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Abstract: In recent years, with rapid economic development, air pollution has become extremely
serious, causing many negative effects on health, environment and medical costs. PM2.5 is one of the
main components of air pollution. Therefore, it is necessary to know the PM2.5 air quality in advance
for health. Many studies on air quality are based on the government’s official air quality monitoring
stations, which cannot be widely deployed due to high cost constraints. Furthermore, the update
frequency of government monitoring stations is once an hour, and it is hard to capture short-term
PM2.5 concentration peaks with little warning. Nevertheless, dealing with short-term data with many
stations, the volume of data is huge and is calculated, analyzed and predicted in a complex way.
This alleviates the high computational requirements of the original predictor, thus making Spark
suitable for the considered problem. This study proposes a PM2.5 instant prediction architecture
based on the Spark big data framework to handle the huge data from the LASS community. The
Spark big data framework proposed in this study is divided into three modules. It collects real
time PM2.5 data and performs ensemble learning through three machine learning algorithms (Linear
Regression, Random Forest, Gradient Boosting Decision Tree) to predict the PM2.5 concentration
value in the next 30 to 180 min with accompanying visualization graph. The experimental results
show that our proposed Spark big data ensemble prediction model in next 30-min prediction has
the best performance (R2 up to 0.96), and the ensemble model has better performance than any
single machine learning model. Taiwan has been suffering from a situation of relatively poor air
pollution quality for a long time. Air pollutant monitoring data from LASS community can provide
a wide broader monitoring, however the data is large and difficult to integrate or analyze. The
proposed Spark big data framework system can provide short-term PM2.5 forecasts and help the
decision-maker to take proper action immediately.

Keywords: air pollution; PM2.5 predictions; machine learning; Spark; ensemble model; big data

1. Introduction

In recent years, with rapid economic development, air pollution has become increas-
ingly serious, causing many negative effects on health, environment and medical costs. The
World Health Organization’s (WHO) report also mentions for about three-quarters of the
world’s population, the air pollution concentration values of living environments exceeds
those specified by the WHO, and indoor and outdoor air pollution causes about 7 million
premature deaths every year [1]. Air pollution can cause many diseases and negatively
affect human health. Martinelli, Olivieri and Girelli [2] have pointed out that exposure
to fine suspended particulates (PM2.5) can easily lead to an increase in the incidence of
cardiovascular diseases. IARC [3] also mentioned that exposure to outdoor air pollution
can cause lung cancer and increase the risk of bladder cancer and breast cancer. One study
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by Hwang et al. [4] shows that air pollution will increase hospitalization rates, leading to
an increase in medical costs.

Therefore, some scholars have conducted research to find out the factors related to
air pollution [5]. In terms of air quality prediction, there are also many studies based on
different methods, such as the use of neural networks to predict three days in advance
the concentration of SO2, CO, and PM10 in Besiktas District, Istanbul [6]. Li, Huang, and
Luo [7] use computer vision technology to analyze photos obtained from social media to
establish a correlation between the degree of smog on the photo and official PM2.5 data,
to predict PM2.5 concentration value. Lee et al. [8] use the random forest method and the
weather data and road information generated by the city sensing system to predict the
AQI value.

Nevertheless, many studies on air quality in Taiwan are based on the government’s
official air quality monitoring stations, which cannot be widely deployed due to high cost
constraints [9]. Therefore, it is very important for the public to provide small-scale, low-
cost and real-time air quality information that can penetrate into people’s living areas [10].
However, the update frequency of government monitoring stations is once an hour, and it
is impossible to capture short-term PM2.5 concentration peaks. The data source used in this
study is provided by the LASS open source community, which has more than 1000 sensing
stations and the data update frequency is every five minutes. This study aims to provide
an immediately predicted PM2.5 concentration value in the next 30 min to 180 min. In
the face of big data and real-time challenges, cloud platforms have shown fault tolerance,
scalability and load balancing characteristics [11]. Therefore, this study tries to build all the
processes of the real-time prediction model on the cloud big data platform, and use the
advantages such as speed, flexibility and stability to solve the difficulties and challenges
encountered from servers.

Forecasting the PM2.5 level helps the public and the hospital to take precautionary
actions immediately. This study aims to use the PM2.5 sensor data provided by the open
source community Location Aware Sensing System (LASS), and use the Spark big data
computing framework and machine learning algorithms to build a real-time prediction
model, perform real-time prediction of PM2.5 concentration value in order to achieve the
purpose of PM2.5 early warning and air pollution monitoring. Short-term PM2.5 predictions
become more accurate with the increase of sensors, but short-term predictions are still
affected by many unexpected situations and limit the accuracy of the predictions [12]. The
LASS community has a huge data set, and the system can still reach an efficient level
through the calculation of big data. The quality of air pollution in Taiwan has not been
as good as expected for many years. Short-term forecasts can ensure that information
is easily distributed, and relevant decision units can use the information to formulate
response plans.

To the best of our knowledge, this is the first Big data Spark predicting solution to
deal with large-scale, high-speed and streaming problems. The main contributions of this
paper are as follows. (1) This study combines the pollutant components in different time
periods into the input variables for prediction. It is one of the few research methods used
in most PM2.5 concentration prediction studies. (2) Through different window sizes, test
which time interval is most beneficial to the prediction result. (3) The sensors used by the
LASS community are also the most widely distributed sensor project in the study. (4) To
quickly collect and process a large amount of data. Experimental results show that our
proposal outperforms the single machine learning model in terms of accuracy. Our method
also reduces the time spent in the prediction stage and the memory consumption by using
Spark platform.

