Exposure to Heated Tobacco Products and Adverse Health Effects, a Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Study Selection
3. Results
3.1. The Effect of Exposure to Heated Tobacco Products on Human Health
3.1.1. Respiratory System
3.1.2. The Circulatory System
3.2. Biomarkers of Exposure—A Link with Potential Health Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations/Acronyms
HTP | heated tobacco products |
sICAM-1 | soluble intercellular adhesion molecule 1 |
8-epi-PGF2α | 8-epi-prostaglandin F2α |
11-DTX-B2 | 11-dehydro-thromboxane B2 |
HDL | high density lipoprotein |
FEV1 | forced expiratory volume in 1 s |
IQOS | I-Quit-Ordinary-Smoking |
PMI | Philip Morris International |
JTI | Japan Tobacco International |
BAT | British American Tobacco |
HNB, HnB | heat-non-burn |
THS 2.2 | The Tobacco Heating System 2.2 |
CC | Smoking conventional cigarettes |
HPHC | the harmful and potentially harmful constituents |
COHb | Carboxyhemoglobin |
S-PMA | S-phenylmercapturic acid |
MHBMA | Monohydroxybutenyl mercapturic acid |
3-HPMA | 3-hydroxypropylmercapturic acid |
NNN | N-nitrosonornicotine |
Total NNN | Total N-nitrosonornicotine |
Total NNAL | Total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol |
o-tol | o-toluidine |
1-OHP | Total 1-hydroxypyrene |
4-ABP | 4-aminobiphenyl |
1-NA | 1-aminonaphthalene |
2-NA | 2-aminonaphthalene |
CEMA | 2-cyanoethylmercapturic acid |
HEMA | 2-hydroxyethylmercapturic acid |
3-HMPMA | 3-hydroxy-1-methylpropylmercapturic acid |
Total 3-OH-B [a] P 3 | hydroxy-benzo(a)pyrene |
SA | smoking abstinence group |
CYP1A2 | Cytochrome 1 A2 activity |
CHTP | carbon-heated tobacco product |
mTHS | The menthol Tobacco Heating System 2.2 |
mCC | menthol cigarettes |
WBC | white blood cells |
hs-CRP | high-sensitivity C-reactive protein |
THS 2.1 | The Tobacco Heating System 2.1 |
CO | carbon monoxide |
HNBC | heat-not-burn cigarette |
EVC | electronic vaping cigarettes |
TC | traditional tobacco combustion cigarettes |
Nox2 soluble Nox2 | derived peptide |
8-izo-PGF2α-III | 8-iso-prostaglandin F-2α-III, pmol/L |
BoE | biomarkers of exposure |
NNAL | 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol |
HMPMA | eCO exhaled breath carbon monoxide |
MHBMA | monohydroxy-3-butenyl-mercapturic acid |
H292 | human bronchial epithelial cells |
IL-1β | interleukin (IL)-1β |
IL-6 | interleukin (IL)- 6 |
BOPH | biomarkers of potential harm |
TPM | total particulate matter |
3R4F | reference cigarette smoke |
PAFR | platelet-activating factor receptor |
CSE | cigarette-smoke-extract |
ASM | airway smooth muscle |
EMT | epithelial mesenchymal transition |
BEAS-2B | human bronchial epithelial cells |
CS | cigarette smoke |
AEP | acute eosinophilic pneumonia |
HNBC | heat-not-burn cigarette |
ECMO | extracorporeal membrane oxygenation |
HC | heat-not-burn cigarettes |
ECIG | electronic cigarettes |
LLTV | loose-leaf tobacco vaporiser |
MRTP | modified risk tobacco products |
THR | Tobacco Harm Reduction |
TNeq | total nicotine equivalents (nicotine, cotinine, 3-hydroxycotinine and their glucuronide conjugates) |
PAHs | Polycyclic aromatic hydrocarbons |
References
- Jankowski, M.; Brożek, G.M.; Lawson, J.; Skoczyński, S.; Majek, P.; Zejda, J.E. New ideas, old problems? Heated tobacco products—A systematic review. Int. J. Occup. Med. Environ. Health 2019, 32, 595–634. [Google Scholar] [CrossRef]
- Lüdicke, F.; Picavet, P.; Baker, G.; Haziza, C.; Poux, V.; Lama, N.; Weitkunat, R. Effects of switching to the menthol tobacco heating system 2.2, smoking abstinence, or continued cigarette smoking on clinically relevant risk markers: A randomized, controlled, open-label, multicenter study in sequential confinement and ambulatory settings (Part 2). Nicotine Tob. Res. 2018, 20, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Bekki, K.; Inaba, Y.; Uchiyama, S.; Kunugita, N. Comparison of chemicals in mainstream smoke in heat-not-burn tobacco and combustion cigarettes. J. UOEH 2017, 39, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Auer, R.; Concha-Lozano, N.; Jacot-Sadowski, I.; Cornuz, J.; Berthet, A. Heat-not-burn tobacco cigarettes: Smoke by any other name. JAMA Intern. Med. 2017, 177, 1050–1052. [Google Scholar] [CrossRef] [Green Version]
- McNeill, A. Evidence Review of E-Cigarettes and Heated Tobacco Products 2018. A Report Commissioned by Public Health England; Public Health England: London, UK, 2018. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/684963/Evidence_review_of_e-cigarettes_and_heated_tobacco_products_2018.pdf (accessed on 20 February 2021).
