Prognostic Factors of 1-Year Postoperative Functional Outcomes of Older Patients with Intertrochanteric Fractures in Thailand: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Study Patient
2.3. Treatment Protocol
2.4. Data Collection
2.5. Study Endpoint
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voleti, P.B.; Liu, S.Y.; Baldwin, K.D.; Mehta, S.; Donegan, D.J. Intertrochanteric Femur Fracture Stability: A Surrogate for General Health in Elderly Patients? Geriatr. Orthop. Surg. Rehabil. 2015, 6, 192–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulachote, N.; Sa-Ngasoongsong, P.; Sirisreetreerux, N.; Chulsomlee, K.; Thamyongkit, S.; Wongsak, S. Predicting Factors for Return to Prefracture Ambulatory Level in High Surgical Risk Elderly Patients Sustained Intertrochanteric Fracture and Treated with Proximal Femoral Nail Antirotation (PFNA) With and Without Cement Augmentation. Geriatr. Orthop. Surg. Rehabil. 2020, 11, 2151459320912121. [Google Scholar] [CrossRef]
- Adeyemi, A.; Delhougne, G. Incidence and Economic Burden of Intertrochanteric Fracture: A Medicare Claims Database Analysis. JBJS Open Access 2019, 4, e0045. [Google Scholar] [CrossRef] [PubMed]
- Hulsbæk, S.; Larsen, R.F.; Troelsen, A. Predictors of not regaining basic mobility after hip fracture surgery. Disabil. Rehabil. 2015, 37, 1739–1744. [Google Scholar] [CrossRef] [PubMed]
- Vaseenon, T.; Luevitoonvechkij, S.; Wongtriratanachai, P.; Rojanasthien, S. Long-term mortality after osteoporotic hip fracture in Chiang Mai, Thailand. J. Clin. Densitom. 2010, 13, 63–67. [Google Scholar] [CrossRef]
- Chaysri, R.; Leerapun, T.; Klunklin, K.; Chiewchantanakit, S.; Luevitoonvechkij, S.; Rojanasthien, S. Factors related to mortality after osteoporotic hip fracture treatment at Chiang Mai University Hospital, Thailand, during 2006 and 2007. J. Med. Assoc. Thail. 2015, 98, 59–64. [Google Scholar]
- Baumgaertner, M.R.; Curtin, S.L.; Lindskog, D.M.; Keggi, J.M. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J. Bone Jt. Surg Am. 1995, 77, 1058–1064. [Google Scholar] [CrossRef]
- Pajarinen, J.; Lindahl, J.; Savolainen, V.; Michelsson, O.; Hirvensalo, E. Femoral shaft medialisation and neck-shaft angle in unstable pertrochanteric femoral fractures. Int. Orthop. 2004, 28, 347–353. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-M.; Zhang, Y.-Q.; Ma, Z.; Li, Q.; Dargel, J.; Eysel, P. Fracture reduction with positive medial cortical support: A key element in stability reconstruction for the unstable pertrochanteric hip fractures. Arch. Orthop. Trauma Surg. 2015, 135, 811–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashigar, A.; Vincent, A.; Gunton, M.J.; Backstein, D.; Safir, O.; Kuzyk, P.R. Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Bone Jt. J. 2014, 96, 1029–1034. [Google Scholar] [CrossRef]
- Parker, M.J. Cutting-out of the dynamic hip screw related to its position. J. Bone Jt. Surg. Br. Vol. 1992, 74, 625. [Google Scholar] [CrossRef] [PubMed]