The organization of the paper is as follows: Section 2 presents a Literature Review.
Section 3 describes the Framework of Proposed Spark Big Data Model and Section 4
describes the data set information that is used for experimentation and evaluation. In
Section 5, discussions of the evaluation are detailed with the results obtained. Finally, the
paper concludes with the future scope in Section 6.
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2. Literature Review
2.1. Air Pollution

Air pollution means that there are one or more pollutants in the air that are harmful to
human health and property. Common air pollutants include carbon monoxide (CO), sulfur
dioxide (SO2), nitrogen oxides (NOx), ozone (O3), particulate matter (PM), etc. Among
them, the main component that is seriously harmful to human health is fine suspended
particulates (PM2.5) [13].

PM2.5 is one of the main components of air pollution, which can carry harmful sub-
stances such as pathogenic microorganisms and chemical pollutants, deep into the alveoli,
bronchioles, and blood circulatory system, causing diseases such as pneumonia, cardio-
vascular disease and cancer, and has a significant impact on human health, thus it is
considered to be more harmful than PM10 [14]. As early as the WHO’s report on global
health risks published in 2009, urban air pollution was mentioned as the 14th leading
cause of death in 2004 [15]. In view of the direct impact of air pollution on health, many
studies have confirmed that air pollution is related to a variety of diseases. Currently
known related diseases include respiratory diseases, cardiovascular diseases, diabetes and
cancer, etc. [16–20]. Brook et al. [21] pointed out that short-term exposure to a high PM
environment will cause an increase in acute cardiovascular mortality, while long-term
exposure to a high PM environment will reduce overall life expectancy. Krämer et al. [22]
have confirmed that traffic-related air pollution is a risk factor affecting type 2 diabetes.
In recent years, studies in Taiwan have also confirmed that long-term exposure to PM2.5
can increase the risk of liver cancer [23]. In addition, related work of Air Pollution is
described below:

• Correlation of Air Pollutants

Zhang, Ni and Ni [24] used multifractal descended cross-correlation analysis (MF-
DCCA) to analyze the relationship with PM2.5 and temperature, air pressure, relative
humidity and wind speed, and found cross-correlation. Lu, Xu, Yang and Zhao [25] used
grey system correlation analysis and linear regression to explore the temporal and spatial
changes of PM2.5 in China from 1998 to 2014, and found that the concentration of PM2.5 in
China is significantly different depending on the spatial distribution. Furthermore, China’s
socio-economic and meteorological conditions have a significant impact on PM2.5. There
are also studies on the correlation analysis and short-term prediction of Beijing PM2.5 based
on data from various sources such as social media, average relative humidity, regional
average rainfall, CO, NO2 and PM10. In a correlation study, the analysis was based on the
Back Propagation Neural Network, and the results found that the average wind speed
value, social media data, CO, NO2 and PM10 five factors, and the PM2.5 concentration
value show a high degree of mathematical correlation [26].

• Air quality prediction

There are also many studies based on different machine learning methods in air quality
prediction. For example, air quality prediction using neural networks is used in the two
regions of Thessaloniki, Greece and Helsinki, Finland. They use principal component
analysis (PCA) and neural networks to select the input features of the prediction model to
achieve the purpose of predicting PM2.5 and PM10 [27]. Yao, Lu and Jiang [28] established
a PM2.5 estimation model using neural network through ground monitoring data from
March to May 2008 in northern China. The results show that the estimation efficiency of
PM2.5 daily average value based on the neural network is higher than that of the multiple
regression method. Other scholars also used the Hidden Markov Model to predict the
average daily PM2.5 concentration value in Northern California one day in advance [29].
Wang, Liu, Qin and Zhang [30] used improved support vector machines and neural
networks to predict PM10 and SO2 in Taiyuan city, China. Some scholars also use support
vector machines as prediction models, and use partial least squares to select data to predict
CO concentration [31]. Yu, Yang, Yang, Han and Move [32] use the random forest method
to predict the AQI value and have good prediction accuracy. In order to improve the
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air quality measurement problems in many developing countries that lack monitoring
stations, some studies have taken Beijing, Shanghai and Wuhan as study areas. Through
the proposed combination of good and bad social media metrics and seven meteorological
factors, and the use of Gradient Tree Boosting (GTB) machine learning methods, the value
of the city’s AQI can be inferred [33].

• Sensor of Air quality

Since professional air quality sensor stations are very large and expensive, they cannot
be built extensively and densely, which has caused many scholars to conduct studies
on low-cost miniature sensors, there is a large-scale PM2.5 sensor deployment project in
Taiwan, in cooperation with the government, the public, academic institutions etc. As of
May 2015, more than 2500 devices have been installed in Taiwan and other countries, and
the source code is open, so that people who want to contribute to the system can easily
participate, open source the acquired sensor data, and update it in real time in every five
minutes, so as to achieve a participatory urban PM2.5 monitoring system [34]. Gao et al. [35]
developed Mosaic, a low-cost mobile sensing system for urban air quality, and set up air
quality monitoring nodes on buses, increasing the range of the system to obtain a larger
range for each node, so that a small number of sensor stations can cover a wide range and
reduce costs. Related research on air pollution is summarized as shown in Table 1.

Table 1. Related studies in Air Pollution.