- World Health Organization. Heated Tobacco Products (HTPs) Market Monitoring Information Sheet; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/tobacco/publications/prod_regulation/htps-marketing-monitoring/en/ (accessed on 20 February 2021).
- World Health Organization. Heated Tobacco Products a Brief; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2020. [Google Scholar]
- Davis, B.; Williams, M.; Talbot, P. IQOS: Evidence of pyrolysis and release of a toxicant from plastic. Tob. Control 2018, 28, 34–41. [Google Scholar] [CrossRef]
- Tabuchi, T.; Gallus, S.; Shinozaki, T.; Nakaya, T.; Kunugita, N.; Colwell, B. Heat-not-burn tobacco product use in Japan: Its prevalence, predictors and perceived symptoms from exposure to secondhand heat-not-burn tobacco aerosol. Tob. Control 2018, 27, e25–e33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabuchi, T.; Kiyohara, K.; Hoshino, T.; Bekki, K.; Inaba, Y.; Kunugita, N. Awareness and use of electronic cigarettes and heat-not-burn tobacco products in Japan. Addiction 2016, 111, 706–713. [Google Scholar] [CrossRef]
- Brose, L.; Simonavicius, E.; Cheeseman, H. Awareness and use of “heat-not-burn” tobacco products in Great Britain. Tob. Regul. Sci. 2018, 4, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Lugo, A.; Spizzichino, L.; Tabuchi, T.; Pacifici, R.; Gallus, S. Heat-not-burn tobacco products: Concerns from the Italian experience. Tob. Control 2018, 28, 113–114. [Google Scholar] [CrossRef] [PubMed]
- Marynak, K.L.; Wang, T.W.; King, B.A.; Agaku, I.T.; Reimels, E.A.; Graffunder, C.M. Awareness and Ever Use of “Heat-Not-Burn” Tobacco Products Among U.S. Adults, 2017. Am. J. Prev. Med. 2018, 55, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Kiyohara, K.; Tabuchi, T. Electronic cigarette use in restaurants and workplaces where combustible tobacco smoking is not allowed: An Internet survey in Japan. Tob. Control 2017, 27, 254–257. Available online: https://tobaccocontrol.bmj.com/content/27/3/254 (accessed on 20 February 2021). [CrossRef]
- Gallus, S.; Lugo, A.; Liu, X.; Borroni, E.; Clancy, L.; Gorini, G.; Lopez, M.J.; Odone, A.; Przewoźniak, K.; Tigova, O.; et al. Use and awareness of heated tobacco products in Europe. J. Epidemiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Nyman, A.L.; Weaver, S.R.; Popova, L.; Pechacek, T.F.; Huang, J.; Ashley, D.L.; Eriksen, M.P. Awareness and use of heated tobacco products among US adults, 2016–2017. Tob. Control 2018, 27, s55–s61. [Google Scholar] [CrossRef] [Green Version]
- Helen, G.S.; Iii, P.J.; Nardone, N.; Benowitz, N.L. IQOS: Examination of Philip Morris International’s claim of reduced exposure. Tob. Control 2018, 27, s30–s36. [Google Scholar] [CrossRef]
- Ichitsubo, H.; Kotaki, M. Indoor air quality (IAQ) evaluation of a Novel Tobacco Vapor (NTV) product. Regul. Toxicol. Pharmacol. 2018, 92, 278–294. [Google Scholar] [CrossRef]
- Mitova, M.I.; Campelos, P.B.; Goujon-Ginglinger, C.G.; Maeder, S.; Mottier, N.; Rouget, E.G.R.; Tharin, M.; Tricker, A.R. Comparison of the impact of the Tobacco Heating System 2.2 and a cigarette on in-door air quality. Regul. Toxicol. Pharmacol. 2016, 80, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Jaccard, G.; Taffin Djoko, D.; Moennikes, O.; Jeannet, C.; Kondylis, A.; Belushkin, M. Comparative assessment of HPHC yields in the Tobacco Heating System THS2.2 and commercial cigarettes. Regul. Toxicol. Pharmacol. 2017, 90, 1–8. [Google Scholar] [CrossRef]
