Gender Difference in the Relationships between Inflammatory Markers, Serum Uric Acid and Framingham Risk Score
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Sample
2.3. Demographic Data and Health-Related Lifestyle
2.4. Anthropometric and Blood Pressure Measurements
2.5. Measurements of Blood Lipids, UA, and Inflammatory Markers
2.6. Calculation of Framingham Risk Score
2.7. Statistical Analysis
3. Results
3.1. Descriptive Statistics of the Participants by Gender
3.2. Crude Correlations between FRS, Age, BMI, Health-Related Lifestyle, and CVD Risk Markers
3.3. Simple and Multiple Linear Regression Models for FRS in Relation to CVD Risk Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Fact Sheet: Cardiovascular Diseases (CVDs). Available online: http://www.who.int/mediacentre/factsheets/fs317/en/ (accessed on 12 December 2020).
- Taiwan Ministry of Health and Welfare. 2019 Statistics of Causes of Death. Available online: https://www.mohw.gov.tw/cp-4964-55572-2.html (accessed on 12 December 2020).
- Young, C.W.; Yang, C.F.; Kuo, C.Y. Causes of death in workers from 2003 to 2008. J. Occup. Saf. Health 2014, 22, 169–178. (In Chinese) [Google Scholar]
- Wilson, P.W.F.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’agostino, R.B.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheridan, S.; Pignone, M.; Mulrow, C. Framingham-based tools to calculate the global risk of coronary heart disease: A systematic review of tools for clinicians. J. Gen. Intern. Med. 2003, 18, 1039–1052. [Google Scholar] [CrossRef] [Green Version]
- Law, T.K.; Yan, A.T.; Gupta, A.; Kajil, M.; Tsigoulis, M.; Singh, N.; Verma, S.; Gupta, M. Primary prevention of cardiovascular disease: Global cardiovascular risk assessment and management in clinical practice. Eur. Heart J. Qual. Care Clin. Outcomes 2015, 1, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Koenig, W. High-sensitivity C-reactive protein and atherosclerotic disease: From improved risk prediction to risk-guided therapy. Int. J. Cardiol. 2013, 168, 5126–5134. [Google Scholar] [CrossRef]
- Adukauskienė, D.; Čiginskienė, A.; Adukauskaitė, A.; Pentiokinienė, D.; Šlapikas, R.; Ceponiene, I. Clinical relevance of high sensitivity C-reactive protein in cardiology. Medicina 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Fonseca, F.A.H.; Izar, M.C.D.O. High-Sensitivity C-Reactive Protein and Cardiovascular Disease Across Countries and Ethnicities. Clinics 2016, 71, 235–242. [Google Scholar] [CrossRef]
- Anrather, J.; Iadecola, C. Inflammation and Stroke: An Overview. Neurotherapeutics 2016, 13, 661–670. [Google Scholar] [CrossRef]
- Ruparelia, N.; Chai, J.T.; Fisher, E.; Choudhury, N.R.J.T.C.E.A.F.R.P. Inflammatory processes in cardiovascular disease: A route to targeted therapies. Nat. Rev. Cardiol. 2017, 14, 133–144. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., III; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.; Martínez, M.S.; Chávez, M.; Toledo, A.; Añez, R.; Torres, Y.; Apruzzese, V.; Silva, C.; Rojas, J.; Bermúdez, V. C-Reactive Protein: Clinical and Epidemiological Perspectives. Cardiol. Res. Pract. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.R.; Silva, S.O.; Soares, S.C. The Use of High Sensitivity C-Reactive Protein in Cardiovascular Disease Detection. J. Pharm. Pharm. Sci. 2018, 21, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Ammirati, E.; Moroni, F.; Pedrotti, P.; Scotti, I.; Magnoni, M.; Bozzolo, E.P.; Rimoldi, O.E.; Camici, P.G. Non-Invasive Imaging of Vascular Inflammation. Front. Immunol. 2014, 5, 399. [Google Scholar] [CrossRef] [Green Version]
- Ortega, E.; Gilabert, R.; Nuñez, I.; Cofan, M.; Sala-Vila, A.; de Groot, E.; Ros, E. White blood cell count is associated with carotid and femoral atherosclerosis. Atherosclerosis 2012, 221, 275–281. [Google Scholar] [CrossRef]
- Jee, S.H.; Park, J.Y.; Kim, H.-S.; Lee, T.Y.; Samet, J.M. White Blood Cell Count and Risk for All-Cause, Cardiovascular, and Cancer Mortality in a Cohort of Koreans. Am. J. Epidemiol. 2005, 162, 1062–1069. [Google Scholar] [CrossRef]
- Tamakoshi, K.; Toyoshima, H.; Yatsuya, H.; Matsushita, K.; Okamura, T.; Hayakawa, T.; Okayama, A.; Ueshima, H.; The NIPPON DATA90 Research Group. White Blood Cell Count and Risk of All-Cause and Cardiovascular Mortality in Nationwide Sample of Japanese Results from the NIPPON DATA90. Circ. J. 2007, 71, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Kanbay, M.; Segal, M.; Afsar, B.; Kang, D.-H.; Rodriguez-Iturbe, B.; Johnson, R.J. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart 2013, 99, 759–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.Y.; Hu, H.Y.; Chou, Y.J.; Huang, N.; Chou, Y.C.; Lee, M.S.; Li, C.P. High Serum Uric Acid Levels Are Associated with All-Cause and Cardiovascular, but Not Cancer, Mortality in Elderly Adults. J. Am. Geriatr. Soc. 2015, 63, 1829–1836. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Xu, Y.; Shao, X.; Gao, F.; Li, Y.; Hu, J. Uric Acid Produces an Inflammatory Response through Activation of NF-kappaB in the Hypothalamus: Implications for the Pathogenesis of Metabolic Disorders. Sci. Rep. 2015, 5, 12144. [Google Scholar] [CrossRef] [Green Version]
- El Din, U.A.S.; Salem, M.M.; Abdulazim, D.O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: A review. J. Adv. Res. 2017, 8, 537–548. [Google Scholar] [CrossRef]
- Kushiyama, A.; Nakatsu, Y.; Matsunaga, Y.; Yamamotoya, T.; Mori, K.; Ueda, K.; Inoue, Y.; Sakoda, H.; Fujishiro, M.; Ono, H.; et al. Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis. Mediat. Inflamm. 2016, 2016, 8603164. [Google Scholar] [CrossRef] [PubMed]
- Meisinger, C.; Koenig, W.; Baumert, J.; Doring, A. Uric acid levels are associated with all-cause and cardiovascular disease mortality independent of systemic inflammation in men from the general population: The MONICA/KORA cohort study. Arter. Thromb. Vasc. Biol. 2008, 28, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Yang, Z.; Gu, H.; Lu, S.; Shi, Q.; Xing, Y.; Li, X.; Li, R.; Ning, G.; Su, Q. Association between serum uric acid levels and cardiovascular disease in middle-aged and elderly Chinese individuals. BMC Cardiovasc. Disord. 2014, 14, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halil, M.; Yavuz, B.; Yavuz, B.B.D.; Cankurtaran, M.; DeDe, D.S.; