2015.09 | 10.55 |
14 | South Korea | Asia | 77 | 658 | 2017.18 | 8.55 |
15 | Turkey | Asia and Europe | 62 | 1189 | 2013.89 | 19.18 |
16 | Netherlands | Europe | 59 | 705 | 2013.00 | 11.95 |
17 | Japan | Asia | 48 | 548 | 2014.17 | 11.42 |
18 | Germany | Europe | 47 | 710 | 2011.11 | 15.11 |
19 | Saudi Arabia | Asia | 45 | 1141 | 2016.96 | 25.36 |
20 | Romania | Europe | 35 | 527 | 2016.71 | 15.06 |
21 | Egypt | Africa and Asia | 33 | 457 | 2015.97 | 13.85 |
22 | Belgium | Europe | 31 | 339 | 2016.42 | 10.94 |
23 | Pakistan | Asia | 26 | 299 | 2017.38 | 11.50 |
24 | Tunisia | Africa | 26 | 343 | 2017.58 | 13.19 |
25 | Norway | Europe | 25 | 292 | 2015.80 | 11.68 |
26 | Greece | Europe | 24 | 302 | 2012.17 | 12.58 |
27 | Finland | Europe | 23 | 624 | 2013.43 | 27.13 |
28 | Poland | Europe | 23 | 392 | 2015.57 | 17.04 |
29 | Philippines | Asia | 22 | 629 | 2014.95 | 28.59 |
30 | Thailand | Asia | 22 | 173 | 2018.14 | 7.86 |
31 | Mexico | North America | 21 | 241 | 2017.43 | 11.48 |
32 | Qatar | Asia | 21 | 252 | 2017.62 | 12.00 |
33 | South Africa | Africa | 20 | 239 | 2017.10 | 11.95 |
Rank | Institutions | C/R | NP | TC | APY | CPP |
---|---|---|---|---|---|---|
1 | China Univ. Min. & Technol. | China | 73 | 772 | 2018.53 | 10.58 |
2 | Mem. Univ. Newfoundland | Canada | 63 | 1854 | 2014.63 | 29.43 |
3 | Texas A&M Univ. | USA | 44 | 625 | 2013.52 | 14.20 |
4 | Univ. Loughborough | UK | 44 | 958 | 2002.89 | 21.77 |
5 | Delft Univ. Technol. | Netherlands | 41 | 397 | 2015.17 | 9.68 |
6 | Chinese Acad. Sci. | China | 35 | 295 | 2017.97 | 8.43 |
7 | Dalhousie Univ. | Canada | 33 | 1229 | 2012.30 | 37.24 |
8 | China Univ. Petr. | China | 30 | 271 | 2017.27 | 9.03 |
9 | Hlth & Safety Lab. | UK | 30 | 399 | 2009.00 | 13.30 |
10 | Univ. Leeds | UK | 30 | 533 | 2004.87 | 17.77 |
11 | Univ. Teknol. Malaysia | Malaysia | 30 | 446 | 2015.07 | 14.87 |
12 | Shandong Univ. Sci. & Technol. | China | 29 | 730 | 2018.69 | 25.17 |
13 | Cranfield Univ. | UK | 28 | 512 | 2005.57 | 18.29 |
14 | Natl. Yunlin Univ. Sci. & Technol. | Taiwan | 27 | 249 | 2015.67 | 9.22 |
15 | Islamic Azad Uni.v | Iran | 26 | 544 | 2017.00 | 20.92 |
16 | Indian Inst. Technol. | India | 25 | 374 | 2013.36 | 14.96 |
17 | Nanjing Tech. Univ. | China | 23 | 74 | 2018.87 | 3.22 |
18 | Univ. Tehran | Iran | 23 | 509 | 2016.87 | 22.13 |
19 | Tsinghua Univ. | China | 22 | 327 | 2016.23 | 14.86 |
20 | China Univ. Petr. East China | China | 21 | 194 | 2017.86 | 9.24 |
21 | Curtin Univ. | Australia | 21 | 302 | 2016.48 | 14.38 |
22 | Univ. Birmingham | UK | 21 | 238 | 1997.81 | 11.33 |
23 | Univ. Malaya | Malaysia | 21 | 599 | 2016.38 | 28.52 |
24 | Univ. Nottingham | UK | 21 | 616 | 2014.00 | 29.33 |
25 | Univ. Sci. & Technol. China | China | 21 | 127 | 2017.71 | 6.05 |
26 | Hlth & Safety Execut. | UK | 20 | 111 | 2008.50 | 5.55 |
27 | Univ. Sheffield | UK | 20 | 257 | 2005.05 | 12.85 |
Rank | Title | Authors | Type | PY | TC | ACPY |
---|---|---|---|---|---|---|
1 | A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents | Ho, Y.S; McKay, G. | Article | 1998 | 1530 | 66.52 |
2 | Kinetic models for the sorption of dye from aqueous solution by wood | Ho, Y.S; McKay, G. | Article | 1998 | 1026 | 44.61 |
3 | A review on application of flocculants in wastewater treatment | Lee, C.S.; Robinson, J.; Chong, M.F. | Review | 2014 | 362 | 51.71 |
4 | A review of hazards associated with primary lithium and lithium-ion batteries | Lisbona, D.; Snee, T. | Article | 2011 | 264 | 26.40 |
5 | Treatment technologies for petroleum refinery effluents: a review | Diya’uddeen, B.H.; Daud, W.M.A.W.; Aziz, A.R.A. | Review | 2011 | 241 | 24.10 |
6 | Indicators of sustainable development for industry: a general framework | Azapagic, A.; Perdan, S. | Article | 2000 | 240 | 11.43 |
7 | Dynamic safety analysis of process systems by mapping bowtie into Bayesian network | Khakzad, N.; Khan, F.; Amyotte, P. | Article | 2013 | 225 | 28.13 |