- Buratto, R.; Correia, D.; Parel, M.; Crenna, M.; Bilger, M.; Debrick, A. Determination of eight carbonyl compounds in aerosols trapped in phosphate buffer saline solutions to support in vitro assessment studies. Talanta 2018, 184, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, Y.; Jiang, X.; Zhang, H.; Zhu, F.; Hu, S.; Hou, H.; Hu, Q.; Pang, Y. Chemical Analysis and Simulated Pyrolysis of Tobacco Heating System 2.2 Compared to Conventional Cigarettes. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 2019, 21, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Yannovits, N.; Sarri, T.; Voudris, V.; Poulas, K.; Leischow, S.J. Carbonyl emissions from a novel heated tobacco product (IQOS): Comparison with an e-cigarette and a tobacco cigarette. Addiction 2018, 113, 2099–2106. [Google Scholar] [CrossRef]
- Mallock, N.; Böss, L.; Burk, R.; Danziger, M.; Welsch, T.; Hahn, H.; Trieu, H.L.; Hahn, J.; Pieper, E.; Henkler- Stephani, F.; et al. Levels of selected analytes in the emissions of “heat not burn” tobacco products that are relevant to assess human health risks. Arch. Toxicol. 2018, 92, 2145–2149. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, S.; Noguchi, M.; Takagi, N.; Hayashida, H.; Inaba, Y.; Ogura, H.; Kunugita, N. Simple Determination of Gaseous and Particulate Compounds Generated from Heated Tobacco Products. Chem. Res. Toxicol. 2018, 31, 585–593. [Google Scholar] [CrossRef]
- Phillips, B.W.; Schlage, W.K.; Titz, B.; Kogel, U.; Sciuscio, D.; Martin, F.; Leroy, P.; Vuillaume, G.; Krishnan, S.; Lee, T.; et al. A 90-day OECD TG 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of the aerosol from the carbon heated tobacco product version 1.2 (CHTP1.2) compared with cigarette smoke. Inhalation exposure, clinical pathology and histopathology. Food Chem. Toxicol. 2018, 116, 388–413. [Google Scholar]
- Protano, C.; Manigrasso, M.; Avino, P.; Sernia, S.; Vitali, M. Second-hand smoke exposure generated by new electronic devices (IQOS® and e-cigs) and traditional cigarettes: Submicron particle behaviour in human respiratory system. Ann Ig 2016, 28, 109–112. [Google Scholar]
- Protano, C.; Manigrasso, M.; Avino, P.; Vitali, M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. Environ. Int. 2017, 107, 190–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacitto, A.; Stabile, L.; Scungio, M.; Rizza, V.; Buonanno, G. Characterization of airborne particles emitted by an electrically heated tobacco smoking system. Environ. Pollut. 2018, 240, 248–254. [Google Scholar] [CrossRef]
- Ruprecht, A.A.; De Marco, C.; Saffari, A.; Pozzi, P.; Mazza, R.; Veronese, C.; Angellotti, G.; Munarini, E.; Ogliari, A.C.; Westerdahl, D.; et al. Environmental pollution and emission factors of electronic cigarettes, heat-not-burn tobacco products, and conventional cigarettes. Aerosol Sci. Technol. 2017, 51, 674–684. [Google Scholar] [CrossRef]
- Farsalinos, K.E.; Yannovits, N.; Sarri, T.; Voudris, V.; Poulas, K. Nicotine Delivery to the Aerosol of a Heat-Not-Burn Tobacco Product: Comparison With a Tobacco Cigarette and E-Cigarettes. Nicotine Tob. Res. 2018, 20, 1004–1009. [Google Scholar] [CrossRef]
- Rodrigo, G.; Jaccard, G.; Djoko, D.T.; Korneliou, A.; Esposito, M.; Belushkin, M. Cancer potencies and margin of exposure used for comparative risk assessment of heathed tobacco products and electronic cigarettes aerosols with cigarette smoke. Arch. Toxicol. 2021, 95, 283–298. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; PRISMA-S Group. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Leigh, N.; Tran, P.; O’Connor, R.; Goniewicz, M. Cytotoxic effects of heated tobacco products (HTP) on human bronchial epithelial cells. Tob. Control 2018, 27 (Suppl. 1), s26–s29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohal, S.; Eapen, M.; Naidu, V.; Sharma, P. IQOS exposure impairs human airway cell homeostasis: Direct comparison with traditional cigarette and e-cigarette. ERJ Open Res. 2019, 5, 00159-2018. [Google Scholar] [CrossRef] [Green Version]