- Broderick, J.M.; Bruce-Brand, R.; Stanley, E.; Mulhall, K.J. Osteoporotic hip fractures: The burden of fixation failure. Sci. World J. 2013, 2013, 515197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buecking, B.; Bohl, K.; Eschbach, D.; Bliemel, C.; Aigner, R.; Balzer-Geldsetzer, M.; Dodel, R.; Ruchholtz, S.; Debus, F. Factors influencing the progress of mobilization in hip fracture patients during the early postsurgical period?—A prospective observational study. Arch. Gerontol. Geriatr. 2015, 60, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, K.J.; Williamson, L.; Alexander, J.; Filliter, C.; Sobolev, B.; Guy, P.; Bearne, L.M.; Sackley, C. Prognostic factors of functional outcome after hip fracture surgery: A systematic review. Age Ageing 2018, 47, 661–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, R.E.; Apivatthakakul, T.; Moran, C.G. AO Principles of Fracture Management; Thieme: Stuttgart, Germany, 2017. [Google Scholar]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Müller, M.E. The Comprehensive Classification of Fractures of Long Bones; Springer: Berlin, Germany, 1990. [Google Scholar]
- Gotfried, Y. The lateral trochanteric wall: A key element in the reconstruction of unstable pertrochanteric hip fractures. Clin. Orthop. Relat. Res. 2004, 425, 82–86. [Google Scholar] [CrossRef]
- Welmer, A.K.; Mörck, A.; Dahlin-Ivanoff, S. Physical activity in people age 80 years and older as a means of counteracting disability, balanced in relation to frailty. J. Aging Phys. Act. 2012, 20, 317–331. [Google Scholar] [CrossRef]
- Parker, M.J.; Palmer, C.R. A new mobility score for predicting mortality after hip fracture. J. Bone Jt. Surg Br. 1993, 75, 797–798. [Google Scholar] [CrossRef]
- Atthakomol, P.; Manosroi, W.; Phinyo, P.; Pipanmekaporn, T.; Vaseenon, T.; Rojanasthien, S. Prognostic Factors for All-Cause Mortality in Thai Patients with Fragility Fracture of Hip: Comorbidities and Laboratory Evaluations. Medicina 2020, 56, 311. [Google Scholar] [CrossRef]
- Kulachote, N.; Sa-Ngasoongsong, P.; Sirisreetreerux, N.; Wongsak, S.; Suphachatwong, C.; Wajanavisit, W.; Kawinwonggowit, V. The Impacts of Early Hip Surgery in High-Risk Elderly Taking Antithrombotic Agents and Afflicted with Intertrochanteric Fracture. J. Med. Assoc. Thail. 2015, 98 (Suppl. 8), S76–S81. [Google Scholar]
- Tan, S.T.; Tan, W.P.; Jaipaul, J.; Chan, S.P.; Sathappan, S.S. Clinical outcomes and hospital length of stay in 2,756 elderly patients with hip fractures: A comparison of surgical and non-surgical management. Singap. Med. J. 2017, 58, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Hagino, T.; Sato, E.; Tonotsuka, H.; Ochiai, S.; Tokai, M.; Hamada, Y. Prediction of ambulation prognosis in the elderly after hip fracture. Int. Orthop. 2006, 30, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, M.T.; Bandholm, T.; Foss, N.B.; Ekdahl, C.; Kehlet, H. High inter-tester reliability of the new mobility score in patients with hip fracture. J. Rehabil. Med. 2008, 40, 589–591. [Google Scholar] [CrossRef] [Green Version]
