Biological Age in Relation to Somatic, Physiological, and Swimming Kinematic Indices as Predictors of 100 m Front Crawl Performance in Young Female Swimmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Body Composition and Biological Age
2.3. Stage Test
2.4. Tethered Swimming Test
- Maximum value of force (, N);
- Average value of force (, N);
- Force decline (, N), calculated from decrease in average force production in 0–10 and 20–30 s of the recording duration;
- Average impulse per single cycle (, N·s), defined as the integral of force over a period of time containing all full cycles divided by a number of completed cycles:
2.5. Swimming Race
2.6. Statistical Analysis
- (a)
- Anthropometric, body composition indices and all the indices, tethered swimming test (, , , ) and swimming speed (, ,),
- (b)
- Stage test and swimming speeds or tethered swimming variables, and
- (c)
- SR, SL, SI and , , .
3. Results
4. Discussion
5. Conclusions
Key Points
- -
- Biological age must be taken into consideration when evaluating young female swimmers’ abilities in regards to training and performance;
- -
- Efficiency of sprint swimming technique reflected by SL and SI, crucial in young female swimmers may be more dependent on the training used and less dependent on biological age;
- -
- Swimming speed at ventilatory thresholds and maximal oxygen uptake is valuable in terms of assessment of the physiological build-up in relation to performance in adolescent female sprint swimming.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olbrecht, J. The Science of Winning: Planning, Periodizing and Optimizing Swim Training; F&G Partners: Antwerp, Belgium, 2000. [Google Scholar]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Physical development and swimming performance during biological maturation in young female swimmers. Coll. Antropol. 2009, 33, 117–122. [Google Scholar] [PubMed]
- Erlandson, M.C.; Sherar, L.B.; Mirwald, R.L.; Maffulli, N.; Baxter-Jones, A.D.G. Growth and maturation of adolescent female gymnasts, swimmers, and tennis players. Med. Sci. Sports Exerc. 2008, 40, 34–42. [Google Scholar] [CrossRef]
- Jürimäe, J.; Haljaste, K.; Cicchella, A.; Lätt, E.; Purge, P.; Leppik, A.; Jürimäe, T. Analysis of Swimming Performance from Physical, Physiological, and Biomechanical Parameters in Young Swimmers. Pediatr. Exerc. Sci. 2007, 19, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; MacLaren, D.; Stratton, G. The effects of age, maturation and growth on tethered swimming performance. In Biomechanics and Medicine in Swimming IX; Chatard, J.C., Ed.; Publications de l’Université de Saint-Étienne: Saint-Étienne, France, 2003; pp. 185–190. [Google Scholar]
- Moran, J.; Sandercock, G.R.H.; Ramírez-Campillo, R.; Wooller, J.J.; Logothetis, S.; Schoenmakers, P.P.J.M.; Parry, D.A. Maturation-related differences in adaptations to resistance training in young male swimmers. J. Strength Cond. Res. 2018, 32, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorontsov, A.R.; Dyrco, V.V.; Binevsky, D.A.; Solomatin, V.R. Patterns of growth for some characteristics of physical development, functional and motor abilities in boy-swimmers 11–18 years. In Biomechanics and Medicine in Swimming VIII; Keskinen, K.L., Komi, P.V., Hollander, A.P., Eds.; University of Jyväskylä: Jyväskylä, Finland, 1999; pp. 327–335. [Google Scholar]
- Vorontsov, A. Periodisation of multi-year preparation of young swimmers–the programme of long-term athletic development. In Swimming III: Research, Training, Hydro-Rehabilitation; St. Petersburg Scientific Research Institute of Physical Culture: St. Petersburg, Russia, 2005. [Google Scholar]
- Timakova, T.; Klyuchnikova, M. Tendencies in natural selection of high level young swimmers. In Biomechanics and Medicine in Swimming XI; Kjendlie, P., Stallman, R., Cabri, J., Eds.; Norwegian School of Sport Sciences: Oslo, Norway, 2010. [Google Scholar]