- Walczak, J.; Malińska, D.; Drabik, K.; Michalska, B.; Prill, M.; Johne, S.; Luettich, K.; Szymański, J.; Peitsch, M.C.; Hoeng, J.; et al. Mitochondrial Network and Biogenesis in Response to Short and Long-Term Exposure of Human BEAS-2B Cells to Aerosol Extracts from the Tobacco Heating System 2.2. Cell Physiol. Biochem. 2020, 54, 230–251. [Google Scholar] [CrossRef]
- Miyashita, L.; Suri, R.; Dearing, E.; Mudway, I.; Dove, R.E.; Neill, D.R.; Van Zyl-Smit, R.; Kadioglu, A.; Grigg, J. E-cigarette vapour enhances pneumococcal adherence to airway epithelial cells. Eur. Respir. J. 2018, 51, 1701592. [Google Scholar] [CrossRef] [Green Version]
- Malinska, D.; Szymański, J.; Patalas-Krawczyk, P.; Michalska, B.; Wojtala, A.; Prill, M.; Partyka, M.; Drabik, K.; Walczak, J.; Sewer, A.; et al. Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. Food Chem. Toxicol. 2018, 115, 1–12. [Google Scholar] [CrossRef]
- Van der Toorn, M.; Sewer, A.; Marescotti, D.; Johne, S.; Baumer, K.; Bornand, D.; Dulize, R.; Merg, C.; Corciulo, M.; Scotti, E.; et al. The biological effects of long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol. Vitro 2018, 50, 95–108. [Google Scholar] [CrossRef]
- Kamada, T.; Yamashita, T.; Tomioka, H. Acute eosinophilic pneumonia following heat-not-burn cigarette smoking. Respirol. Case Rep. 2016, 4, e00190. [Google Scholar] [CrossRef]
- Aokage, T.; Tsukahara, K.; Fukuda, Y.; Tokioka, F.; Taniguchi, A.; Naito, H.; Nakao, A. Heat-not-burn cigarettes induce fulminant acute eosinophilic pneumonia requiring extracorporeal membrane oxygenation. Respir. Med. Case Rep. 2018, 26, 87–90. [Google Scholar] [CrossRef]
- Lee, A.; Lee, S.Y.; Lee, K.S. The Use of Heated Tobacco Products is Associated with Asthma, Allergic Rhinitis, and Atopic Dermatitis in Korean Adolescents. Sci. Rep. 2019, 9, 17699. [Google Scholar] [CrossRef]
- Adriaens, K.; Van Gucht, D.; Baeyens, F. IQOS™ vs. e-Cigarette vs. Tobacco Cigarette: A Direct Comparison of Short-Term Effects after Overnight-Abstinence. Int. J. Environ. Res. Public Health 2018, 15, 2902. [Google Scholar] [CrossRef]
- Guerra, F.; Guaragnella, N.; Arbini, A.A.; Bucci, C.; Giannattasio, S.; Moro, L. Mitochondrial dysfunction: A novel potential driver of epithelial-to-mesenchymal transition in cancer. Front. Oncol. 2017, 7, 295. [Google Scholar] [CrossRef] [Green Version]
- Grigg, J.; Walters, H.; Sohal, S.S.; Wood-Baker, R.; Reid, D.W.; Xu, C.B.; Edvinsson, L.; Morissette, M.C.; Stämpfli, M.R.; Kirwan, M.; et al. Cigarette smoke and platelet-activating factor receptor dependent adhesion of Streptococcus pneumoniae to lower airway cells. Thorax 2012, 67, 908–913. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, L.; Grigg, J. Effect of the iQOS electronic cigarette device on susceptibility to S. pneumoniae infection. J. Allergy. Clin. Immunol. 2018, 141, AB28. [Google Scholar] [CrossRef] [Green Version]
- Haziza, C.; de La Bourdonnaye, G.; Donelli, A.; Poux Skiada, D.; Weitkunat, R.; Baker, G.; Picavet, P.; Lüdicke, F. Reduction in Exposure to Selected Harmful and Potentially Harmful Constituents Approaching Those Observed Upon Smoking Abstinence in Smokers Switching to the Menthol Tobacco Heating System 2.2 for 3 Months (Part 1). Nicotine Tob. Res. 2020, 22, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haziza, C.; de La Bourdonnaye, G.; Donelli, A.; Skiada, D.; Poux, V.; Weitkunat, R.; Baker, G.; Picavet, P.; Lüdicke, F. Favorable Changes in Biomarkers of Potential Harm to Reduce the Adverse Health Effects of Smoking in Smokers Switching to the Menthol Tobacco Heating System 2.2 for 3 Months (Part 2). Nicotine Tob. Res. 2020, 22, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Poussin, C.; Laurent, A.; Peitsch, M.C.; Hoeng, J.; De Leon, H. Systems toxicology-based assessment of the candidate modified risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells. Toxicology 2016, 339, 73–86. [Google Scholar] [CrossRef]