8 | Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations | Long, J.H.; Aziz, T.N.; de los Reyes, F.L.; Ducoste, J.J. | Article | 2012 | 178 | 19.78 |
9 | Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm | Anirudhan, T.S.; Ramachandran, M. | Article | 2015 | 168 | 28.00 |
10 | Electrochemical oxidation remediation of real wastewater effluents—a review | Garcia-Segura, S.; Ocon, J.D.; Chong, M.N. | Review | 2018 | 167 | 55.67 |
11 | Catalytic pyrolysis of plastic waste: a review | Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A.S. | Review | 2016 | 162 | 32.40 |
12 | Effect of pH, temperature, and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent | Gustin, S.; Marinsek-Logar, R. | Article | 2011 | 152 | 15.20 |
13 | Assessing the inherent safety of chemical process routes—is there a relation between plant costs and inherent safety | Edwards, D.W.; Lawrence, D. | Article | 1993 | 148 | 5.29 |
14 | Efficient removal of coomassie brilliant blue R-250 dye using starch/poly (alginic acid-cl-acrylamide) nanohydrogel | Sharma, G.; Naushad, M.; Kumar, A.; Rana, S.; Sharma, S.; Bhatnagar, A.; Stadler, F.J.; Ghfar, A.A.; Khan, M.R. | Article | 2017 | 145 | 36.25 |
15 | Biodiesel production from waste oil feedstocks by solid acid catalysis | Peng, B.X.; Shu, Q.; Wang, J.F.; Wang, G.R.; Wang, D.Z.; Han, M.H. | Article | 2008 | 141 | 10.85 |
16 | Systems approach to corporate sustainability—a general management framework | Azapagic, A. | Article | 2003 | 134 | 7.44 |
17 | Sustainable Industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives | Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. | Review | 2018 | 128 | 42.67 |
18 | Use of membrane technology for oil field and refinery produced water treatment—a review | Munirasu, S.; Abu Haija, M.; Banat, F. | Review | 2016 | 128 | 25.60 |
19 | The diffusion behavior law of respirable dust at fully mechanized caving face in coal mine: CFD numerical simulation and engineering application | Zhou, G.; Zhang, Q.; Bai, R.N.; Fan, T.; Wang, G.; | Article | 2017 | 121 | 30.25 |
20 | Methods and models in process safety and risk management: past, present, and future | Khan, F.; Rathnayaka, S.; Ahmed, S. | Article | 2015 | 120 | 20.00 |
21 | Characterization of products from the pyrolysis of municipal solid waste | Buah, W.K.; Cunliffe, A.M.; Williams, P.T. | Article | 2007 | 117 | 8.36 |
22 | Design of water-using systems involving regeneration | Kuo, W.C.J.; Smith, R. | Article | 1998 | 114 | 4.96 |
23 | An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique | Kong, B.; Li, Z.H.; Wang, E.Y.; Lu, W.; Chen, L.; Qi, G.S. | Article | 2018 | 109 | 36.33 |
24 | Bi-level fuzzy optimization approach for water exchange in eco-industrial parks | Aviso, K.B.; Tan, R.R.; Culaba, A.B.; Cruz, J.B. | Article | 2010 | 106 | 9.64 |
25 | Harnessing methane emissions from coal mining | Warmuzinski, K. | Article | 2008 | 106 | 8.15 |
Rank | References | Source | Title | DT | Cluster | Citations |
---|---|---|---|---|---|---|
1 | [46] | The Journal of Physical Chemistry | Over the adsorption in solution | JA | 3 | 52 |
2 | [74] | —— | Standard methods for the examination of water and wastewater | Book | 5 | 48 |
3 | [47] | Royal Swedish Academy of Sciences | About the theory of so-called adsorption of soluble substances | JA | 3 | 48 |
4 | [49] | Journal of the American Chemical society | The adsorption of gases on plane surfaces of glass, mica, and platinum | JA | 3 | 45 |
5 | [69] | —— | Loss prevention in the process industry | Book | 2 | 45 |
6 | [50] | Process biochemistry | Pseudo-second order model for sorption processes | JA | 3 | 41 |
7 | [48] | Journal of the sanitary engineering division | Kinetics of adsorption on carbon from solution | JA | 3 | 32 |