Field Methods Air Pollutants Authors

Variables related to
air pollution

Grey system correlation analysis,
linear regression PM2.5 Lu et al. [25]

Back Propagation Neural Network PM2.5 Ni et al. [26]

Multifractal descended
cross-correlation analysis,

(MF-DCCA)
PM2.5 Zhang et al. [24]

Air pollutant
concentration prediction

Neural Network

CO\SO2\PM10 Kurt & Oktay [6]

NO2 Russo, Raischel, & Lind [36]

PM2.5\PM10 Voukantsis et al. [27]

PM2.5 Yao et al. [28]

PM2.5 Shah et al. [37]

Hidden Markov Model
PM2.5 Dong et al. [38]

PM2.5 Sun et al. [29]

2.2. Input and Output Variables of PM2.5 Prediction Model

The variables associated with air pollution can be found in previous studies, there are
weather, traffic, air pollutants, social media, etc. Variables are described below.

• Traffic

Studies have pointed out that the number of self-use cars and scooters has increased
significantly, causing traffic air pollution to become the main component of overall air
pollution [38]. The CO, NOx and SO2 in the gas emitted by vehicles are all important
sources of PM2.5 [39]. Therefore, the increase in the number of self-use vehicles is considered
to be one of the reasons for the increase in PM2.5 concentrations [40,41]. However, the
sensors in this study did not provide traffic data. Dhyani et al. [42] used road type and road
alignment to predict PM2.5 from urban highway corridors, and Kwiecień and Szopińska [43]
combined average daily traffic (AADT), carbon monoxide emissions for every road section
and other variables to predict the degree of air pollution. Walsh [44] investigate global
progress in controlling the motor vehicle contribution.
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• Weather

Many studies mentioned that rainfall and wind direction are negatively correlated
with air pollution values [7,19,45]. Sun et al. [29] indicated that the temperature is related
to PM2.5 forecast. This study uses Temperature and Humidity as the input variables of
the PM2.5 prediction model in terms of weather variables. Pak et al. [46] used the highest
and lowest temperature of the daily into the input variables. Xing et al. [47] incorporated
mean atmospheric pressure into input variables to make predictions. Polichetti et al. [48]
also pointed out that the observed values of relative humidity and wind speed are good
indicators for predicting the concentration of PM2.5.

• PMs

Particulate Matter (PM) is one of the main indicators of air pollution, and PM2.5 is the
main component of air pollution. The main purpose of this study is to predict PM2.5, so
we selected PM10 with an aerodynamic diameter less than or equal to 10 microns, PM2.5
less than or equal to 2.5 microns and PM1 less than or equal to 1 micron are used as input
variables in the model. Furthermore, PM2.5 is used as the input and output variables in the
prediction model.

2.3. Machine Learning

Machine learning belongs to a branch of artificial intelligence. It is a data analysis
method that enables machines to automatically learn from data through algorithms. Train-
ing through a large amount of data, the machine analyzes and finds rules from it, and
improve its performance through experience, so as to obtain the ability to automatically
judge or predict.

In the study of PM2.5 concentration value prediction using machine learning methods,
it is pointed out that random forests are explanatory to the results, can show the importance
of each prediction variable, and can strike a balance between prediction accuracy and
computational cost [49]. In addition, the PM2.5 concentration value prediction is suitable
for the use of regression methods, and the ensemble model can improve the accuracy. Based
on the above, this study selects Linear regression, Gradient-boosted tree regression and
Random forest regression in Spark’s MLlib. Combine these three algorithms to perform
ensemble learning method to produce predictive model.

2.3.1. Ensemble Learning

The basic idea of ensemble learning is to combine multiple machine learning algo-
rithms. It is expected that the result of the ensemble will be better than a single machine
learning method. The goal is to train and combine different models to obtain better perfor-
mance than any single model [50]. The method is to train multiple models using machine
learning methods, and adjust all the models through weight adjustment, voting, averaging
etc., to produce more accurate results. This study will combine three machine learning
algorithms through ensemble learning to form an ensemble model as a PM2.5 concentra-
tion value prediction model. The process of ensemble learning in this study is shown in
Figure 1:
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2.3.2. Spark MLlib

Apache Spark is an open source big data computing framework developed using Scala.
It was originally developed by AMPLab of the University of California, Berkeley, was open
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sourced in 2010, and has now become a top project in the Apache Software Foundation.
In addition to the advantages of fast computing, Spark can also be flexibly written in four
programming languages such as Scale, Java, Python and R. It is also compatible with the
Hadoop platform. A variety of functions can be combined to provide a more convenient
way for development developers. The Spark has a machine learning library MLlib, which
is suitable for iterative machine learning operations, and has the characteristics of being
suitable for real-time situations. Therefore, it fits the context of this study using machine
learning algorithms for real-time prediction.

Machine Learning Library (MLlib) is Spark’s open source distributed machine learning
framework, which was developed in 2012 as part of the MLBase project [51]. It was open
sourced in September 2013 [52]. Usually machine learning algorithms need to perform a
large number of iterative operations, and the design of Spark can improve the performance
of executing multiple iterations. Because of its memory-based execution of operations, it is
naturally capable of iterative operations, which is also in line with the characteristics of
many machine learning algorithms [52]. Moreover, MLlib can be easily combined with
Spark Streaming, Spark SQL and GraphX naturally.

MLlib is a part of MLBase, including classification, clustering, regression, collaborative
filtering, feature extraction, dimension reduction and other machine learning algorithms
and tools. It mainly provides the following functions:

(1) ML Algorithms: Provide machine learning algorithms such as classification, cluster-
ing, regression, and collaborative filtering.