- Pannucci, C.J.; Wilkins, E.G. Identifying and avoiding bias in research. Plast. Reconstr. Surg 2010, 126, 619–625. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement. Ann. Intern. Med. 2015, 162, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Naruse, H.; Kitade, I.; Shimada, S.; Tsubokawa, M.; Kokubo, Y.; Matsumine, A. Functional outcomes after the treatment of hip fracture. PLoS ONE 2020, 15, e0236652. [Google Scholar] [CrossRef] [PubMed]
- Shakouri, S.K.; Eslamian, F.; Azari, B.K.; Sadeghi-Bazargani, H.; Sadeghpour, A.; Salekzamani, Y. Predictors of functional improvement among patients with hip fracture at a rehabilitation ward. Pak. J. Biol. Sci. 2009, 12, 1516–1520. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.K.; Kalra, S.; Khanna, A.; Thiruvengada, M.M.; Parker, M.J. Timing of surgery for hip fractures: A systematic review of 52 published studies involving 291,413 patients. Injury 2009, 40, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Moerman, S.; Mathijssen, N.M.; Tuinebreijer, W.E.; Nelissen, R.G.; Vochteloo, A.J. Less than one-third of hip fracture patients return to their prefracture level of instrumental activities of daily living in a prospective cohort study of 480 patients. Geriatr. Gerontol. Int. 2018, 18, 1244–1248. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Alonso, F.J.; Vidán-Astiz, M.; Alonso-Armesto, M.; Toledano-Iglesias, M.; Alvarez-Nebreda, L.; Brañas-Baztan, F.; Serra-Rexach, J.A. The pattern of recovery of ambulation after hip fracture differs with age in elderly patients. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Ye, K.-F.; Xing, Y.; Sun, C.; Cui, Z.-Y.; Zhou, F.; Ji, H.-Q.; Guo, Y.; Lyu, Y.; Yang, Z.-W.; Hou, G.-J.; et al. Loss of the posteromedial support: A risk factor for implant failure after fixation of AO 31-A2 intertrochanteric fractures. Chin. Med. J. 2020, 133, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Zhang, Y.; Sun, G.-X.; Yang, C.-S.; Liu, N.; Chen, D.-W.; Cheng, B. Positive or negative anteromedial cortical support of unstable pertrochanteric femoral fractures: A finite element analysis study. Biomed. Pharmacother. 2021, 138, 111473. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Urman, R.D.; Cornett, E.M.; Hart, B.M.; Chami, A.; Gayle, J.A.; Fox, C.J. Enhanced recovery pathways in orthopedic surgery. J. Anaesthesiol. Clin. Pharmacol. 2019, 35, S35–S39. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Liu, J.; Chen, H.; Ding, W.; Chen, J.; Zhao, B.; Yin, X. Enhanced recovery after surgery (ERAS) in elective intertrochanteric fracture patients result in reduced length of hospital stay (LOS) without compromising functional outcome. J. Orthop. Surg. Res. 2019, 14, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masaracchio, M.; Hanney, W.J.; Liu, X.; Kolber, M.; Kirker, K. Timing of rehabilitation on length of stay and cost in patients with hip or knee joint arthroplasty: A systematic review with meta-analysis. PLoS ONE 2017, 12, e0178295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, U.; BüLow, E.; Sundberg, M.; Rolfson, O. No increase in readmissions or adverse events after implementation of fast-track program in total hip and knee replacement at 8 Swedish hospitals: An observational before-and-after study of 14,148 total joint replacements 2011-2015. Acta Orthop. 2018, 89, 522–527. [Google Scholar] [CrossRef] [Green Version]