- Pelayo, P.; Sidney, M.; Kherif, T.; Chollet, D.; Tourny, C. Stroking characteristics in freestyle swimming and relationships with anthropometric characteristics./Caracteristiques de la nage en nage libre et relations avec les caracteristiques anthropometriques. J. Appl. Biomech. 1996, 12, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, K.C.; Housh, T.J.; Smith, C.M.; Hill, E.C.; Jenkins, N.D.M.; Johnson, G.O.; Housh, D.J.; Schmidt, R.J.; Cramer, J.T. Relative contributions of strength, anthropometric, and body composition characteristics to estimated propulsive force in young male swimmers. J. Strength Cond. Res. 2015, 29, 1473–1479. [Google Scholar] [CrossRef]
- Lätt, E.; Jürimäe, J.; Mäestu, J.; Purge, P.; Rämson, R.; Haljaste, K.; Keskinen, K.L.; Rodriguez, F.A.; Jürimäe, T. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers. J. Sports Sci. Med. 2010, 9, 398–404. [Google Scholar]
- Malina, R.M.; Beunen, G.; Lefevre, J.; Woynarowska, B. Maturity-associated variation in peak oxygen uptake in active adolescent boys and girls. Ann. Hum. Biol. 1997, 24, 19–31. [Google Scholar] [CrossRef]
- Bencke, J.; Damsgaard, R.; Saekmose, A.; Jørgensen, P.; Jørgensen, K.; Klausen, K. Anaerobic power and muscle strength characteristics of 11 years old elite and non-elite boys and girls from gymnastics, team handball, tennis and swimming. Scand. J. Med. Sci. Sports 2002, 12, 171–178. [Google Scholar] [CrossRef]
- Kjendlie, P.L.; Thorsvald, K. A tethered swimming power test is highly reliable. Port. J. Sport Sci. 2006, 6, 231–233. [Google Scholar]
- Kyle, U.G.; Earthman, C.P.; Pichard, C.; Coss-Bu, J.A. Body composition during growth in children: Limitations and perspectives of bioelectrical impedance analysis. Eur. J. Clin. Nutr. 2015, 69, 1298–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castro, J.A.; de Lima, T.R.; Silva, D.A.S. Body composition estimation in children and adolescents by bioelectrical impedance analysis: A systematic review. J. Bodywork Mov. Ther. 2018, 22, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.S.; Pollock, M.L.; Graves, J.E.; Mahar, M.T. Reliability and validity of bioelectrical impedance in determining body composition. J. Appl. Physiol. 1988, 64, 529–534. [Google Scholar] [CrossRef]
- Aandstad, A.; Holtberget, K.; Hageberg, R.; Holme, I.; Anderssen, S.A. Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Mil. Med. 2014, 179, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dave, P.; Subhedar, R.; Priyanka Mishra, D.S. Body composition parameter changes among young male and female competitive swimmers and nonswimmers. Int. J. Med. Sci. Public Health 2015, 5, 85–92. [Google Scholar] [CrossRef]
- Cortesi, M.; Gatta, G.; Michielon, G.; Michele, R.D.; Bartolomei, S.; Scurati, R. Passive Drag in Young Swimmers: Effects of Body Composition, Morphology and Gliding Position. Int. J. Environ. Res. Public Health 2020, 17, 2002. [Google Scholar] [CrossRef] [Green Version]
- Vasold, K.L.; Parks, A.C.; Phelan, D.M.L.; Pontifex, M.B.; Pivarnik, J.M. Reliability and validity of commercially available low-cost bioelectrical impedance analysis. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 406–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterkowicz-Przybycień, K.; Sterkowicz, S.; Biskup, L.; Żarów, R.; Kryst, Ł.; Ozimek, M. Somatotype, body composition, and physical fitness in artistic gymnasts depending on age and preferred event. PLoS ONE 2019, 14, e0211533. [Google Scholar]
- Brener, A.; Waksman, Y.; Rosenfeld, T.; Levy, S.; Peleg, I.; Raviv, A.; Interator, H.; Lebenthal, Y. The heritability of body composition. BMC Pediatr. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Bornstein, M.H. The SAGE Encyclopedia of Lifespan Human Development; National Institute of Child Health & Human Development: Rockville, MD, USA, 2018. [Google Scholar] [CrossRef]
