Green-Blue Spaces and Population Density versus COVID-19 Cases and Deaths in Poland
Abstract
:1. Introduction
1.1. Green-Blue Spaces versus Health
1.2. Population Density versus COVID-19
1.3. Study Aim and Hypotheses
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Statistical Analysis
3. Results
3.1. Progress of COVID-19 in Poland
3.2. Indices of the Total Number of COVID-19 Cases and Deaths
3.3. Regression Analysis—Models
4. Discussion
4.1. COVID-19 in First Year of Pandemic in Poland
4.2. Environmental Indices versus COVID-19
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [Google Scholar] [CrossRef]
- Van Damme, W.; Dahake, R.; Delamou, A.; Ingelbeen, B.; Wouters, E.; Vanham, G.; van de Pas, R.; Dossou, J.-P.; Ir, P.; Abimbola, S.; et al. The COVID-19 pandemic: Diverse contexts; different epidemics—How and why? BMJ Global Health 2020, 5, e003098. [Google Scholar] [CrossRef]
- World Health Organization. Impact of the COVID-19 Pandemic on TB Detection and Mortality in Technical Document. Available online: https://www.who.int/publications (accessed on 13 April 2021).
- Adhikari, S.P.; Meng, S.; Wu, Y.-J.; Mao, Y.-P.; Ye, R.-X.; Wang, Q.-Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Briz-Redón, Á.; Serrano-Aroca, Á. The effect of climate on the spread of the COVID-19 pandemic: A review of findings, and statistical and modelling techniques. Prog. Phys. Geogr. Earth Environ. 2020, 44, 591–604. [Google Scholar] [CrossRef]
- Kerr, G.H.; Badr, H.S.; Gardner, L.M.; Perez-Saez, J.; Zaitchik, B.F. Associations between meteorology and COVID-19 in early studies: Inconsistencies, uncertainties, and recommendations. One Health 2021, 12, 100225. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ahúja, J.M.L.; Martínez, J.L.F. Effects of climate variables on the COVID-19 outbreak in Spain. Int. J. Hyg. Environ. Health 2021, 234, 113723. [Google Scholar] [CrossRef]
- Wei, J.-T.; Liu, Y.-X.; Zhu, Y.-C.; Qian, J.; Ye, R.-Z.; Li, C.-Y.; Ji, X.-K.; Li, H.-K.; Qi, C.; Wang, Y.; et al. Impacts of transportation and meteorological factors on the transmission of COVID. Int. J. Hyg. Environ. Health 2020, 230, 113610. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Gupta, A. Effect of ambient temperature on COVID 19 infection rate: Evidence from California. SSRN Electron. J. 2020, 3575404. [Google Scholar] [CrossRef]
- Prata, D.N.; Rodrigues, W.; Bermejo, P.H.D.S. Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil. Sci. Total. Environ. 2020, 729, 138862. [Google Scholar] [CrossRef]
- Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Netw. Open 2020, 3, e2011834. [Google Scholar] [CrossRef] [PubMed]
- Ujiie, M.; Tsuzuki, S.; Ohmagari, N. Effect of temperature on the infectivity of COVID-19. Int. J. Infect. Dis. 2020, 95, 301–303. [Google Scholar] [CrossRef]
- Ahmadi, M.; Sharifi, A.; Dorosti, S.; Ghoushchi, S.J.; Ghanbari, N. Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Sci. Total Environ. 2020, 729, 138705. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci. Total. Environ. 2020, 724, 138226. [Google Scholar] [CrossRef]
- Wu, Y.; Jing, W.; Liu, J.; Ma, Q.; Yuan, J.; Wang, Y.; Du, M.; Liu, M. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci. Total. Environ. 2020, 729, 139051. [Google Scholar] [CrossRef]
- Chen, L.-D. Effects of ambient temperature and humidity on droplet lifetime—A perspective of exhalation sneeze droplets with COVID-19 virus transmission. Int. J. Hyg. Environ. Health 2020, 229, 113568. [Google Scholar] [CrossRef]
- Şahin, M. Impact of weather on COVID-19 pandemic in Turkey. Sci. Total. Environ. 2020, 728, 138810. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, L.; Liu, X.; Yang, Y.; Sullivan, W.C.; Xu, W.; Webster, C.; Jiang, B. Green spaces mitigate racial disparity of health: A higher ratio of green spaces indicates a lower racial disparity in SARS-CoV-2 infection rates in the USA. Environ. Int. 2021, 152, 106465. [Google Scholar] [CrossRef] [PubMed]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban. Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Li, F.; Wang, R.; Paulussen, J.; Liu, X. Comprehensive concept planning of urban greening based on ecological principles: A case study in Beijing, China. Landsc. Urban. Plan. 2005, 72, 325–336. [Google Scholar] [CrossRef]