(2) Featurization: includes methods such as feature extraction, feature selection and
dimension reduction.

(3) Pipelines: Provide tools for constructing, evaluating and adapting ML Pipelines.
(4) Persistence: Provides the ability to persist machine learning models, which means

that machine learning models can be saved and loaded, making model development
more convenient.

(5) Utilities: Including data processing, statistics and other tools.

After Spark2.0 version, Spark’s main machine learning API has turned to the DataFrame-
based API in the spark.ml package as the main provider. Compared with the RDD-based
API, it can be combined with more functions, such as the operation of SQL, which is more
convenient. It is also more suitable for building ML Pipelines including a series of machine
learning processes such as data processing, model training and testing.

2.4. Google Cloud Platform

Cloud computing enables IT to be provided as a public service to meet the increasing
demand for information services, so it has become an important technology. Many cloud
providers have appeared to provide more convenient cloud services. At present, the main
cloud service providers are Google’s Google Cloud Platform (GCP), Microsoft’s Microsoft
Azure, Amazon’s Amazon Web Services (AWS), and so on. Google has its own data
center in Changhua Coastal Industrial Park, Taiwan, so GCP has advantages in speed,
convenience and data security for users in Taiwan. And GCP uses minutes instead of hours
to provide a more flexible pricing standard. In terms of machine learning, GCP can use
the TensorFlow architecture that has been used in many Google products such as Google
Photo Album and Google Cloud Speech to build models. TensorFlow is an open source
machine learning software library. It has libraries for many users in the field of machine
learning and artificial intelligence. Due to the large number of users, many resources can
be searched, and it is also under continuous development.

In addition, the visualization tool used in this study is PlotDB developed by Taiwan,
which provides data visualization services. It not only has basic line charts, pie charts, bar
charts, but also various special chart styles such as maps of countries and interactive charts
for users to choose. Users can also create a chart online, or view the JavaScript, HTML, and
CSS code of the chart. PlotDB also provides APIs for users to use them flexibly according
to their needs.
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3. Methodology
3.1. Spark Big Data Framework

The Spark big data Framework proposed by this study is mainly divided into Data
Collection and Processing Module, Big Data Training and Predicting Module and Data
Visualization Module. First, the data collection and processing module will collect PM2.5
prediction-related data from the open source community LASS, and perform data pre-
processing, storing it in the PostgreSQL database. Then, the big data training and predicting
module is used to train and build the PM2.5 concentration value prediction model, and
use the established prediction model to predict PM2.5 in real time. The prediction results
are passed into the data visualization module and drawn into a PM2.5 concentration value
distribution map as shown in Figure 2:
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3.1.1. Data Collection and Processing Module

The data collection and processing modules of this study are subdivided into “Data
Collection Module” and “Pre-processing Module”. In the data collection module, the Timer
mechanism periodically calls the data collection function according to the frequency re-
quired for data collection. Timer calls the PM2.5 data collection functions every five minutes,
so the real-time collection of research data can be carried out through the Timer mechanism.

In the pre-processing module, sequentially data cleaning from the original data, and
data is processed for Missing Value, Outlier, and Noise. Then, the processed data is saved
into the PostgreSQL database for other processes. The data collection and processing
module diagram of this research is shown in Figure 3:
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3.1.2. Big Data Training and Predicting Module

In the Spark big data training module, the pre-processing the collected historical data
of PM2.5 air quality to generate the output and input variables of the model is conducted
first, and then the model is built for training and testing stage. In the model training
stage, using the machine learning library MLlib provided by Spark, three different machine
learning methods, Linear Regression (LR), Random Forest (RF), and Gradient Boosting
Decision Tree (GBT) are chosen. Further, ensemble learning for model training and testing
is used, combined with three different weights of the three algorithms to form an ensemble
model. The weights of the three machine learning methods are adjusted through the value
of the evaluation index R2. The detailed weighting method of the ensemble model and the
pseudo code of the prediction method are shown in Figure 4 below.
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Finally, in the Spark big data prediction module architecture, feature engineering
steps generate the data, and then are input into the ensemble model for real-time PM2.5
concentration prediction. The air quality machine training and prediction flowchart of this
study is shown in Figure 5:
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3.1.3. Data Visualization Module

The PM2.5 concentration value prediction results of each monitoring station generated
by the big data training and prediction module are used to visualize the PM2.5 concentration
value of each region using the data visualization service provided by PlotDB. The data
visualization module diagram of this research is shown in Figure 6:
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4. Experimental Design
4.1. Data Source
4.1.1. Open Source Community

The source of the data collected in this study is the Open Source Community, named
LASS (Location Aware Sensing System), an open source and non-profit community that
has deployed more than 2000 devices in Taiwan and is currently the largest monitoring
PM2.5 deployment project [11]. Thousands of sensor stations can provide higher-density air
quality data, which can complement the official Air Quality Index (AQI) values provided
by the government. The PM2.5 related information of this study is obtained from the LASS
open source community. The sensor type of LASS is EDIMAX AIRBOX, and the frequency
is once every 5 min, the sensor data has 10 variables including date, time, device id, PM2.5
concentration value, PM10 concentration value, PM1 concentration value, temperature,
relative humidity, equipment longitude and latitude, etc. The date, time and device id are
string data, and the others are numeric data.