- Koprowski, C.; Coates, R.J.; Bernstein, L. Ability of young women to recall past body size and age at menarche. Obes. Res. 2001, 9, 478–485. [Google Scholar] [CrossRef]
- Zegle, M.; Marini, E.; Cabras, S.; Kryst, Ł.; Das, R.; Chakraborty, A.; Dasgupta, P. The relationship among the age at menarche, anthropometric characteristics, and socio-economic factors in Bengali girls from Kolkata, India. Am. J. Hum. Biol. 2020, 32, e23380. [Google Scholar] [CrossRef]
- Macgusson, T.E. Age at menarche in Iceland. Am. J. Phys. Anthr. 1978, 48, 511–514. [Google Scholar]
- Calthorpe, L.; Brage, S.; Ong, K.K. Systematic review and meta-analysis of the association between childhood physical activity and age at menarche. Acta Paediatr. Int. J. Paediatr. 2019, 108, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Woronkowicz, A.; Cichocka, B.A.; Kowal, M.; Kryst, Ł.; Sobiecki, J. Physical development of girls from Krakow in the aspect of socioeconomical changes in Poland (1938–2010). Am. J. Hum. Biol. 2012, 24, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Karila, C.; De Blic, J.; Waernessyckle, S.; Benoist, M.R.; Scheinmann, P. Cardiopulmonary exercise testing in children: An individualized protocol for workload increase. Chest 2001, 120, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef] [PubMed]
- Unnithan, V.; Holohan, J.; Fernhall, B.; Wylegala, J.; Rowland, T.; Pendergast, D.R. Aerobic cost in elite female adolescent swimmers. Int. J. Sports Med. 2009, 30, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.D.; Schneiderman-Walker, J.; Plyley, M. Normal physiological characteristics of elite swimmers. Pediatr. Exerc. Sci. 2006, 17, 30–52. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, J.M.; Escalante, Y.; Rodríguez, F.A. A multivariate analysis of performance in young swimmers. Pediatr. Exerc. Sci. 2010, 22, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Geladas, N.D.; Nassis, G.P.; Pavlicevic, S. Somatic and physical traits affecting sprint swimming performance in young swimmers. Int. J. Sports Med. 2005, 26, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Ribeiro, J.; Vilas-Boas, J.P.; Figueiredo, P.; Alves, F.; Seifert, L.; Fernandes, R.J. Integrated analysis of young swimmers’ sprint performance. Motor Control 2019, 23, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Henrique, R.S.; Queiroz, D.R.; Salvina, M.; Melo, W.V.; Moura dos Santos, M.A. Anthropometric variables, propulsive force and biological maturation: A mediation analysis in young swimmers. Eur. J. Sport Sci. 2020. [Google Scholar] [CrossRef]
- Silva, A.; Figueiredo, P.; Soares, S.; Seifert, L.; Vilas-Boas, J.P.; Fernandes, R.J. Front crawl technical characterization of 11-to 13-year-old Swimmers. Pediatr. Exerc. Sci. 2012, 24, 409–419. [Google Scholar] [CrossRef]
- Zuozienė, I.J.; Drevinskaitė, A. Peculiarities of Changes of Young Swimmers’ Anthropometric Profile in the Time of Intensive Training and Its Correlation with Sports Results. Balt. J. Sport Health Sci. 2019, 2. [Google Scholar] [CrossRef]
- Toussaint, H.M.; Beek, P.J. Biomechanics of competitive front crawl swimming. Sports Med. 1992, 13, 8–24. [Google Scholar] [CrossRef]
- Mezzaroba, P.V.; Machado, F.A. Effect of age, anthropometry, and distance in stroke parameters of young swimmers. Int. J. Sports Physiol. Perform. 2014, 9, 702–706. [Google Scholar] [CrossRef]
- Morais, J.E.; Jesus, S.; Lopes, V.; Garrido, N.; Silva, A.; Marinho, D.; Barbosa, T.M. Linking selected kinematic, anthropometric and hydrodynamic variables to young swimmer performance. Pediatr. Exerc. Sci. 2012, 24, 649–664. [Google Scholar] [CrossRef]
Correlations | h (cm) 166.0 ± 6.60 Min: 153.0 Max: 174.0 | 55.5 ± 9.30 Min: 39.3 Max: 73.4 | FFM (kg) 42.46 ± 5.54 Min: 33.8 Max: 50.1 | FFM (%) 76.94 ± 3.53 Min: 70.84 Max: 83.96 | TBW (kg) 31.10 ± 4.24 Min: 24.2 Max: 38.1 | TBW (%) 56.35 ± 2.65 Min: 51.91 Max: 61.58 | 40.3 ± 5.50 Min: 31.3 Max: 49.5 |