- Dadvand, P.; Bartoll, X.; Basagaña, X.; Dalmau-Bueno, A.; Martinez, D.; Ambros, A.; Cirach, M.; Triguero-Mas, M.; Gascon, M.; Borrell, C.; et al. Green spaces and General Health: Roles of mental health status, social support, and physical activity. Environ. Int. 2016, 91, 161–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartig, T.; Mitchell, R.; De Vries, S.; Frumkin, H. Nature and Health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [Green Version]
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A Review of the Health Benefits of Greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.C.; Fluehr, J.M.; McKeon, T.P.; Branas, C.C. Urban Green Space and Its Impact on Human Health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef] [Green Version]
- Twohig-Bennett, C.; Jones, A. The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 2018, 166, 628–637. [Google Scholar] [CrossRef]
- Van den Berg, M.; Wendel-Vos, W.; Van Poppel, M.; Kemper, H.; Van Mechelen, W.; Maas, J. Health benefits of green spaces in the living environment: A systematic review of epidemiological studies. Urban. For. Urban. Green. 2015, 14, 806–816. [Google Scholar] [CrossRef]
- World Health Organization. Urban. Green Spaces and Health; WHO Regional Office for Europe: Copenhagen, Denmark, 2016. [Google Scholar]
- Zhang, J.; Yu, Z.; Zhao, B.; Sun, R.; Vejre, H. Links between green space and public health: A bibliometric review of global research trends and future prospects from 1901 to 2019. Environ. Res. Lett. 2020, 15, 063001. [Google Scholar] [CrossRef]
- Rook, G.A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. USA 2013, 110, 18360–18367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruth, M.; Franklin, R.S. Livability for all? Conceptual limits and practical implications. Appl. Geogr. 2014, 49, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, T.-M.; Tsai, M.-J.; Hwang, J.-S.; Cheng, W.-F.; Wu, C.-F.; Chou, C.-C.; Su, T.-C. Health effects of a forest environment on natural killer cells in humans: An observational pilot study. Oncotarget 2018, 9, 16501–16511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, A.M.; Jones, A.P. Residential neighbourhood greenspace is associated with reduced risk of cardiovascular disease: A prospective cohort study. PLoS ONE 2020, 15, e0226524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeager, R.; Riggs, D.W.; DeJarnett, N.; Tollerud, D.J.; Wilson, J.; Conklin, D.J.; O’Toole, T.E.; McCracken, J.; Lorkiewicz, P.; Xie, Z.; et al. Association Between Residential Greenness and Cardiovascular Disease Risk. J. Am. Hear. Assoc. 2018, 7, e009117. [Google Scholar] [CrossRef] [PubMed]
- Soyiri, I.N.; Alcock, I. Green spaces could reduce asthma admissions. Lancet Respir. Med. 2018, 6, e1. [Google Scholar] [CrossRef] [Green Version]
- Vienneau, D.; de Hoogh, K.; Faeh, D.; Kaufmann, M.; Wunderli, J.M.; Röösli, M. More than clean air and tranquillity: Residential green is independently associated with decreasing mortality. Environ. Int. 2017, 108, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.K.; Jim, C. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs. Sci. Total. Environ. 2016, 573, 222–232. [Google Scholar] [CrossRef]
- Li, Q.; Morimoto, K.; Kobayashi, M.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Suzuki, H.; Li, Y.; Wakayama, Y.; et al. Visiting a Forest, but Not a City, Increases Human Natural Killer Activity and Expression of Anti-Cancer Proteins. Int. J. Immunopathol. Pharmacol. 2008, 21, 117–127. [Google Scholar] [CrossRef]