- Romano, L.U.; Rigoni, M.; Torri, E.; Nella, M.; Morandi, M.; Casetti, P.; Nollo, G. A Propensity Score-Matched Analysis to Assess the Outcomes in Pre- and Post-Fast-Track Hip and Knee Elective Prosthesis Patients. J. Clin. Med. 2021, 10, 741. [Google Scholar] [CrossRef]
- Chopra, M.; Kumar, S.; Mishra, D. Functional and radiological outcomes of intertrochanteric fractures treated with proximal femoral nail. Int. J. Res. Orthop. 2020, 6, 1001. [Google Scholar] [CrossRef]
- Atthakomol, P.; Manosroi, W.; Phinyo, P.; Pipanmekaporn, T.; Vaseenon, T.; Rojanasthien, S. Predicting Survival in Thai Patients After Low Impact Hip Fracture Using Flexible Parametric Modelling: A Retrospective Cohort Study. J. Clin. Densitom. 2021. [Google Scholar] [CrossRef]
Variable | Total (209) | NMS ≥ 5 (149, 71.3%) | NMS < 5 (60, 28.7%) | p-Value |
---|---|---|---|---|
Age (mean ± SD) years | 82 ± 7 | 81 ± 7 | 84 ± 6 | 0.008 |
Age ≥ 80 years | 75 (35.9%) | 61 (40.9%) | 14 (23.3%) | 0.017 |
Male gender (n.%) | 55 (26.3%) | 42 (28.2%) | 13 (21.7%) | 0.388 |
Pre-fracture NMS † (median, IQR) | 9 (6, 9) | 9 (7, 9) | 6 (4, 9) | <0.001 |
Pre-fracture NMS ≥ 5 | 192 (91.9%) | 148 (99.3%) | 44 (73.3%) | <0.001 |
Hb ‡(mean ± SD) g/dL | 10.6 ± 1.7 | 10.7 ± 1.6 | 10.2 ± 1.7 | 0.022 |
Hb ≥ 10 g/dL | 62 (29.7%) | 54 (36.2%) | 8 (13.3%) | 0.001 |
CCI §(median, IQR) | 4 (4, 5) | 4 (4, 5) | 5 (4, 6) | <0.001 |
CCI < 5 | 114 (54.6%) | 90 (60.4%) | 24 (40.0%) | 0.009 |
BMI ¶(mean ± SD) kg/m2 | 21.7 ± 3.6 | 21.4 ± 3.6 | 22.5 ± 3.9 | 0.062 |
BMI < 23 kg/m2 | 149 (71.3%) | 114 (76.5%) | 35 (58.3%) | 0.011 |
Albumin (mean ± SD) mg/L | 3.6 ± 0.5 | 3.7 ± 0.5 | 3.6 ± 0.4 | 0.117 |
Albumin ≥ 3 mg/L | 183 (87.6%) | 129 (86.6%) | 54 (90.0%) | 0.645 |
Time to surgery (median, IQR) (d) | 5 (3, 8) | 4 (2, 7) | 5 (3, 8) | 0.066 |
Time to surgery < 3 days | 80 (38.3%) | 63 (42.3%) | 17 (28.3%) | 0.083 |
Length of stay (median, IQR) (d) | 12 (9, 15) | 11 (8, 14) | 14 (11, 18) | <0.001 |
Length of stay < 14 days | 148 (70.8%) | 114 (75.5%) | 34 (56.7%) | 0.007 |
NMS † at discharge (median, IQR) | 3 (1, 4) | 3 (2, 5) | 1 (0, 2) | <0.001 |
NMS at discharge ≥ 2 | 109 (52.2%) | 96 (64.4%) | 13 (21.7%) | <0.001 |
Variable | Total (209) | NMS ≥ 5 (149, 71.3%) | NMS < 5 (60, 28.7%) | p-Value |
---|---|---|---|---|
Fracture classification (n, %) | ||||
31A1 | 57 (27.3%) | 47 (31.5%) | 10 (16.7%) | |
31A2 | 116 (55.5%) | 77 (51.7%) | 39 (65.0%) | |
31A3 | 36 (17.2%) | 25 (16.8%) | 11 (18.3%) | 0.086 |
Lateral wall thickness (mean ± SD) mm | 21.3 ± 6.6 | 21.7 ± 6.8 | 20.5 ± 5.9 | 0.220 |