---|---|---|---|---|---|---|---|
BA (years) 15.79 ± 2.38 | 0.89 p < 0.001 | 0.88 p < 0.001 | 0.92 p < 0.001 | −0.56 p = 0.012 | 0.92 p < 0.001 | −0.56 p = 0.013 | 0.92 p < 0.001 |
Correlations | BA (years) | h (cm) | BM | 40.3 ± 5.50 | 3.4 ± 0.54 | 24.0 ± 3.14 | 6.4 ± 0.54 |
---|---|---|---|---|---|---|---|
(N) 227.64 ± 46.04 | 0.78 p < 0.001 | 0.78 p < 0.001 | 0.63 p = 0.004 | 0.66 p = 0.002 | 0.64 p = 0.003 | 0.68 p = 0.001 | 0.61 p = 0.006 |
(N) 79.7 ± 10.42 | 0.76 p < 0.001 | 0.65 p = 0.003 | 0.70 p = 0.001 | 0.74 p < 0.001 | 0.77 p < 0.001 | 0.77 p < 0.001 | 0.68 p = 0.001 |
(N·s) 50.6 ± 6.99 | 0.78 p < 0.001 | 0.71 p = 0.001 | 0.70 p = 0.001 | 0.75 p < 0.001 | 0.74 p < 0.001 | 0.77 p < 0.001 | 0.68 p = 0.001 |
(N) 20.07 ± 8.33 | 0.56 p = 0.013 | 0.65 p = 0.003 | 0.53 p = 0.020 | 0.55 p = 0.014 | 0.52 p = 0.022 | 0.57 p = 0.010 | 0.51 p = 0.026 |
Correlations | BA (Years) | h (cm) | BM (kg) | FFM (kg) | TBW (kg) | Fmax (N) | Fave (N) |
---|---|---|---|---|---|---|---|
(L ·) 1.82 ± 0.09 | 0.52 p = 0.024 | 0.44 p = 0.060 | 0.63 p = 0.004 | 0.62 p = 0.004 | 0.62 p = 0.004 | 0.53 p = 0.019 | 0.42 p = 0.070 |
(L ·) 2.47 ± 0.45 | 0.66 p = 0.002 | 0.63 p = 0.004 | 0.57 p = 0.011 | 0.60 p = 0.006 | 0.60 p = 0.006 | 0.50 p = 0.028 | 0.37 p = 0.121 |
(L ·) 3.01 ± 0.42 | 0.45 p = 0.051 | 0.46 p = 0.046 | 0.39 p = 0.095 | 0.49 p = 0.032 | 0.49 p = 0.032 | 0.29 p = 0.224 | 0.29 p = 0.221 |
Correlations | 1.23 ± 0.06 | |||||
---|---|---|---|---|---|---|
() 1.50 ± 0.07 | 0.53 p = 0.020 | −0.10 p = 0.690 | 0.81 p < 0.001 | 0.23 p = 0.336 | 0.47 p = 0.044 | 0.27 p = 0.264 |
() 1.39 ± 0.07 | 0.50 p = 0.031 | −0.13 p = 0.597 | 0.85 p < 0.001 | 0.22 p = 0.357 | 0.55 p = 0.014 | 0.29 p = 0.226 |
() 1.58 ± 0.07 | 0.54 p = 0.018 | −0.07 p = 0.778 | 0.76 p < 0.001 | 0.23 p = 0.334 | 0.39 p = 0.104 | 0.24 p = 0.315 |
Correlations | 47.31 ± 3.24 | SL (m) 1.77 ± 0.15 | 2.48 ± 0.29 |
---|---|---|---|
−0.05 p = 0.844 | 0.61 p < 0.001 | 0.81 p < 0.001 | |
0.02 p = 0.935 | 0.58 p = 0.010 | 0.79 p < 0.001 | |
−0.10 p = 0.681 | 0.62 p = 0.005 | 0.79 p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokołowski, K.; Strzała, M.; Stanula, A.; Kryst, Ł.; Radecki-Pawlik, A.; Krężałek, P.; Rosemann, T.; Knechtle, B. Biological Age in Relation to Somatic, Physiological, and Swimming Kinematic Indices as Predictors of 100 m Front Crawl Performance in Young Female Swimmers. Int. J. Environ. Res. Public Health 2021, 18, 6062. https://doi.org/10.3390/ijerph18116062
Sokołowski K, Strzała M, Stanula A, Kryst Ł, Radecki-Pawlik A, Krężałek P, Rosemann T, Knechtle B. Biological Age in Relation to Somatic, Physiological, and Swimming Kinematic Indices as Predictors of 100 m Front Crawl Performance in Young Female Swimmers. International Journal of Environmental Research and Public Health. 2021; 18(11):6062. https://doi.org/10.3390/ijerph18116062
Chicago/Turabian StyleSokołowski, Kamil, Marek Strzała, Arkadiusz Stanula, Łukasz Kryst, Artur Radecki-Pawlik, Piotr Krężałek, Thomas Rosemann, and Beat Knechtle. 2021. "Biological Age in Relation to Somatic, Physiological, and Swimming Kinematic Indices as Predictors of 100 m Front Crawl Performance in Young Female Swimmers" International Journal of Environmental Research and Public Health 18, no. 11: 6062. https://doi.org/10.3390/ijerph18116062
APA StyleSokołowski, K., Strzała, M., Stanula, A., Kryst, Ł., Radecki-Pawlik, A., Krężałek, P., Rosemann, T., & Knechtle, B. (2021). Biological Age in Relation to Somatic, Physiological, and Swimming Kinematic Indices as Predictors of 100 m Front Crawl Performance in Young Female Swimmers. International Journal of Environmental Research and Public Health, 18(11), 6062. https://doi.org/10.3390/ijerph18116062