4.1.2. I/O Variables and Prediction Model

The prediction model of this study uses 30 min as a time period to predict the PM2.5
concentration value of six time periods in the next 3 h and that is y(t + 1), y(t + 2), . . . , y(t + 6).
The input and output variables used by the prediction model are shown in Table 2. The
model input variables are five variables: PM2.5, PM10, PM1, Temperature and Humidity,
{x1(t), x2(t), x3(t), x4(t), x5(t)}, collected from the LASS open source community. Moreover,
considering the impact of time delay, this study also includes the time in advance variable
{xi(t − 1), xi(t − 2), xi(t − 3), i = 1, 2, . . . , 5}, a total of 15 in advance variables. Thus, there
are 20 input variables in the Model(t) prediction model, and the output variable is the
PM2.5 concentration predicted value y(t + 1). Variables of the prediction models are shown
in Table 2, and six prediction models in Figure 7 are represented as:

Model(t): y(t + 1) = f [Xi(t)]
Model(t + 1): y(t + 2) = f [Xi(t), xy(t + 1)]
Model(t + 2): y(t + 3) = f [Xi(t), xy(t + 1), xy(t + 2)]
Model(t + 3): y(t + 4) = f [Xi(t), xy(t + 1), xy(t + 2), xy(t + 3)]
Model(t + 4): y(t + 5) = f [Xi(t), xy(t + 1), xy(t + 2), xy(t + 3), xy(t + 4)]
Model(t + 5): y(t + 6) = f [Xi(t), xy(t + 1), xy(t + 2), xy(t + 3), xy(t + 4), xy(t + 5)]
where Xi(t) = {xi(t − 1), xi(t − 2), xi(t − 3), i = 1, 2, . . . , 5}
and xy(t + j) = y(t + j), j = 1, 2, . . . , 5
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Table 2. Variables of the prediction models.

Data Source Input/Output
Variables Contents Authors

LASS Community

y(t + 1) PM2.5(t + 1)

Voukantsis et al. [27];
Sun et al. [29];

Polichetti et al. [48];
Li et al. [7]

y(t + 2) PM2.5(t + 2)

y(t + 3) PM2.5(t + 3)

y(t + 4) PM2.5(t + 4)

y(t + 5) PM2.5(t + 5)

y(t + 6) PM2.5(t + 6)

xy(t + 1) PM2.5 (t + 1)

xy(t + 2) PM2.5(t + 2)

xy(t + 3) PM2.5(t + 3)

xy(t + 4) PM2.5(t + 4)

xy(t + 5) PM2.5(t + 5)

x1(t) PM2.5(t)

x1(t − 1) PM2.5(t − 1)

x1(t − 2) PM2.5(t − 2)

x1(t − 3) PM2.5(t − 3)

x2(t) PM10(t)

Voukantsis et al. [27];
Polichetti et al. [48];

Li et al. [7]

x2(t − 1) PM10(t − 1)

x2(t − 2) PM10(t − 2)

x2(t − 3) PM10(t − 3)

x3(t) PM1(t)

Buczyńska et al. [53];
Kwon, Jeong, Park, Kim,

Cho, [54]

x3(t − 1) PM1(t − 1)

x3(t − 2) PM1(t − 2)

x3(t − 3) PM1(t − 3)

x4(t) Temp.(t)

Voukantsis et al. [27];
Sun et al. [29]

x4(t − 1) Temp.(t − 1)

x4(t − 2) Temp.(t − 2)

x4(t − 3) Temp.(t − 3)

x5(t) Humidity(t)

Voukantsis et al. [27];
Sun et al. [29];

Polichetti et al. [48];

x5(t − 1) Humidity(t − 1)

x5(t − 2) Humidity(t − 2)

x5(t − 3) Humidity(t − 3)
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4.2. Evaluation
4.2.1. Index of PM2.5

The evaluation of the predicted value of fine suspended particles (PM2.5) is carried
out in accordance with the fine suspended particle index comparison table provided by
the Environmental Protection Department of the Executive Yuan, Taiwan. There are four
categories of low, medium, high, and very high in the index level classification, and
they are marked in four color systems: green, yellow, red and purple. In the activity
recommendations for sensitive groups, the main sensitive groups mentioned are people
with heart, respiratory and cardiovascular diseases or the elderly. The detailed index table
is shown in Table 3:

Table 3. Index of PM2.5.

Index
Classification Low Medium, High High Very High

PM2.5
(µg/m3) 0–35 36–53 54–70 ≥71

Activity
suggestion for
General public

Can go out
normally

Can go out
normally

If feel unwell,
should consider

reducing
outdoor
activities

If feel unwell,
should reduce

outdoor
activities and

physical exertion

4.2.2. Performance Index

In order to evaluate the pros and cons of the prediction model trained by the machine
learning method, two evaluation metrics are used: Root mean squared error (RMSE) and
coefficient of determination (R-squared, R2).

(1) Root mean squared error (RMSE): is the sample standard deviation of the predicted
value and the actual value. Its value can be used to measure the difference between the
predicted value and the actual value. The smaller the value the better the prediction
performance. The calculation formula is as Equation (1):

RMSE =

√
∑n

i=1(Actuali − Predictedi)
2

n
(1)

(2) Coefficient of determination (R2): As in Equation (2), It measures the suitability of the
model to the sample value and can test the predictive ability of the model. Its value
is between 0 and 1. The closer to 1, the higher the suitability of the model, and the
closer to 0 indicates the lower the model fitness.