- O’Callaghan-Gordo, C.; Kogevinas, M.; Cirach, M.; Castaño-Vinyals, G.; Aragones, N.; Delfrade, J.; Fernández-Villa, T.; Amiano, P.; Dierssen-Sotos, T.; Tardon, A.; et al. Residential proximity to green spaces and breast cancer risk: The multicase-control study in Spain (MCC-Spain). Int. J. Hyg. Environ. Health 2018, 221, 1097–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcherie, M.; Linn, N.; Le Gall, A.; Thomas, M.-F.; Faure, E.; Rican, S.; Simos, J.; Cantoreggi, N.; Vaillant, Z.; Cambon, L.; et al. Relationship between Urban Green Spaces and Cancer: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 1751. [Google Scholar] [CrossRef]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasència, A.; Nieuwenhuijsen, M.J. Residential green spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Rueda, D.; Nieuwenhuijsen, M.J.; Gascon, M.; Perez-Leon, D.; Mudu, P. Green spaces and mortality: A systematic review and meta-analysis of cohort studies. Lancet Planet. Health 2019, 3, e469–e477. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Kobayashi, M.; Wakayama, Y.; Inagaki, H.; Katsumata, M.; Hirata, Y.; Hirata, K.; Shimizu, T.; Kawada, T.; Park, B.; et al. Effect of Phytoncide from Trees on Human Natural Killer Cell Function. Int. J. Immunopathol. Pharmacol. 2009, 22, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Alcock, I.; White, M.P.; Wheeler, B.W.; Fleming, L.E.; Depledge, M.H. Longitudinal Effects on Mental Health of Moving to Greener and Less Green Urban Areas. Environ. Sci. Technol. 2014, 48, 1247–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyer, K.M.M.; Kaltenbach, A.; Szabo, A.; Bogar, S.; Nieto, F.J.; Malecki, K.M. Exposure to Neighborhood Green Space and Mental Health: Evidence from the Survey of the Health of Wisconsin. Int. J. Environ. Res. Public Health 2014, 11, 3453–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; De Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T.; et al. Nature and mental health: An ecosystem service perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Forns, J.; Plasència, A.; Nieuwenhuijsen, M.J. Mental Health Benefits of Long-Term Exposure to Residential Green and Blue Spaces: A Systematic Review. Int. J. Environ. Res. Public Health 2015, 12, 4354–4379. [Google Scholar] [CrossRef] [Green Version]
- Gascon, M.; Zijlema, W.; Vert, C.; White, M.P.; Nieuwenhuijsen, M.J. Outdoor blue spaces, human health and well-being: A systematic review of quantitative studies. Int. J. Hyg. Environ. Health 2017, 220, 1207–1221. [Google Scholar] [CrossRef]
- Kruize, H.; van Kamp, I.; Berg, M.V.D.; van Kempen, E.; Wendel-Vos, W.; Ruijsbroek, A.; Swart, W.; Maas, J.; Gidlow, C.; Smith, G.; et al. Exploring mechanisms underlying the relationship between the natural outdoor environment and health and well-being—Results from the PHENOTYPE project. Environ. Int. 2020, 134, 105173. [Google Scholar] [CrossRef]
- White, M.P.; Pahl, S.; Wheeler, B.W.; Depledge, M.H.; Fleming, L.E. Natural environments and subjective wellbeing: Different types of exposure are associated with different aspects of wellbeing. Health Place 2017, 45, 77–84. [Google Scholar] [CrossRef]
- White, M.P.; Alcock, I.; Grellier, J.; Wheeler, B.W.; Hartig, T.; Warber, S.L.; Bone, A.; Depledge, M.H.; Fleming, L.E. Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.E.V.D.; Maas, J.; Verheij, R.A.; Groenewegen, P. Green space as a buffer between stressful life events and health. Soc. Sci. Med. 2010, 70, 1203–1210. [Google Scholar] [CrossRef] [Green Version]
- Hedblom, M.; Gunnarsson, B.; Iravani, B.; Knez, I.; Schaefer, M.; Thorsson, P.; Lundström, J.N. Reduction of physiological stress by urban green space in a multisensory virtual experiment. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 2014, 38, 1–9. [Google Scholar] [CrossRef]
- Thompson, C.W.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban. Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Veisten, K.; Smyrnova, Y.; Klæboe, R.; Hornikx, M.; Mosslemi, M.; Kang, J. Valuation of Green Walls and Green Roofs as Soundscape Measures: Including Monetised Amenity Values Together with Noise-attenuation Values in a Cost-benefit Analysis of a Green Wall Affecting Courtyards. Int. J. Environ. Res. Public Health 2012, 9, 3770–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watts, G.; Miah, A.; Pheasant, R. Tranquillity and Soundscapes in Urban Green Spaces—Predicted and Actual Assessments from a Questionnaire Survey. Environ. Plan. B: Plan. Des. 2013, 40, 170–181. [Google Scholar] [CrossRef]