8 | [55] | Process Safety and Environmental Protection | Dynamic safety analysis of process systems by mapping bowtie into Bayesian network | JA | 1 | 27 |
9 | [53] | Journal of the American chemical society | The constitution and fundamental properties of solids and liquids. Part I. Solids | JA | 3 | 26 |
10 | [71] | —— | Guidelines for chemical process quantitative risk analysis | Book | 2 | 25 |
11 | [59] | Information and Control | Fuzzy sets | JA | 1 | 25 |
12 | [79] | Fuel | An intelligent gel designed to control the spontaneous combustion of coal: fire prevention and extinguishing properties | JA | 6 | 24 |
13 | [58] | Process safety and environmental protection | Methods and models in process safety and risk management: past, present, and future | JA | 1 | 24 |
14 | [75] | —— | Standard methods for the examination of water and wastewater | Book | 5 | 23 |
15 | [72] | —— | Dust explosions in the process industries | Book | 2 | 23 |
16 | [63] | Process Safety and Environmental Protection | Assessing the inherent safety of chemical process routes: is there a relation between plant costs and inherent safety? | JA | 4 | 22 |
17 | [82] | —— | Human error | Book | 1 | 21 |
18 | [76] | —— | Standard methods for the examination of water and wastewater | Book | 5 | 20 |
19 | [61] | Reliability Engineering & System Safety | Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches | JA | 1 | 20 |
20 | [67] | Industrial & Engineering Chemistry Research | Assessing safety, health, and environmental impact early during process development | JA | 4 | 18 |
21 | [52] | Journal of environmental management | Removal of heavy metal ions from wastewaters: a review | JA | 3 | 18 |
22 | [70] | —— | Chemical process safety: fundamentals with applications | Book | 2 | 17 |
23 | [64] | Process Safety Progress | Multivariate hazard identification and ranking system | JA | 4 | 17 |
24 | [68] | Process Safety and Environmental Protection | Safety weighted hazard index (SWeHI): a new, user-friendly tool for swift yet comprehensive hazard identification and safety evaluation in chemical process industries | JA | 4 | 17 |
25 | [83] | Safety science | Risk management in a dynamic society: a modelling problem | JA | 1 | 17 |
26 | [60] | Process safety and environmental protection | SHIPP methodology: Predictive accident modeling approach. Part I: Methodology and model description | JA | 1 | 17 |
27 | [78] | Journal of hazardous materials | Landfill leachate treatment: review and opportunity | JA | 5 | 17 |
28 | [84] | Chemical Engineering Science | Wastewater minimization | JA | 1 | 17 |
29 | [62] | Reliability Engineering & System Safety | Improving the analysis of dependable systems by mapping fault trees into Bayesian networks | JA | 1 | 16 |
30 | [77] | Water research | Recent developments in photocatalytic water treatment technology: a review | JA | 5 | 16 |
31 | [85] | Analytical chemistry | Colorimetric method for determination of sugars and related substances | JA | 5 | 16 |
32 | [80] | Advanced Powder Technology | Effects of air volume ratio parameters on air curtain dust suppression in a rock tunnel’s fully mechanized working face | JA | 6 | 16 |
33 | [86] | Journal of hazardous materials | Escalation thresholds in the assessment of domino accidental events | JA | 2 | 15 |
34 | [87] | Journal of hazardous materials | Domino effect in chemical accidents: main features and accident sequences | JA | 2 | 15 |
35 | [51] | Chemical engineering journal | Insights into the modeling of adsorption isotherm systems | JA | 3 | 15 |
36 | [65] | Journal of Hazardous Materials | A simple graphical method for measuring inherent safety | JA | 4 | 15 |
37 | [81] | International journal of coal geology | Coal mine methane: a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction | JA | 6 | 15 |
38 | [56] | Reliability Engineering & System Safety | Dynamic risk analysis using bowtie approach | JA | 1 | 15 |