R2 = 1− MSE
VAR(y)(N − 1)

= 1− ∑N−1
i=0 (yi − ŷi)

2

∑N−1
i=0 (yi − y)2 (2)

4.3. Experiment

The experimental flowchart of this study is shown in Figure 8. First, collecting
the LASS community data related to PM2.5 predictions through the data collection and
processing module, and into the big data training and prediction module after data pre-
processing. The Spark computing framework and ensemble machine learning will be used
in the module to train the predictive model, and then use the testing dataset to test the
trained model. The RMSE and R2 are used to evaluate the pros and cons of the prediction
model. Then, the collected real-time data is used as the input of the predictive model,
predict the PM2.5 concentration value in the next 3 h for a total of 6 time periods, so as to
implement real-time PM2.5 concentration value prediction. Finally, in the data visualization
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module, a map of the PM2.5 concentration value distribution is generated for visualization
present. The detailed description in the flowchart is as follows:
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Pre-processing
This study uses PM2.5 sensor data collected from the LASS open source community.

The final variables selected are PM2.5, PM10, PM1, Temperature and Humidity. Data
cleaning has carried out null values and outlier data with null values will be deleted, in
terms of outlier processing. Due to occasional sensor failure, only when data of PM2.5 and
PM10 values are greater than 0 are they retained.

Sliding window size choosing
Window size determination is based on the evaluation result of training as shown in

Figure 9. The evaluation results of window size 1, 2 and 3 are shown in Table 4. Window
size 1 includes data of {Xi(t), Xi(t − 1)}, window size 2 includes data of {Xi(t), Xi(t − 1),
Xi(t − 2)} and window size 3 includes data of {Xi(t), Xi(t − 1), Xi(t − 2), Xi(t − 3)}. We can
obtain that window size 3 performs better than others in Table 4. Therefore, all the input
variables of prediction model will be chosen based on this result.
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Algorithm weight turning
The weights in the ensemble model are set by the three different algorithms through

the value of the evaluation index R2, the weighting method of the three machine learning
methods are as follows:

w(zi) = R(zi)/
3

∑
i=1

R(zi) (3)

Data visualization
This study uses the Geocoding API provided by Google to convert the latitude and

longitude. In the visualization module, the prediction results of each sensor can be mapped
to the area to which they belong. Figure 10 below shows the urban areas of various towns
in Yunlin, Taiwan. A schematic diagram of the predicted value in a certain period of time
is shown.
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5. Experimental Results and Discussion
5.1. Experimental Result

The PM2.5 concentration value prediction of this study is mainly divided into three
stages of experiment. The first stage uses the data from 18 January 2018 to 31 March 2018
to conduct model training. The second stage data from 1 April to 20 April 2018 is used
for model testing. Furthermore, the third stage is to use the data from 1 May 2018 to 31
May 2018 to make predictions. The data intervals used in the three stages are shown in
Figure 11.
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5.1.1. Model Training Results

The prediction model of PM2.5 concentration value for six periods is built using data
from 18 January 2018 to 31 March 2018. Firstly, 5,837,008 pieces of data will be used as
the training data set of the model to carry out training of the six models. In order to
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observe whether the ensemble model performance is higher than the single regression,
three algorithms of linear regression, random forest regression, gradient boost, and the
integration of ensemble are compared. The effectiveness evaluation results of the four
algorithms in PM2.5 concentration y(t + 1) value prediction from training data are shown
in Table 5 below. The results show that the integrated ensemble model is the best among
them since RMSE is the smallest and R2 is the largest.

Table 5. Evaluation results of different algorithm from training data.

Evaluation Index

Algorithm RMSE R2

linear regression 11.40 0.83
Random Forest 10.90 0.85
Gradient Boost 11.12 0.84

Ensemble 10.63 0.85

Table 6 shows the effectiveness evaluation results of six Ensemble Models after training.
Among them, the prediction model of PM2.5 concentrations after 30 min y(t + 1) is the best,
RMSE is 10.63 and R2 is 0.85, while RMSE of the six models is between 10.63 and 16.32, and
R2 is between 0.67 and 0.85.

Table 6. Evaluation results of different Ensemble Model from training data.

Evaluation Index

Time segment RMSE R2

y(t + 1) 10.63 0.85
y(t + 2) 12.18 0.81
y(t + 3) 13.41 0.77
y(t + 4) 14.77 0.73
y(t + 5) 15.46 0.70
y(t + 6) 16.32 0.67

5.1.2. Model Testing Results

At the end of the training model stage, the next step will be to predict the established
model. In this stage, 2,254,609 records will be used as testing data set from 1 April 2018
to 20 April 2018. The established prediction model will be input to predict the quality
of the actual prediction of the model. In order to observe whether the performance of
the integrated model is higher than the performance of the single model, the model
performance comparison between linear regression, random forest regression and gradient
lifting tree regression and integration is carried out in this phase also. Table 7 shows the
results of the four algorithms in predicting the effectiveness of the PM2.5 concentrations
after 30 min. The integrated ensemble model shows the best performance again on both
indicators RMSE and R2. When RMSE is smaller it is better and when R2 is larger it is better.

Table 7. Effectiveness Evaluation Results of Prediction using different algorithm.

Evaluation Index

Algorithm RMSE R2

Linear regression 9.18 0.75
Random Forest 9.38 0.73
Gradient Boost 11.82 0.58

Ensemble Model 9.14 0.75

Table 8 below shows the evaluation results of different Ensemble Model in the predic-
tion phase with different time segment from y(t + 1) to y(t + 6). The results show that the
performance of the model after 30 min y(t + 1) is the best since RMSE is 9.14, and R2 is 0.75.
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Table 8. Evaluation Results of Prediction in next 3 h.