- Baró, F.; Chaparro, L.; Gómez-Baggethun, E.; Langemeyer, J.; Nowak, D.J.; Terradas, J. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain. Ambio 2014, 43, 466–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rui, L.; Buccolieri, R.; Gao, Z.; Ding, W.; Shen, J. The impact of green space layouts on microclimate and air quality in residential districts of nanjing, China. Forests 2018, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Vailshery, L.S.; Jaganmohan, M.; Nagendra, H. Effect of street trees on microclimate and air pollution in a tropical city. Urban. For. Urban. Green. 2013, 12, 408–415. [Google Scholar] [CrossRef]
- Van den Bosch, M.; Ode Sang, A. Urban natural environments as Nature based solutions for improved public health—A systematic review of reviews. Environ. Res. 2017, 158, 373–384. [Google Scholar] [CrossRef]
- Liu, C.; Li, X. Carbon storage and sequestration by urban forests in Shenyang, China. Urban. For. Urban. Green. 2012, 11, 121–128. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Astell-Burt, T.; Feng, X. Time for ‘Green’ during COVID-19? Inequities in Green and Blue Space Access, Visitation and Felt Benefits. Int. J. Environ. Res. Public Health 2021, 18, 2757. [Google Scholar] [CrossRef] [PubMed]
- Geary, R.S.; Wheeler, B.; Lovell, R.; Jepson, R.; Hunter, R.; Rodgers, S. A call to action: Improving urban green spaces to reduce health inequalities exacerbated by COVID. Prev. Med. 2021, 145, 106425. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Kohsaka, R. Access and Use of Green Areas during the COVID-19 Pandemic: Green Infrastructure Management in the “New Normal. ” Sustainability 2020, 12, 9842. [Google Scholar] [CrossRef]
- Venter, Z.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.Y.; Poon, R.W.S.; et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Bhadra, A.; Mukherjee, A.; Sarkar, K. Impact of population density on Covid-19 infected and mortality rate in India. Model. Earth Syst. Environ. 2021, 7, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Coşkun, H.; Yıldırım, N.; Gündüz, S. The spread of COVID-19 virus through population density and wind in Turkey cities. Sci. Total. Environ. 2021, 751, 141663. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, W.C.; Kinsella Thompson, A. The Geography of COVID-19 Growth in the US: Counties and Metropolitan Areas. SSRN Electron. J. 2020, 3570540. [Google Scholar] [CrossRef]
- Kodera, S.; Rashed, E.A.; Hirata, A. Correlation between COVID-19 Morbidity and Mortality Rates in Japan and Local Population Density, Temperature, and Absolute Humidity. Int. J. Environ. Res. Public Health 2020, 17, 5477. [Google Scholar] [CrossRef]
- Diao, Y.; Kodera, S.; Anzai, D.; Gomez-Tames, J.; Rashed, E.A.; Hirata, A. Influence of population density, temperature, and absolute humidity on spread and decay durations of COVID-19: A comparative study of scenarios in China, England, Germany, and Japan. One Health 2021, 12, 100203. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Shiono, T.; Kusumoto, B.; Fujinuma, J. Multiple drivers of the COVID-19 spread: The roles of climate, international mobility, and region-specific conditions. PLoS ONE 2020, 15, e0239385. [Google Scholar] [CrossRef]
- Kadi, N.; Khelfaoui, M. Population density, a factor in the spread of COVID-19 in Algeria: Statistic study. Bull. Natl. Res. Cent. 2020, 44, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, S.; Sabouri, S.; Ewing, R. Does Density Aggravate the COVID-19 Pandemic? J. Am. Plan. Assoc. 2020, 86, 495–509. [Google Scholar] [CrossRef]
- Population Local Data Bank; Head Office of Geodesy and Cartography: Warsaw, Poland. 2020. Available online: https://bdl.stat.gov.pl/BDL (accessed on 4 January 2021).