Lateral wall thickness ≥ 20.5 mm | 108 (51.7%) | 79 (53.0%) | 29 (48.3%) | 0.545 |
Neck shaft angle (mean ± SD) | 134.9 ± 8.4 | 135.3 ± 7.8 | 133.9 ± 9.8 | 0.256 |
Neck shaft angle ≥ 130 | 153 (73.2%) | 116 (77.9%) | 37 (61.7%) | 0.024 |
Medial cortical support (mean ± SD) mm | (+) 0.7 ± 3.7 | (+) 0.7 ± 3.5 | (+) 0.8 ± 4.2 | 0.916 |
Negative medial cortical support < 6 mm | 200 (95.7%) | 144 (96.6%) | 56 (93.3%) | 0.282 |
Anterior cortical support (mean ± SD) mm | (−) 1.2 ± 4.1 | (−) 1.1 ± 3.7 | (−) 1.4 ± 4.9 | 0.646 |
Negative anterior cortical support < 7 mm | 193 (92.3%) | 140 (94.0%) | 53 (88.3) | 0.247 |
CalTAD † (mean ± SD) mm | 26.6 ± 5.9 | 26.6 ± 5.9 | 26.5 ± 6.1 | 0.957 |
CalTAD < 25 mm | 89 (42.6%) | 66 (44.3%) | 23 (38.3%) | 0.445 |
Parker’s ratio (AP) (mean ± SD) % | 47.8 ± 8.2 | 47.4 ± 8.0 | 48.8 ± 8.5 | 0.257 |
Parker’s ratio (AP) < 40% | 43 (20.6%) | 34 (22.8%) | 9 (15.0%) | 0.258 |
Fixation implant | ||||
Extramedullary device | 42 (20.1%) | 32 (21.5%) | 10 (16.7%) | |
Intramedullary device | 167 (79.9%) | 117 (78.5%) | 50 (83.3%) | 0.567 |
Variable | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
uOR | 95% CI | p-Value | mOR | 95% CI | p-Value | |
Age ≥ 80 | 2.28 | 1.15–4.50 | 0.018 | 2.50 | 0.95–6.58 | 0.064 |
Male gender | 1.42 | 0.70–2.89 | 0.334 | 1.79 | 0.62–5.14 | 0.279 |
Pre-fracture NMS † ≥ 5 | 53.82 | 6.94–417.27 | <0.001 | 52.72 | 5.19–535.77 | 0.001 |
Hb ‡ ≥ 10 g/dL | 3.69 | 1.63–8.35 | 0.002 | 3.26 | 1.11–9.57 | 0.031 |
CCI § < 5 | 2.29 | 1.24–4.22 | 0.008 | 2.02 | 0.85–4.84 | 0.113 |
BMI ¶ < 23 kg/m2 | 2.33 | 1.23–4.40 | 0.009 | 3.14 | 1.21–8.13 | 0.018 |
Albumin ≥ 3 mg/L | 0.72 | 0.27–1.88 | 0.499 | 0.50 | 0.14–1.79 | 0.285 |
Fracture classification | ||||||
31A1 | 1.00 | Reference | 1.00 | Reference | ||
31A2 | 0.42 | 0.19–0.92 | 0.030 | 0.38 | 0.11–1.26 | 0.113 |
31A3 | 0.48 | 0.18–1.29 | 0.148 | 0.43 | 0.08–2.28 | 0.324 |
Lateral wall thickness ≥ 20.5 mm | 1.21 | 0.66–2.20 | 0.540 | 1.19 | 0.46–3.09 | 0.722 |
Neck shaft angle ≥130 | 2.19 | 1.14–4.18 | 0.018 | 1.28 | 0.47–3.48 | 0.628 |
Negative medial cortical support < 6 mm | 2.06 | 0.53–7.94 | 0.295 | 1.14 | 0.13–9.85 | 0.907 |
Negative anterior cortical support < 7 mm | 2.05 | 0.73–5.80 | 0.174 | 2.54 | 0.56–11.52 | 0.228 |
CalTAD †† < 25 mm | 1.28 | 0.69–2.36 | 0.431 | 1.12 | 0.44–2.83 | 0.813 |
Parker’s ratio (AP) < 40% | 1.68 | 0.75–3.75 | 0.209 | 1.37 | 0.44–4.22 | 0.585 |
Fixation implant | ||||||
Extramedullary device | 1.00 | Reference | 1.00 | Reference | ||
Intramedullary device | 0.73 | 0.33–1.60 | 0.434 | 1.54 | 0.42–5.73 | 0.516 |
Time to surgery < 3 days | 1.85 | 0.97–3.55 | 0.062 | 0.55 | 0.19–1.55 | 0.256 |
Length of stay < 14 days | 2.30 | 1.23–4.30 | 0.009 | 2.42 | 0.91–6.42 | 0.077 |
NMS † at discharge ≥ 2 | 6.55 | 3.25–13.18 | <0.001 | 8.50 | 3.33–21.70 | <0.001 |
Variable | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
uOR | 95% CI | p-Value | mOR | 95% CI | p-Value | |
Age ≤ 80 | 2.23 | 1.18–4.20 | 0.013 | 2.34 | 1.11–4.93 | 0.025 |
Male gender | 0.97 | 0.48–1.97 | 0.940 | 0.86 | 0.37–2.01 | 0.727 |