- Van der Toorn, M.; Frentzel, S.; De Leon, H.; Geodertier, D.; Peitsch, M.C.; Hoeng, J. Aerosol from a candidate modified risk tobacco product has reduced effects on chemotaxis and transendothelial migration compared to combustion of conventional cigarettes. Food Chem. Toxicol. 2015, 86, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, A.A.; Hiler, M.; Maloney, S.; Eissenberg, T.; Breland, A.B. Expanding clinical laboratory tobacco product evaluation methods to loose-leaf tobacco vaporizers. Drug Alcohol Depend. 2016, 169, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, M.W.; Marano, K.M.; Jones, B.A.; Morgan, W.T.; Stiles, M.F. Switching from usual brand cigarettes to a tobacco-heating cigarette or snus: Part 3. Biomarkers of biological effect. Biomarkers 2015, 20, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Biondi-Zoccai, G.; Sciarretta, S.; Bullen, C.; Nocella, C.; Violi, F.; Loffredo, L.; Pignatelli, P.; Perri, L.; Peruzzi, M.; Marullo, A.G.M.; et al. Acute effects of heat-not-burn, electronic vaping, and traditional tobacco combustion cigarettes: The Sapienza University of Rome vascular assessment of proatherosclerotic effects of smoking (SUR-VAPES) 2 randomized trial. J. Am. Heart Assoc. 2019, 8, e010455. [Google Scholar] [CrossRef] [Green Version]
- Haziza, C.; de La Bourdonnaye, G.; Merlet, S.; Benzimra, M.; Ancerewicz, J.; Donelli, A.; Baker, G.; Picavet, P.; Lüdicke, F. Assessment of the reduction in levels of exposure to harmful and potentially harmful constituents in Japanese subjects using a novel tobacco heating system compared with conventional cigarettes and smoking abstinence: A randomized controlled study in confinement. Regul. Toxicol. Pharmacol. 2016, 81, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Lüdicke, F.; Haziza, C.; Weitkunat, R.; Magnette, J. Evaluation of biomarkers of exposure in smokers switching to a carbon-heated tobacco product: A controlled, randomized, open-label 5-day exposure study. Nicotine Tob. Res. 2016, 18, 1606–1613. [Google Scholar] [CrossRef] [Green Version]
- Lüdicke, F.; Baker, G.; Magnette, J.; Picavet, P.; Weitkunat, R. Reduced exposure to harmful and potentially harmful smoke constituents with the tobacco heating system 2.1. Nicotine Tob. Res. 2017, 19, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Lüdicke, F.; Picavet, P.; Baker, G.; Haziza, C.; Poux, V.; Lama, N.; Weitkunat, R. Effects of switching to the tobacco heating system 2.2 menthol, smoking abstinence, or continued cigarette smoking on biomarkers of exposure: A randomized, controlled, open-label, multicenter study in sequential confinement and ambulatory settings (Part 1). Nicotine Tob. Res. 2018, 20, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gale, N.; McEwan, M.; Camacho, O.M.; Hardie, G.; Murphy, J.; Proctor, C.J. Changes in Biomarkers of Exposure on Switching From a Conventional Cigarette to the glo Tobacco Heating Product: A Randomized, Controlled Ambulatory Study. Nicotine Tob. Res. 2021, 23, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Haziza, C.; de La Bourdonnaye, G.; Skiada, D.; Ancerewicz, J.; Baker, G.; Picavet, P.; Lüdicke, F. Evaluation of the Tobacco Heating System 2.2. Part 8: 5-Day randomized reduced exposure clinical study in Poland. Regul. Toxicol. Pharmacol. 2016, 81 (Suppl. 2), S139–S150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Heated Tobacco Products (HTPs) Information Sheet; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/WHO-HEP-HPR-2020.2 (accessed on 27 May 2021).
- European Respiratory Society. ERS Position Paper on Heated Tobacco Products; The Organization: Lausanne, Switzerland, 2018; Available online: https://www.ersnet.org/the-society/news/ers-postion-paper-on-heated-tobacco-products (accessed on 27 May 2021).