- Decision No 529/2013/EU of the European Parliament and of the Council of 21 May 2013 on Accounting Rules on Greenhouse Gas Emissions and Removals Resulting from Activities Relating to Land Use, Land-Use Change and Forestry and on Information Concerning Actions Relating to Those Activities. 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32013D0529 (accessed on 10 May 2021).
- Poland’s National Inventory Report. Inwentaryzacja Gazów Cieplarnianych dla lat 1988–2016, Raport Syntetyczny Wykonany na potrzeby Ramowej konwencji Narodów Zjednoczonych w sprawie zmian klimatu oraz Protokołu z Kioto; The National Centre for Emissions Management: Warsaw, Poland, 2018. [Google Scholar]
- Bolleter, J.; Ramalho, C.E. Greenspace-Oriented Development: Reconciling Urban. Density and Nature in Suburban Cities; Springer Briefs in Geography: London, UK, 2020. [Google Scholar]
- Evans, P. Introduction: Looking for Agents of Urban Livability in a Globalized Political Economy. In Livable Cities? University of California Press: Berkeley, CA, USA, 2019; pp. 1–30. [Google Scholar]
- Shen, Y.; Sun, F.; Che, Y. Public green spaces and human wellbeing: Mapping the spatial inequity and mismatching status of public green space in the Central City of Shanghai. Urban. For. Urban. Green. 2017, 27, 59–68. [Google Scholar] [CrossRef]
- InstantAtlas. Available online: www.dane-i-analizy.pl (accessed on 13 April 2021).
- Smętkowski, M.; Celińska-Janowicz, D.; Romańczyk, K. Metropolitan areas in Poland as a challenge for urban agenda at different territorial levels. In Foregrounding Urban Agendas; Armondi, S., De Gregorio Hurtado, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 139–163. [Google Scholar]
- Territorial Division. Local Data Bank; Head Office of Geodesy and Cartography, Warsaw. Available online: https://bdl.stat.gov.pl/BDL (accessed on 5 January 2021).
- Rozporządzenie Ministra Rozwoju Regionalnego i Budownictwa z dnia 29 marca 2001 r. w; Sprawie Ewidencji Gruntów I Budynków; Dziennik Ustaw 38: Warsaw, Poland. 2001. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20010380454 (accessed on 10 May 2021).
- Obwieszczenie Ministra Infrastruktury I Budownictwa Z Dnia 10 Czerwca 2016 R. W Sprawie Ogłoszenia Jednolitego Tekstu Rozporządzenia Ministra Rozwoju Regionalnego I Budownictwa W Sprawie Ewidencji Gruntów I Budynków; Dziennik Ustaw 1034: Warsaw, Poland. 2016. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001034 (accessed on 10 May 2021).