Pre-fracture NMS † ≥ 5 | 1.14 | 0.36–3.67 | 0.821 | 0.51 | 0.12–2.12 | 0.356 |
Hb ‡ ≥ 10 g/dL | 0.88 | 0.44–1.76 | 0.725 | 0.66 | 0.29–1.50 | 0.320 |
CCI § < 5 | 1.44 | 0.76–2.70 | 0.262 | 1.17 | 0.54–2.53 | 0.689 |
BMI ¶ < 23 kg/m2 | 1.21 | 0.60–2.43 | 0.600 | 1.36 | 0.57–3.24 | 0.490 |
Albumin ≥ 3 mg/L | 0.94 | 0.37–2.37 | 0.892 | 0.51 | 0.16–1.63 | 0.255 |
Fracture classification | ||||||
31A1 | 1.00 | Reference | 1.00 | Reference | ||
31A2 | 0.82 | 0.40–1.67 | 0.577 | 1.08 | 0.42–2.73 | 0.878 |
31A3 | 0.99 | 0.39–2.50 | 0.976 | 1.44 | 0.39–5.30 | 0.583 |
Lateral wall thickness ≥ 20.5 mm | 1.12 | 0.60–2.08 | 0.729 | 0.95 | 0.40–2.28 | 0.911 |
Neck shaft angle ≥130 | 1.60 | 0.76–3.40 | 0.218 | 1.05 | 0.41–2.66 | 0.919 |
Negative medial cortical support < 5 mm | 5.26 | 0.68–41.01 | 0.113 | 5.44 | 0.57–52.35 | 0.142 |
Negative anterior cortical support < 7 mm | 1.56 | 0.43–5.69 | 0.503 | 1.05 | 0.21–5.04 | 0.948 |
CalTAD †† < 25 mm | 1.36 | 0.73–2.53 | 0.338 | 1.42 | 0.66–3.06 | 0.374 |
Parker’s ratio (AP) < 40% | 1.14 | 0.54–2.43 | 0.728 | 0.96 | 0.39–2.37 | 0.935 |
Fixation implant | ||||||
Extramedullary device | 1.00 | Reference | 1.00 | Reference | ||
Intramedullary device | 0.73 | 0.35–1.53 | 0.398 | 0.54 | 0.19–1.55 | 0.253 |
Time to surgery < 3 days | 1.28 | 0.68–2.40 | 0.449 | 0.74 | 0.33–1.69 | 0.482 |
Length of stay < 14 days | 1.86 | 0.89–3.91 | 0.101 | 2.13 | 0.90–5.03 | 0.086 |
NMS † at discharge ≥ 2 | 6.09 | 2.86–12.99 | <0.001 | 6.27 | 2.75–14.32 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adulkasem, N.; Phinyo, P.; Khorana, J.; Pruksakorn, D.; Apivatthakakul, T. Prognostic Factors of 1-Year Postoperative Functional Outcomes of Older Patients with Intertrochanteric Fractures in Thailand: A Retrospective Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 6896. https://doi.org/10.3390/ijerph18136896
Adulkasem N, Phinyo P, Khorana J, Pruksakorn D, Apivatthakakul T. Prognostic Factors of 1-Year Postoperative Functional Outcomes of Older Patients with Intertrochanteric Fractures in Thailand: A Retrospective Cohort Study. International Journal of Environmental Research and Public Health. 2021; 18(13):6896. https://doi.org/10.3390/ijerph18136896
Chicago/Turabian StyleAdulkasem, Nath, Phichayut Phinyo, Jiraporn Khorana, Dumnoensun Pruksakorn, and Theerachai Apivatthakakul. 2021. "Prognostic Factors of 1-Year Postoperative Functional Outcomes of Older Patients with Intertrochanteric Fractures in Thailand: A Retrospective Cohort Study" International Journal of Environmental Research and Public Health 18, no. 13: 6896. https://doi.org/10.3390/ijerph18136896
APA StyleAdulkasem, N., Phinyo, P., Khorana, J., Pruksakorn, D., & Apivatthakakul, T. (2021). Prognostic Factors of 1-Year Postoperative Functional Outcomes of Older Patients with Intertrochanteric Fractures in Thailand: A Retrospective Cohort Study. International Journal of Environmental Research and Public Health, 18(13), 6896. https://doi.org/10.3390/ijerph18136896