Evaluation Index

Time segment RMSE R2

y(t + 1) 9.14 0.75
y(t + 2) 10.01 0.68
y(t + 3) 10.76 0.64
y(t + 4) 11.88 0.56
y(t + 5) 12.97 0.50
y(t + 6) 13.79 0.41

Through the training and testing results of the model in Tables 5 and 8, we can find
that the longer the estimated PM2.5 value is from the present time, the easier the input
variable is not related to it, which may be the reason for this situation.

In order to make the results more intuitive, we further drew a broken line map between
the actual value of PM2.5 concentrations and the predicted value during the period from
1 April 2018 to 20 April 2018, in order to show the predicted trend more clearly and better
compare the differences between the two. We chose Yunlin County as an example in
drawing, because the Ministry of Health and Welfare issued 105 years of the Republic
of China. In the medical statistics of civil health insurance, Yunlin County is the leading
County in the rate of chronic lower respiratory diseases per 100,000 population based on
the place of residence. Thus Yunlin County is chosen as an example of the results. The
drawing method of the broken line chart takes 30 min as a unit and calculates the average
of the actual and predicted values of all sensors located in Yunlin County within the 30-min
interval. From 1 April 2018 to 20 April 2018, there are 922 pieces of data. Finally, with
922 data points, we draw a comparison chart and regression analysis chart between the
predicted value and the actual value of PM2.5 in six time periods in Yunlin County in
Figures 12–17 as follow:
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It can be seen from the figures that the prediction model of this study has good
performance, and the predicted value of PM2.5 concentrations is almost the same as the
actual value. Among them, the Model (t) prediction model performance (R2 = 0.9616)
in Figure 11 is the closest to the actual value, and the prediction results are as expected.
As the prediction time becomes longer, the prediction performance gradually decreases.
The R2 is a measure of the model’s predictive accuracy. This effect ranges from 0 to 1
with 1 representing complete predictive accuracy. Because R2 is embraced by a variety
of disciplines, scholars must rely on a “rough” rule of thumb regarding an acceptable
R2 with 0.75, 0.50 0.25, respectively describing substantial, moderate, or weak levels of
predictive accuracy [46]. The highest R2 of the results of this study reached 0.96, which can
be considered as a high-efficiency level.

5.2. Discussion
5.2.1. Computation Time in Model Training

The experimental environment of this study is PC with Intel® Core™ i7-6700HQ CPU,
and the virtual machine is created through Oracle VM VirtualBox. The operating system is
Ubuntu 16.04.4 LTS, memory is 8 G, and the model’s training, testing, and prediction are
performed in Spark’s Local mode. Spark’s programs are written in Python. In the model
training stage, Spark’s Local mode is used in a single virtual machine, and the advantages
of Spark’s decentralized operation cannot be fully utilized because of the long training time.
The training time of the six different ensemble models in this study is shown in Table 9.
As the variable increased, the training time almost exponentially increased. One feasible
solution is to move the framework onto cloud platforms such as Google Cloud Platform
and level it in the cloud. The platform can rent virtual machines according to the actual
needs, and flexibly adjust the number of virtual machines, memory, CPU and so on. There
are also many convenient services in cloud platform. Take Google Cloud Platform as an
example, the Spark experiment of this study can be carried out by Cloud Dataproc service,
and data storage also provides Cloud Storage, Cloud Bigtable and other storage methods.
Choices are to be made dependent on needs.

Table 9. PM2.5 Predictive Model Training Time.

Time Segment Training Time (s)

y(t + 1) 1998.43
y(t + 2) 3226.57
y(t + 3) 6755.18
y(t + 4) 10,066.60
y(t + 5) 15,564.86
y(t + 6) 21,876.73

The input variables of the model are only PM2.5, PM10, PM1 temperature and relative
humidity. The variables of rainfall, wind direction and wind speed are not used in this
study, but are due to LASS Open Source Society. Data may be collected and integrated
from different sources, such as the Central Meteorological Administration (CMA) and
the Ministry of Communications (MOTC), which provide information on rainfall, wind
direction and wind speed that can be further investigated. The data update frequency of
PM2.5 sensor provided by LASS is five minutes, and the area of the station is not the same,
therefore, synchronization also needs to be considered.

5.2.2. PM2.5 Concentration Category Prediction

Nevertheless, in order to observe whether the higher and lower PM2.5 concentration
values can explain the predicted results better, classified experiments were carried out
according to the four categories of fine suspended particulate matter indicators provided
by EPD of the Executive Yuan: low, medium, high and extremely high. The first step of the
experiment is to adjust the data before and after the concentration prediction experiments,
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and convert the PM2.5 concentration values into fine ones. Spark local model was used to
classify the suspended particulate matter. Random forest classification algorithm was used
to classify the suspended particulate matter. The PM2.5 concentration category after 30 min,
i.e., y(t + 1), was predicted. The accuracy of the experimental results was used as the
evaluation index, and the results were shown in the experiment. The classification accuracy
of the lower category is the most accurate, and that of the middle, high and extremely
high categories decreases in sequence. This may be due to the decreasing proportion of
the categories in the data. After 30 min, the overall classification accuracy of the PM2.5
concentration category is 0.88. The confusion matrix of PM2.5 concentration classification is
shown in Table 10 below.