- Wong, E.T.; Kogel, U.; Veljkovic, E.; Martin, F.; Xiang, Y.; Boue, S.; Vuillaume, G.; Leroy, P.; Guedj, E.; Rodrigo, G.; et al. Evaluation of the Tobacco Heating System 2.2. Part 4: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects compared with cigarette smoke. Regul. Toxicol. Pharmacol. 2016, 81, s59–s81. [Google Scholar] [CrossRef] [Green Version]
- Dayan, A.D. Investigating a toxic risk (self-inflicted) the example of conventional and advanced studies of a novel Tobacco Heating System. Regul. Toxicol. Pharmacol. 2016, 81, s15–s16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, R.P.; Luo, W.; Pankow, J.F.; Strongin, R.M.; Peyton, D.H. Hidden formaldehyde in e-cigarette aerosols. N. Engl. J. Med. 2015, 372, 392–394. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Li, G.; Chan, Y.L.; Chapman, D.G.; Sukjamnong, S.; Nguyen, T.; Annissa, T.; McGrath, K.C.; Sharma, P.; Oliver, B.G. Maternal e-cigarette exposure in mice alters DNA methylation and lung cytokine expression in offspring. Am. J. Respir. Cell Mol. Biol. 2018, 58, 366–377. [Google Scholar] [CrossRef]
- Alexander, L.E.C.; Drummond, C.A.; Hepokoski, M.; Mathew, D.; Moshensky, A.; Willeford, A.; Das, S.; Singh, P.; Yong, Z.; Lee, J.H.; et al. Chronic inhalation of e-cigarette vapor containing nicotine disrupts airway barrier function and induces systemic inflammation and multi-organ fibrosis in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R834–R847. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L.; Fraiman, J.B. Cardiovascular effects of electronic cigarettes. Nat. Rev. Cardiol. 2017, 14, 447–456. [Google Scholar] [CrossRef]
- Visser, W.F.; Klerx, W.N.; Cremers, H.W.J.M.; Ramlal, R.; Schwillens, P.L.; Talhout, R. The Health Risks of Electronic Cigarette Use to Bystanders. Int. J. Environ. Res. Public Health 2019, 16, 1525. [Google Scholar] [CrossRef] [Green Version]
- Dusautoir, R.; Zarcone, G.; Verriele, M.; Garcon, G.; Fronval, I.; Beauval, N.; Allorge, D.; Riffault, V.; Locoge, N.; Lo- Guidice, J.M.; et al. Comparison of the Chemical composition of aerosols from heated tobacco products, electronic cigarettes and tobacco cigartettes and their toxic impacts on the human bronchial epithelial BEAS-2B cells. J. Hazard. Mater. 2021, 401, 123417. [Google Scholar] [CrossRef] [PubMed]
- Simonavicius, E.; McNeill, A.; Shahab, L.; Brose, L. Heat-not-burn tobacco products: A systematic literature review. Tob. Control 2019, 28, 582–594. [Google Scholar] [CrossRef]
- McKelvey, K.; Popova, L.; Kim, M.; Chaffee, B.W.; Vijayaraghavan, M.; Ling, P.; Halpern-Felsher, B. Heated tobacco products likely appeal to adolescents and young adults. Tob. Control 2018, 27, s41–s47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caputi, T.L.; Leas, E.; Dredze, M.; Cohen, J.E.; Ayers, J.W. They’re heating up: Internet search query trends reveal significant public interest in heat-not-burn tobacco products. PLoS ONE 2017, 12, e0185735. [Google Scholar] [CrossRef] [Green Version]
- Czoli, C.D.; White, C.M.; Reid, J.L.; Oconnor, R.J.; Hammond, D. Awareness and interest in IQOS heated tobacco products among youth in Canada, England and the USA. Tob. Control 2019, 29, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, A.; Jankowski, P.; Strus, P.; Feleszko, W. Heat Not Burn Tobacco Product-A New Global Trend: Impact of Heat-Not-Burn Tobacco Products on Public Health, a Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 409. [Google Scholar] [CrossRef] [Green Version]
Authors, Year of Publication | Material | Country | Funder | Main Objective |
---|---|---|---|---|
Van der Toorn, 2018 | in vitro epithelial cells | Switzerland | dependent | functional and molecular changes in human bronchial epithelial BEAS-2B cells following a 12-week exposure to total particulate matter (TPM) from the aerosol of a candidate modified-risk tobacco product (cMRTP) in comparison with those following exposure to TPM from the 3R4F reference cigarette. |
Sohal, 2019 | in vitro human bronchial epithelial cells, human airway smooth muscle (ASM) cells | Australia | independent | exposure to IQOS has the same damaging effect on human airway epithelial and smooth muscle cells as traditional tobacco cigarette and eCigs in vitro. |