- Contesse, M.; van Vliet, B.J.; Lenhart, J. Is urban agriculture urban green space? A comparison of policy arrangements for urban green space and urban agriculture in Santiago de Chile. Land Use Policy 2018, 71, 566–577. [Google Scholar] [CrossRef]
- Xie, M.; Li, M.; Li, Z.; Xu, M.; Chen, Y.; Wo, R.; Tong, D. Whom Do Urban Agriculture Parks Provide Landscape Services to and How? A Case Study of Beijing, China. Sustainability 2020, 12, 4967. [Google Scholar] [CrossRef]
- Ma, Y.; Liang, H.; Li, H.; Liao, Y. Towards the Healthy Community: Residents’ Perceptions of Integrating Urban Agriculture into the Old Community Micro-Transformation in Guangzhou, China. Sustainability 2020, 12, 8324. [Google Scholar] [CrossRef]
- Raciborski, F.; Pinkas, J.; Jankowski, M.; Sierpiński, R.; Zgliczyński, W.S.; Szumowski, Ł; Rakocy, K.; Wierzba, W.; Gujski, M. Dynamics of COVID-19 outbreak in Poland: An epidemiological analysis of the first two months of the epidemic. Pol. Arch. Intern. Med. 2020, 130, 615–621. [Google Scholar] [CrossRef]
- Pinkas, J.; Jankowski, M.; Szumowski, Ł.; Lusawa, A.; Zgliczyński, W.S.; Raciborski, F.; Wierzba, W.; Gujski, M. Public Health Interventions to Mitigate Early Spread of SARS-CoV-2 in Poland. Med. Sci. Monit. 2020, 26, 924730. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Zdrowia Z Dnia 20 Marca 2020 R. W Sprawie Ogłoszenia Na Obszarze Rzeczypospolitej Polskiej Stanu Epidemii; Dziennik Ustaw 491: Warsaw, Poland. 2020. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200000491 (accessed on 10 May 2021).
- European Centre for Disease Prevention and Control. COVID-19 Situation Update for the EU/EEA and the UK, as of 15 November 2020. Available online: https://www.ecdc.europa.eu/en/cases-2019-ncov-eueea (accessed on 15 November 2020).
- Reported Cases and Deaths by Country or Territory. COVID-19 Coronavirus Pandemic. Available online: www.worldometers.info/coronavirus (accessed on 14 April 2021).
- World Health Organization. Coronavirus Disease (COVID-19): Situation Report. Available online: https://apps.who.int/iris/handle/10665/332970 (accessed on 5 April 2021).
- Michalski, T.; Szymańska, W. COVID-19 pandemic. In Visegrad Atlas; Śleszyński, P., Czapiewski, K., Eds.; Wacław Felczak Polish-Hungarian Cooperation Institute, Polish Geographical Society: Warsaw, Poland, 2021; pp. 188–193. [Google Scholar]
- Russette, H.; Graham, J.; Holden, Z.; Semmens, E.O.; Williams, E.; Landguth, E.L. Greenspace exposure and COVID-19 mortality in the United States: January–July. Environ. Res. 2021, 198, 111195. [Google Scholar] [CrossRef]
- Almagro, M.; Orane-Hutchinson, A. JUE Insight: The determinants of the differential exposure to COVID-19 in New York city and their evolution over time. J. Urban. Econ. 2020, 103293. [Google Scholar] [CrossRef]
Index | Formula | R2 | Parameter | Value | SE | t-Statistic (df = 378) | p-Value | Lower 95% CI | Upper 95% CI |
---|---|---|---|---|---|---|---|---|---|
IC(COVID-19) | a·ln(IGB) + b | 0.811 | a (slope) | −1,653 | 289.61 | −40.238 | <0.0001 | −12,223 | −11,084 |
b (const.) | 53,076 | 1283.1 | 41.367 | <0.0001 | 50,553 | 55,599 | |||
