Analysis of Estrogenic Activity in Maryland Coastal Bays Using the MCF-7 Cell Proliferation Assay
Abstract
:1. Introduction
Description of the Study Location–Maryland Coastal Bays
2. Materials and Methods
2.1. Materials and Media
2.2. Sample Collection and Preparation
2.3. Cell Culture
2.4. Study of the Estrogenicity of Three Common CECs
2.5. Cell Proliferation Assay (MTS)
2.6. Statistical Analysis
3. Results
3.1. Assessment of the Estrogenicity of Three Common CECs
3.2. Cell Proliferation Assay (MTS)
4. Discussion
4.1. Study the Estrogenicity of Three Common CECs
4.2. Cell Proliferation Assay (MTS)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jasinska, E.J.; Goss, G.G.; Gillis, P.L.; Van Der Kraak, G.J.; Matsumoto, J.; Machado, A.A.D.S.; Giacomin, M.; Moon, T.W.; Massarsky, A.; Gagné, F.; et al. Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge. Sci. Total Environ. 2015, 530–531, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Tijani, J.O.; Fatoba, O.O.; Petrik, L.F. A Review of Pharmaceuticals and Endocrine-Disrupting Compounds: Sources, Effects, Removal, and Detections. Water Air Soil Pollut. 2013, 224, 1770. [Google Scholar] [CrossRef] [Green Version]
- Maruya, K.A.; Dodder, N.G.; Sengupta, A.; Smith, D.J.; Lyons, J.M.; Heil, A.T.; Drewes, J.E. Multimedia screening of contaminants of emerging concern (CECS) in coastal urban watersheds in southern California (USA). Environ. Toxicol. Chem. 2016, 35, 1986–1994. [Google Scholar] [CrossRef]
- Sengupta, A.; Lyons, J.M.; Smith, D.J.; Drewes, J.E.; Snyder, S.A.; Heil, A.; Maruya, K.A. The occurrence and fate of chemicals of emerging concern in coastal urban rivers receiving discharge of treated municipal wastewater effluent. Environ. Toxicol. Chem. 2014, 33, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, Z.G.; Thomas, L.M.; Elliott, S.; Cavallin, J.E.; Randolph, E.C.; Choy, S.J.; Alvarez, D.A.; Banda, J.A.; Gefell, D.J.; Lee, K.E.; et al. Contaminants of emerging concern presence and adverse effects in fish: A case study in the Laurentian Great Lakes. Environ. Pollut. 2018, 236, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.L.; Langer, S.K.; Roth, J.L.; Kroening, S.E. Contaminants of Emerging Concern in Ambient Groundwater in Urbanized Areas of Minnesota; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2014.
- Ashton, D.; Hilton, M.; Thomas, K.V. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci. Total Environ. 2004, 333, 167–184. [Google Scholar] [CrossRef] [PubMed]
- Schaider, L.A.; Ackerman, J.M.; Rudel, R.A. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer. Sci. Total Environ. 2016, 547, 470–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loraine, G.A.; Pettigrove, M.E. Seasonal Variations in Concentrations of Pharmaceuticals and Personal Care Products in Drinking Water and Reclaimed Wastewater in Southern California. Environ. Sci. Technol. 2006, 40, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Wielogorska, E.; Elliott, C.; Danaher, M.; Connolly, L. Endocrine disruptor activity of multiple environmental food chain contaminants. Toxicol. Vitr. 2015, 29, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.M.; Sonnenschein, C.; Chung, K.L.; Fernandez, M.F.; Olea, N.; Serrano, F.O. The E-SCREEN Assay as a Tool to Identify Estrogens: An Update on Estrogenic Environmental Pollutants. Environ. Health Perspect. 1995, 103, 113–122. [Google Scholar] [PubMed] [Green Version]
- Picard, K.; Lhuguenot, J.-C.; Lavier-Canivenc, M.-C.; Chagnon, M.-C. Estrogenic Activity and Metabolism of N-Butyl Benzyl Phthalate in Vitro: Identification of the Active Molecule(s). Toxicol. Appl. Pharmacol. 2001, 172, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Matthiessen, P.; Arnold, D.; Johnson, A.C.; Pepper, T.J.; Pottinger, T.G.; Pulman, K.G. Contamination of headwater streams in the United Kingdom by oestrogenic hormones from livestock farms. Sci. Total Environ. 2006, 367, 616–630. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.F.; Hasan, N.; Soto, A.M.; Sonnenschein, C. Environmental endocrine disruptors: Effects on the human male reproductive system. Rev. Endocr. Metab. Disord. 2015, 16, 341–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecomte, S.; Habauzit, D.; Charlier, T.D.; Pakdel, F. Emerging Estrogenic Pollutants in the Aquatic Environment and Breast Cancer. Genes 2017, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Hoover, R.N.; Hyer, M.; Pfeiffer, R.M.; Adam, E.; Bond, B.; Cheville, A.L.; Colton, T.; Hartge, P.; Hatch, E.E.; Herbst, A.L.; et al. Adverse Health Outcomes in Women Exposed In Utero to Diethylstilbestrol. N. Engl. J. Med. 2011, 365, 1304–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, C.E.; Fenton, S.E. Exposure to diethylstilbestrol during sensitive life stages: A legacy of heritable health effects. Birth Defects Res. Part C Embryo Today Rev. 2013, 99, 134–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Li, R.; Wu, F.; Feng, C.; Ye, C.; Yan, C. Estrogenic compound profiles in an urbanized industry-impacted coastal bay and potential risk assessment by pollution indices and multivariative statistical methods. Mar. Pollut. Bull. 2017, 114, 397–407. [Google Scholar] [CrossRef]