39 | [57] | Journal of loss Prevention in the Process Industries | Techniques and methodologies for risk analysis in chemical process industries | JA | 1 | 15 |
40 | [73] | Journal of Loss Prevention in the process Industries | Major accidents in process industries and an analysis of causes and consequences | JA | 2 | 15 |
41 | [66] | Journal of Loss Prevention in the Process Industries | I2SI: a comprehensive quantitative tool for inherent safety and cost evaluation | JA | 4 | 15 |
42 | [54] | Chemical engineering science | Plant-specific dynamic failure assessment using Bayesian theory | JA | 1 | 15 |
43 | [88] | Industrial & Engineering Chemistry Fundamentals | A new two-constant equation of state | JA | 2 | 15 |
R | Before 2008 | 2008–2012 | 2013–2017 | 2018–2020 | ||||
---|---|---|---|---|---|---|---|---|
Keyword | F | Keyword | F | Keyword | F | Keyword | F | |
1 | Risk | 40 | Risk assessment | 73 | Adsorption | 122 | Microbial community | 14 |
2 | LCA | 24 | Safety | 56 | Kinetics | 80 | CCD | 13 |
3 | Combustion | 17 | Modeling | 46 | RSM | 74 | CSC | 12 |
4 | HAZOP | 15 | Explosion | 43 | Optimization | 67 | Ionic liquid | 12 |
5 | Runaway reaction | 15 | Inherent safety | 34 | Heavy metals | 56 | Toxicity | 11 |
6 | Health | 14 | Anaerobic digestion | 31 | CFD | 49 | Forward osmosis | 11 |
7 | Sustainable development | 12 | Recycling | 27 | Wastewater treatment | 44 | Sensitivity analysis | 9 |
8 | Radiation | 11 | Biosorption | 23 | Photocatalysis | 43 | Industry 4.0 | 8 |
9 | Incineration | 11 | Consequence analysis | 23 | Wastewater | 43 | Air leakage | 7 |
10 | Pollution | 9 | Human factors | 22 | Process safety | 43 | Microwave | 7 |
11 | Environmental impact | 9 | Regeneration | 21 | Activated carbon | 40 | Spontaneous coal combustion | 7 |
12 | Offshore | 8 | Biomass | 21 | Numerical simulation | 37 | Process optimization | 7 |
13 | Effluent | 7 | Sustainability | 21 | Bayesian network | 34 | Coal mine | 7 |
14 | Transportation | 7 | Activated sludge | 20 | Biodiesel | 34 | Catalytic ozonation | 7 |
15 | Atrazine | 7 | Environment | 20 | Isotherm | 34 | Coal and gas outburst | 6 |
16 | LPG | 7 | Gas explosion | 19 | Dust explosion | 34 | Synergistic effect | 6 |
17 | Phosphorus removal | 7 | J-value | 19 | AOP | 32 | Drinking water | 6 |
18 | Major hazards | 7 | Mathematical modeling | 18 | Electrocoagulation | 31 | Moisture content | 6 |
19 | Decision making | 7 | Process design | 17 | Biodegradation | 30 | Mineralization | 6 |
20 | Waste incineration | 7 | Accident | 17 | Pyrolysis | 28 | Electro-oxidation | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Reniers, G.; Li, J.; Yang, M.; Wu, C.; van Gelder, P.H.A.J.M. A Bibliometric and Visualized Overview for the Evolution of Process Safety and Environmental Protection. Int. J. Environ. Res. Public Health 2021, 18, 5985. https://doi.org/10.3390/ijerph18115985
Xue J, Reniers G, Li J, Yang M, Wu C, van Gelder PHAJM. A Bibliometric and Visualized Overview for the Evolution of Process Safety and Environmental Protection. International Journal of Environmental Research and Public Health. 2021; 18(11):5985. https://doi.org/10.3390/ijerph18115985
Chicago/Turabian StyleXue, Jie, Genserik Reniers, Jie Li, Ming Yang, Chaozhong Wu, and P.H.A.J.M. van Gelder. 2021. "A Bibliometric and Visualized Overview for the Evolution of Process Safety and Environmental Protection" International Journal of Environmental Research and Public Health 18, no. 11: 5985. https://doi.org/10.3390/ijerph18115985
APA StyleXue, J., Reniers, G., Li, J., Yang, M., Wu, C., & van Gelder, P. H. A. J. M. (2021). A Bibliometric and Visualized Overview for the Evolution of Process Safety and Environmental Protection. International Journal of Environmental Research and Public Health, 18(11), 5985. https://doi.org/10.3390/ijerph18115985