Miyashita, 2018 | human in vivo human airway epithelial cells | UK | independent | e-cigarette vapour increases pneumococcal adhesion to airway cells. |
Malinska, 2018 | in vitro human bronchial epithelial cells | Poland | dependent | assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. |
Leigh, 2018 | in vitro human bronchial epithelial cells | US | independent | the potential toxic effects of inhaling emissions from an HTP in comparison with electronic and combustible tobacco cigarettes. |
Walczak, 2020 | in vitro human bronchial epithelial cells | Poland | dependent | morphology and dynamics of the mitochondrial network in human bronchial epithelial cells exposed to total particulate matter (TPM) generated from 3R4F reference cigarette smoke and from aerosol from a new candidate modified risk tobacco product, the Tobacco Heating System (THS 2.2). |
Adriaens, 2018 | human | Belgium | independent | to investigate the effect of using an IQOS™ on eCO, acute cigarette craving, withdrawal symptoms and subjective positive and negative experiences after overnight smoking abstinence, compared to using an e-cigarette or a regular tobacco cigarette; and to investigate which product (e-cigarette or IQOS™) would be preferred. |
Kamada, 2016 | human case report | Japan | independent | report the first case of AEP caused by smoking HC |
Aokage, 2019 | human case report | Japan | independent | report a successfully treated case of fatal AEP, presumably induced by HNBC use. |
Tabuchi, 2018 | human | Japan | independent | to assess interest in HnB tobacco products (including IQOS, Ploom and Glo), its prevalence in 2015, 2016 and 2017, to examine the symptoms from exposure to secondhand HNB tobacco aerosol in Japan. |
Lee, 2019 | human | Korea | independent | assessment of association of the HnB’s use with perceived stress, physical activity and internet use. |
Lopez, 2016 | human | US | independent | to expand existing clinical laboratory methods to examine, in cigarette smokers, the acute effects of a “heat, not burn” “loose-leaf tobacco vaporizer” (LLTV). |
Poussin, 2016 | in vitro human endothelial cells | Switzerland | dependent | to compare the biological impact of aqueous extracts from a candidate MRTP, Tobacco Heating System (THS) 2.2 (electrically-heated tobacco technology), and the 3R4F reference cigarette on monocytic cell-HCAEC adhesion combining functional measurements from an in vitro adhesion assay with transcriptomics and inflammatory protein marker data to investigate changes at the molecular level. |
Van der Toorn, 2015 | in vitro monocytic cell line and human coronary arterial endothelial cells | Switzerland | dependent | the effect from a new candidate modified risk tobacco product, the tobacco heating system (THS) 2.2, on the migratory behavior of monocytes in comparison with combustible 3R4F reference cigarettes. |
Lüdicke, 2018 | human | Japan | dependent | risk markers of smoking-related diseases. |
Haziza, 2020a | human | US | dependent | the exposure reduction to selected HPHCs in smokers switching to menthol Tobacco Heating System (mTHS) 2.2 compared with smokers continuing smoking menthol cigarettes (mCCs) and smoking abstinence (SA). |
Haziza, 2020b | human | US | dependent | offering an alternative to cigarettes for smokers while substantially reducing the exposure to harmful and potentially harmful constituents found in cigarette smoke. |
Haziza, 2016a | human | Japan | dependent | demonstrate exposure reduction to a selected set of HPHCs when switching from CCs to THS 2.2, as compared to continued CC use and smoking abstinence (SA) for five days. |
Lüdicke, 2016 | human | Poland | dependent | to investigate the effects of exposure to selected harmful and potentially harmful constituents (HPHCs) of cigarette smoke in adult smokers who switched to a carbon-heated tobacco product (CHTP), compared with adult smokers who continued to smoke CCs and those who abstained from smoking for five days. |
Lüdicke, 2017 | human | Switzerland | dependent | examined whether the levels of selected biomarkers of exposure were reduced in smokers who switched from CCs to THS 2.1, as compared to smokers that continued to smoke CCs. |
Lüdicke, 2018 | human | Japan | dependent | examined the impact of switching to mTHS on biomarkers of exposure to HPHCs relative to menthol CCs (mCCs) and smoking abstinence (SA). |