- Nascimento, M.T.L.D.; Santos, A.D.D.O.; Felix, L.C.; Gomes, G.; Sá, M.D.O.E.; da Cunha, D.L.; Vieira, N.; Hauser-Davis, R.A.; Neto, J.A.B.; Bila, D.M. Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, Southeastern Brazil. Ecotoxicol. Environ. Saf. 2018, 149, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Horiuchi, A.; Yoshimoto, T.; Nakao, M.; Omura, H.; Kato, Y.; Tanaka, H.; Kannan, K.; Giesy, J.P. Horizontal and Vertical Distribution of Estrogenic Activities in Sediments and Waters from Tokyo Bay, Japan. Arch. Environ. Contam. Toxicol. 2005, 48, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-W.; Hu, L.-X.; Zhao, J.-L.; Liu, Y.-S.; Ying, G.-G.; Liu, S.-S. Evaluation of estrogenic activity in the Pearl River by using effect-directed analysis. Environ. Sci. Pollut. Res. 2016, 23, 21692–21702. [Google Scholar] [CrossRef] [PubMed]
- Viganò, L.; Loizeau, J.-L.; Mandich, A.; Mascolo, G. Medium- and Long-Term Effects of Estrogenic Contaminants on the Middle River Po Fish Community as Reconstructed from a Sediment Core. Arch. Environ. Contam. Toxicol. 2016, 71, 454–472. [Google Scholar] [CrossRef]
- Xu, E.G.; Ho, P.W.-L.; Tse, Z.; Ho, S.-L.; Leung, K.M.Y. Revealing ecological risks of priority endocrine disrupting chemicals in four marine protected areas in Hong Kong through an integrative approach. Environ. Pollut. 2016, 215, 103–112. [Google Scholar] [CrossRef]
- Beck, I.-C.; Bruhn, R.; Gandrass, J. Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere 2006, 63, 1870–1878. [Google Scholar] [CrossRef]
- Körner, W.; Hanf, V.; Schuller, W.; Kempter, C.; Metzger, J.; Hagenmaier, H. Development of a sensitive E-screen assay for quantitative analysis of estrogenic activity in municipal sewage plant effluents. Sci. Total Environ. 1999, 225, 33–48. [Google Scholar] [CrossRef]
- Kinnberg, K. Evaluation of In Vitro Assays for Determination of Estrogenic Activity in the Environment; Danish Environmental Protection Agency: Copenhagen, Denmark, 2003. [Google Scholar]
- Gong, Y.; Tian, H.; Wang, L.; Yu, S.; Ru, S. An Integrated Approach Combining Chemical Analysis and an In Vivo Bioassay to Assess the Estrogenic Potency of a Municipal Solid Waste Landfill Leachate in Qingdao. PLoS ONE 2014, 9, e95597. [Google Scholar] [CrossRef] [PubMed]
- Tanji, M.; Katz, B.H.; Spink, B.C.; Carpenter, D.O. Growth inhibition of MCF-7 cells by estrogen is dependent upon a serum factor. Anticancer Res. 2000, 20, 2779–2784. [Google Scholar]
- Parl, F.F. Estrogens, Estrogen Receptor and Breast Cancer (Vol. 36 of Biomedical and Health Research); IOS Press: Amsterdam, The Netherlands; Berlin, Germany; Oxford, UK; Tokyo, Japan; Washington, DC, USA, 2000. [Google Scholar]
- Henry, N.D.; Fair, P.A. Comparison ofin vitrocytotoxicity, estrogenicity and anti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoic acid. J. Appl. Toxicol. 2013, 33, 265–272. [Google Scholar] [CrossRef]
- Leusch, F.D.; Neale, P.A.; Hebert, A.; Scheurer, M.; Schriks, M.C. Analysis of the sensitivity of in vitro bioassays for androgenic, progestagenic, glucocorticoid, thyroid and estrogenic activity: Suitability for drinking and environmental waters. Environ. Int. 2017, 99, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Vanparys, C.; Depiereux, S.; Nadzialek, S.; Robbens, J.; Blust, R.; Kestemont, P.; De Coen, W. Performance of the flow cytometric E-screen assay in screening estrogenicity of pure compounds and environmental samples. Sci. Total. Environ. 2010, 408, 4451–4460. [Google Scholar] [CrossRef]
- USEPA. National Estuary Program Coastal Condition Report; U.S. Environmental Protection Agency, Office of Water, Office of Research and Development: Washington, DC, USA, 2006. [Google Scholar]
- Conley, M. Maryland Coastal Bays Aquatic Sensitive Initiative; Maryland Department of Natural Resources, Coastal Zone Management Division: Annapolis, MD, USA, 2004.