ID(COVID-19) | 0.804 | a (slope) | −226.69 | 5.7638 | −39.329 | <0.0001 | −238.02 | −215.36 | |
b (const.) | 1033.1 | 25.535 | 40.456 | <0.0001 | 982.8 | 1083.3 | |||
IC(COVID-19) | 0.806 | a (slope) | 7452.3 | 188.24 | 39.587 | <0.0001 | 7082.2 | 7822.4 | |
b (const.) | −160.91 | 76.121 | −2.1139 | 0.0351 | −310.59 | −11.241 | |||
ID(COVID-19) | 0.820 | a (slope) | 146.86 | 3.5428 | 41.454 | <0.0001 | 139.90 | 153.83 | |
b (const.) | −2.9567 | 1.4326 | −2.0638 | 0.0397 | −5.7736 | −0.1398 | |||
IC(COVID-19) | a·PDb | 0.943 | a (slope) | 4.9766 | 0.8099 | 6.1440 | <0.0001 | 3.3839 | 6.5692 |
b (const.) | 0.9735 | 0.0214 | 45.378 | <0.0001 | 0.9313 | 1.0156 | |||
ID(COVID-19) | 0.877 | a (slope) | 0.1618 | 0.0353 | 4.5771 | <0.0001 | 0.0923 | 0.2313 | |
b (const.) | 0.9028 | 0.0289 | 31.150 | <0.0001 | 0.8458 | 0.9598 |
Province (Number of Counties) | IC(COVID-19) = f(IGB) | ID(COVID-19) = f(IGB) | IC(COVID-19) = f(IGB/G) | ID(COVID-19) = f(IGB/G) | IC(COVID-19) = f(PD) | ID(COVID-19) = f(PD) |
---|---|---|---|---|---|---|
Lower Silesia (30) | 0.8828 | 0.9286 | 0.9020 | 0.9251 | 0.9703 | 0.8842 |
Kujawy-Pomerania (23) | 0.9578 | 0.9796 | 0.9652 | 0.9755 | 0.9742 | 0.9960 |
Lublin (24) | 0.9128 | 0.9725 | 0.8956 | 0.9563 | 0.9793 | 0.9974 |
Lubuskie (14) | 0.9942 | 0.9929 | 0.9975 | 0.9895 | 0.9735 | 0.9526 |
Łódź (24) | 0.8787 | 0.8848 | 0.8978 | 0.8763 | 0.9666 | 0.9601 |
Małopolska (22) | 0.8712 | 0.8461 | 0.8902 | 0.8463 | 0.9796 | 0.9458 |
Mazovia (42) | 0.8198 | 0.9317 | 0.9102 | 0.9415 | 0.9731 | 0.9238 |
Opole (12) | 0.9910 | 0.9867 | 0.9948 | 0.9919 | 0.9997 | 0.9964 |
Podkarpackie (25) | 0.8773 | 0.9079 | 0.8842 | 0.9096 | 0.9753 | 0.9608 |
Podlaskie (17) | 0.9497 | 0.9379 | 0.9645 | 0.9426 | 0.9868 | 0.9768 |
Pomerania (20) | 0.9768 | 0.9754 | 0.9709 | 0.9824 | 0.9909 | 0.9679 |
Silesia (36) | 0.9343 | 0.8900 | 0.9137 | 0.8994 | 0.9875 | 0.9548 |
Świętokrzyskie (14) | 0.9973 | 0.9697 | 0.9975 | 0.9672 | 0.9990 | 0.9956 |
Warmia-Masuria (21) | 0.9620 | 0.9499 | 0.9744 | 0.9377 | 0.9738 | 0.9530 |
Wielkopolska (35) | 0.9176 | 0.9457 | 0.9423 | 0.9510 | 0.9514 | 0.9860 |
West Pomerania (21) | 0.9309 | 0.9389 | 0.9523 | 0.9565 | 0.9818 | 0.9869 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciupa, T.; Suligowski, R. Green-Blue Spaces and Population Density versus COVID-19 Cases and Deaths in Poland. Int. J. Environ. Res. Public Health 2021, 18, 6636. https://doi.org/10.3390/ijerph18126636
Ciupa T, Suligowski R. Green-Blue Spaces and Population Density versus COVID-19 Cases and Deaths in Poland. International Journal of Environmental Research and Public Health. 2021; 18(12):6636. https://doi.org/10.3390/ijerph18126636
Chicago/Turabian StyleCiupa, Tadeusz, and Roman Suligowski. 2021. "Green-Blue Spaces and Population Density versus COVID-19 Cases and Deaths in Poland" International Journal of Environmental Research and Public Health 18, no. 12: 6636. https://doi.org/10.3390/ijerph18126636
APA StyleCiupa, T., & Suligowski, R. (2021). Green-Blue Spaces and Population Density versus COVID-19 Cases and Deaths in Poland. International Journal of Environmental Research and Public Health, 18(12), 6636. https://doi.org/10.3390/ijerph18126636