Ogden, 2015 | human | US | dependent | evaluation of biomarkers of biological effect (e.g., inflammation, lipids, hypercoaguable state). |
Biondi-Zoccai, 2019 | human | Italy | independent | to appraise the acute effects of single use of HNBC, EVC and TC in healthy smokers. |
Gale, 2021 | human | UK | dependent | investigating whether biomarkers of exposure (BoE) to smoke toxicants are reduced when smokers switch from smoking cigarettes to using the glo THP. |
Haziza, 2016b | human | Poland | dependent | to demonstrate a reduction in exposure to HPHCs. |
Type of Outcome | Human Studies | In Vitro Studies |
---|---|---|
destructive effect on human respiratory epithelial cells/human bronchial epithelial cells | + ↓ (Haziza, 2020) | + ↓ (Van der Toorn, 2018) + ↑ (Leigh, 2018) + ↑ (Walczak, 2020) + ↑ (Malinska, 2018) + ↑ (Poussin, 2016) + ↑ (Miyashita, 2018) + ↑ (Sohal, 2019) |
destructive effect on monocytic cell line and human coronary arterial endothelial cells | - | + ↓ (Van der Toorn, 2018) |
destructive effect on nasal epithelial cells | - | + ↑ (Miyashita, 2018) |
lung cancer risk | + ↓ (Haziza, 2016a, 2016b) + ↓ (Lüdicke, 2016) + ↓ (Lüdicke, 2018) | + ↓ (Van der Toorn, 2018) |
AEP acute eosinophilic pneumonia | + ↑ (Kamada, 2016) + ↑ (Aokage, 2019) | - |
asthma, allergy, rhinitis | + ↑ (Lee, 2019) | + ↑ (Miyashita, 2018) |
atopic dermatitis | + ↑ (Lee, 2019) | - |
oxidative stress/oxidative damage | + ↑ (Ogden, 2015) + ↑ (Biondi Zoccai, 2019) + ↓ (Haziza, 2020) | + ↑ (Sohal, 2019) + ↑ (Malinska, 2018) |
inflammation, infections in the respiratory tract | - | + ↑ (Sohal, 2019) + ↑ (Miyashita, 2018) + ↓ (Van der Toorn, 2016) |
mitochondrial dysfunction/mitochondrial stress | - | + ↑ (Malinska, 2018) + ↑↓ adaptation (Walczak, 2020) |
the risk of cardiovascular disease | + ↓ (Lopez, 2016) + ↓ (Lüdicke, 2018) | + ↓ (Poussin, 2016) + ↓ (Van der Toorn, 2016) |
atherosclerosis | + ↑ (Biondi Zoccai, 2019) | - |
adhesion of monocytic cells to coronary endothelial cells | - | + ↓ (Poussin, 2016) + ↓ (Van der Toorn, 2016) |
11-dehydro-thromboxane B2 (a biomarker of platelet activation) | + ↓ (Haziza, 2020) + ↓ (Gale, 2021) | - |
adhesion molecule-1 (biomarker of endothelial function | + ↓ (Lüdicke, 2018) | - |
8-epi-prostaglandin F2α (a biomarker of oxidative stress) | + ↓ (Lüdicke, 2018) + ↓ (Haziza, 2020) | - |
high-density lipoprotein cholesterol | + ↑ (Lüdicke, 2018) + ↓ (Haziza, 2020) | - |
low-density lipoprotein cholesterol | + ↑ (Haziza, 2020) | - |
total cholesterol | + ↓ (Haziza, 2020) | - |
C -reactive protein | + ↓ (Haziza, 2020) | - |
Intracellural adhesion molecule 1 | + ↓ (Haziza, 2020) | - |
Blood morphology: palatelets, leukocytes | + ↓(Ogden, 2015) | - |
exposure biomarkers (COHb, S-PMA, MHBMA, 3-HPMA, total NNN, total NNAL, 1-OHP, 4-ABP, 1-NA, 2-NA, o-tol, CEMA; HEMA, 3-HMPMA i total 3-OH-B [a] P, carbon monoxide, benzene, 1–3 butadiene, acrolein, eCO, nicotine exposure (plasma nicotine, cotinine, TNeq)) | + ↓ (Haziza, 2016) + ↓ (Haziza, 2020) + ↓ (Lüdicke, 2016) + ↓ (Lüdicke, 2017) + ↓ (Lüdicke, 2018) + ↓ (Ogden, 2015) + ↓ (Gale, 2021) | - |
reducing cigarette cravings and withdrawal symptoms | + ↓ (Adriaens, 2018) + ↓ (Lopez, 2016) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znyk, M.; Jurewicz, J.; Kaleta, D. Exposure to Heated Tobacco Products and Adverse Health Effects, a Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6651. https://doi.org/10.3390/ijerph18126651
Znyk M, Jurewicz J, Kaleta D. Exposure to Heated Tobacco Products and Adverse Health Effects, a Systematic Review. International Journal of Environmental Research and Public Health. 2021; 18(12):6651. https://doi.org/10.3390/ijerph18126651
Chicago/Turabian StyleZnyk, Małgorzata, Joanna Jurewicz, and Dorota Kaleta. 2021. "Exposure to Heated Tobacco Products and Adverse Health Effects, a Systematic Review" International Journal of Environmental Research and Public Health 18, no. 12: 6651. https://doi.org/10.3390/ijerph18126651
APA StyleZnyk, M., Jurewicz, J., & Kaleta, D. (2021). Exposure to Heated Tobacco Products and Adverse Health Effects, a Systematic Review. International Journal of Environmental Research and Public Health, 18(12), 6651. https://doi.org/10.3390/ijerph18126651