- Dennison, W.C.; Thomas, J.E.; Cain, C.J.; Carruthers, T.; Hall, M.R.; Jesien, R.V.; Wazniak, C.E.; Wilson, D.E. Shifting Sands—Environmental and Cultural Change in Maryland’s Coastal Bays; IAN PRESS: Cambridge, UK, 2009. [Google Scholar]
- Leusch, F.D.; Chapman, H.F.; Heuvel, M.R.V.D.; Tan, B.L.; Gooneratne, S.R.; Tremblay, L.A. Bioassay-derived androgenic and estrogenic activity in municipal sewage in Australia and New Zealand. Ecotoxicol. Environ. Saf. 2006, 65, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Paré, J.; Bélanger, J.; Lesnik, B.; Turpin, R.; Singhvi, R. Final evaluation of US EPA method 3546: Microwave ex-traction, a microwave-assisted process (MAP™)* method for the extraction of contaminants under closed-vessel conditions. Soil Sediment Contam. 2001, 10, 375–386. [Google Scholar] [CrossRef]
- Charapata, P.; Horstmann, L.; Jannasch, A.; Misarti, N. A novel method to measure steroid hormone concentra-tions in walrus bone from archaeological, historical, and modern time periods using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 1999–2023. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 12 May 2021).
- Oluwole, A.O.; Omotola, E.O.; Olatunjicor, O.S. Pharmaceuticals and personal care products in water and wastewater: A review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degra-dation. BMC Chem. 2020, 14, 62. [Google Scholar] [CrossRef]
- Weatherly, L.M.; Gosse, J.A. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health Part B 2017, 20, 447–469. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Ihara, M.; Ihara, M.O.; Kumar, V.; Narumiya, M.; Hanamoto, S.; Nakada, N.; Yamashita, N.; Miyagawa, S.; Iguchi, T.; Tanaka, H. Co-occurrence of Estrogenic and Antiestrogenic Activities in Wastewater: Quantitative Evaluation of Balance byin VitroERα Reporter Gene Assay and Chemical Analysis. Environ. Sci. Technol. 2014, 48, 6366–6373. [Google Scholar] [CrossRef] [PubMed]
- Weissinger, R.; Blackwell, B.R.; Keteles, K.; Battaglin, W.A.; Bradley, P.M. Bioactive contaminants of emerging concern in National Park waters of the northern Colorado Plateau, USA. Sci. Total Environ. 2018, 636, 910–918. [Google Scholar] [CrossRef]
- Kwieciñska, P.; Wróbel, A.; Gregorasz, E. Combinatory effects of PBDEs and 17b-estradiolon MCF-7 cell prolifer-ation and apoptosis. Pharmacol. Rep. 2001, 63, 189–194. [Google Scholar]
- Lanvin, O.; Bianco, S.; Kersual, N.; Chalbos, D.; Vanacker, J.-M. Potentiation of ICI182,780 (Fulvestrant)-induced Estrogen Receptor-α Degradation by the Estrogen Receptor-related Receptor-α Inverse Agonist XCT790. J. Biol. Chem. 2007, 282, 28328–28334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, X.; Nephew, K.P.; Miedel, M.T.; Weixel, K.M.; Bruns, J.R.; Traub, L.M.; Weisz, O.A. Fulvestrant (ICI 182,780)-dependent Interacting Proteins Mediate Immobilization and Degradation of Estrogen Receptor-α. J. Biol. Chem. 2006, 281, 9607–9615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennison, W.C.; Wazniak, C.E.; Jesien, R.V.; Phillips, K.A.; McCollough, C.; Sturgis, R.B.; Kelsey, R.H.; Thomas, J.E. Maryland Coastal Bays 2016: Land and Bay Perspectives; IAN Press: Cambridge, MD, USA, 2016; 28p. [Google Scholar]
- Masoner, J.R.; Kolpin, D.W.; Furlong, E.T.; Cozzarelli, I.M.; Gray, J.L.; Schwab, E.A. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States. Environ. Sci. Process. Impacts 2014, 16, 2335–2354. [Google Scholar] [CrossRef] [PubMed]