Table 10. Classification results of confusion matrix.

Predictive Value

A
ctualvalue

Low Medium High Extremely high total
Low 332,951 19,195 185 12 352,343

Medium 17,599 110,262 5318 119 133,298
High 426 10,636 15,990 328 27,380

Extremely high 310 1590 6697 669 9266
total 351,286 141,683 28,190 1128 522,287

5.2.3. Comparison with Other Studies

The main difference between this study and others is the prediction time period and
the number of Big data sensor sites. According to the comparison table in Table 11, it
can be found that other studies focus on long-term pollution predictions, while this study
focuses on short-term real-time PM2.5 concentration predictions in the next 30 to 180 min.
It is shown that this study provides more air pollution prediction information in Big data
environment than others. In terms of environmental policy research, China’s clean air plan
includes strengthening industrial emission standards, eliminating polluting factories and
strengthening automobile emission standards. This study can also use the areas with the
highest statistical concentrations to call up the industrial conditions in the vicinity of the
area. To carry out an action plan, or conduct traffic guidance to reduce emissions, and
increase the deployment of electric vehicles are also further options.

Table 11. Comparison with other studies.

Author Method Time Seg. Station Parti. Index Value

Dong et al. [38] Hidden semi-Markov Next 24 h 12 PM2.5
R2 -

RMSE -

Kurt & Oktay [6] neural networks
(GFM_NN)

3 days in advance 10 SO2, CO, PM10
R2 -

RMSE -

Kwon et al. [54] Universal kriging models Annual average 277 NO2, PM10
R2 0.46

RMSE 6.31

Pak et al. [46] CNN-LSTM model Next 24 h 384 PM2.5

RMSE 2.875

MAE 2.117

MAPE 0.037

Ours Ensemble
Big data

Next 30 to 180 min. 2000 up PM2.5
R2 0.75

RMSE 9.14
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6. Conclusions

In the past, many studies have often used a long-term single learning algorithm to
predict air pollution due to the high cost of monitoring stations and the limitation of
computing power. Although the development of deep learning has made the accuracy
rate higher in recent years, it is still a challenge in dealing with a large amount of air
pollution data simultaneously. Theoretically, our study provides a prototype of a big data
processing platform for practical use. This study collects PM2.5 sensor data from the open
source community LASS, uses the Spark big data computing framework and machine
learning methods, establishes six ensemble prediction models with a frequency of 30 min
to predict the concentration of PM2.5 in Taiwan at 30 to 180 min in advance. The open
source community LASS high-density sensor updates PM2.5 data every five minutes. These
short-term PM2.5 concentration predictions are made by using ensemble model, which
combines different time periods and other variables, and the experimental results shown
an excellent result with R2 = 0.96 in the next 30-min. Therefore, the PM2.5 concentration
value prediction framework of the Spark big data framework proposed in this study is
highly feasible, and the prediction results can be used for reference by various departments
and the public to prevent the harm caused by air pollution [48].

A large-scale public short-term air pollution prediction platform can be established for
the reference of people and decision makers. As the data source area increases, the forecast
range can also be expanded. Taiwan has been suffering from relatively poor air quality for
a long time. Practically, this system can help decision-making units to formulate a response
plan for air pollution. Such as, announcing warning areas where PM2.5 concentrations
may be excessive, thus people there can prevent outdoor exercise or stay away from that
area, etc.

The limitation in this study is the source of the model data—the open source commu-
nity LASS’s high-density sensors. The sensor has the advantages of being cheap, easy to
obtain by the public, and has a high deployment density. However, it is also impossible to
ensure that each sensor will not fail or disconnect. The source of the data comes from the
public community, and there may be data errors. However, according to the experiment of
Taiwan’s Environmental Protection Agency, the trend of concentration changes is similar
to that of the official monitoring station, and Taiwan’s open data platform also includes
relevant sensor data. Therefore, the need to ensure the integrity of the data is the difficulty
encountered in this study. In addition, the model input variables in this study only have
five variables, which do not include other variables related to PM2.5 such as rainfall, wind
direction, and traffic data. In the future, one can consider how to integrate these data into
the model in real time to improve the integrity of the PM2.5 prediction model.

In environmental and city policy research, China’s clean air actions include strengthen-
ing industrial emission standards, eliminating polluting factories and strengthening vehicle
emission standards [55,56]. This study can also use the areas with the highest statistical
concentration to investigate the industrial conditions for future action plans, or conduct
traffic guidance to reduce emissions. In addition, increasing the deployment of electric
vehicles is another option to consider.

In future, we plan to explore the performance of the techniques using other ensemble
methods and to study other factors that affect air pollution. Future work will also focus on
forecasting image-based air quality using a convolutional deep learning neural network.
Nevertheless, the machine learning strategies and AI-based detection technique of smart
air quality monitoring may lead to applications in future studies of the IoT network.

The main input variables of the prediction model of this study are only five variables,
PM2.5, PM10, PM1, temperature and relative humidity limited by sensor. If we want to
improve the prediction, one may consider including other variables such as rainfall, wind
direction and wind speed. Since the LASS open source community sensor currently does
not provide all these variables, it may be necessary to collect and integrate data from
different sources.
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The possible framework for the combination of the mobile data and station data
could contribute to air quality prediction by the data resolution of time. The accurate
spatial division and complete temporal analysis of the original data would further improve
the scientific capacity and accuracy of the prediction, in which advanced knowledge or
problem-solving abilities are required.
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