- Kawagoshi, Y.; Tsukagoshi, Y.; Fukunaga, I. Determination of estrogenic activity in landfill leachate by simplified yeast two-hybrid assay. J. Environ. Monit. 2002, 4, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
Aquatic Environment | Country | EEQ 1 (ng/L or ng/g) | Reference |
---|---|---|---|
Seawater | Japan | 0.34–2.52 | [20] |
River water | Japan | 0.70–4.01 | [20] |
Surface sediment | Japan | 2.07–12.1 | [20] |
River water | China | 8.15 (wet season)–34.7 (dry season) | [21] |
Core sediment (River) | Italy | 16.1 ± 9.3 | [22] |
Pore water (River) | Italy | 20.5 ± 21.2 | [22] |
Bay water | Brazil | 0.5–3.2 | [19] |
Bay surface water | Hong Kong | 1.3 | [23] |
Bay Surface sediment | Hong Kong | 5.9 | [23] |
Bay Surface Water | Germany | 0.01–0.82 | [24] |
Station No. | Station Name | Location | Lat | Long |
---|---|---|---|---|
Site 1 * | Stricking Marsh | Chincoteague Bay | 38° 03.143 | 75° 16.114 |
Site 2 | Assacorkin Island | Chincoteague Bay | 38° 05.583 | 75° 17.860 |
Site 3 * | Pirate Island | Chincoteague Bay | 38° 06.503 | 75° 13.369 |
Site 4 * | Public landing | Chincoteague Bay | 38° 08.458 | 75° 16.051 |
Site 5 * | Chincoteague | Chincoteague Bay | 38° 10.160 | 75° 13.909 |
Site 6 | New port Bay | Newport Bay | 38° 15.290 | 75° 11.593 |
Site 7 | Sarbane Center | Sinepuxent Bay | 38° 14.504 | 75° 09.306 |
Site 8 | Duck blinds | Sinepuxent Bay | 38° 16.825 | 75° 08.032 |
Site 9 | The Flats | Isle of Wight Bay | 38° 22.376 | 75° 05.736 |
Site 10 | St. Martin River | Lower St. Martin River | 38° 23.925 | 75° 07.302 |
Site 11 | Light house sound | Assawoman Bay | 38° 23.970 | 75° 05.428 |
Site 12 | Grey’s creek | Assawoman Bay | 38° 25.778 | 75° 05.956 |
Site 13 | Fenwick Ditch | Assawoman Bay | 38° 26.240 | 75° 04.651 |
OP | Ocean Pines | Ocean Pines Out flow | 38.39086 | −75.129339 |
OPWW_T | OPWW_T | Ocean Pines WW_Treated | N/A | N/A |
OPWW_UT | OPWW_UT | Ocean Pines WW_Untreated | N/A | N/A |
PAWW_UT | PAWW_UT | Princess Anne WW_Untreated | N/A | N/A |
PAWW_T | PAWW_T | Princess Anne WW_Treated | N/A | N/A |
AINS | Assateague Island National Seashore | Assateague Island National Seashore | 38.210448 | −75.16713 |
LRKL | Lewis Rd Kayak Launch | Lewis Rd Kayak Launch | 38.15585 | −75.15585 |
PL | Public Landing | Public Landing | 38.152753 | −75.283431 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elfadul, R.; Jesien, R.; Elnabawi, A.; Chigbu, P.; Ishaque, A. Analysis of Estrogenic Activity in Maryland Coastal Bays Using the MCF-7 Cell Proliferation Assay. Int. J. Environ. Res. Public Health 2021, 18, 6254. https://doi.org/10.3390/ijerph18126254
Elfadul R, Jesien R, Elnabawi A, Chigbu P, Ishaque A. Analysis of Estrogenic Activity in Maryland Coastal Bays Using the MCF-7 Cell Proliferation Assay. International Journal of Environmental Research and Public Health. 2021; 18(12):6254. https://doi.org/10.3390/ijerph18126254
Chicago/Turabian StyleElfadul, Rehab, Roman Jesien, Ahmed Elnabawi, Paulinus Chigbu, and Ali Ishaque. 2021. "Analysis of Estrogenic Activity in Maryland Coastal Bays Using the MCF-7 Cell Proliferation Assay" International Journal of Environmental Research and Public Health 18, no. 12: 6254. https://doi.org/10.3390/ijerph18126254
APA StyleElfadul, R., Jesien, R., Elnabawi, A., Chigbu, P., & Ishaque, A. (2021). Analysis of Estrogenic Activity in Maryland Coastal Bays Using the MCF-7 Cell Proliferation Assay. International Journal of Environmental Research and Public Health, 18(12), 6254. https://doi.org/10.3390/ijerph18126254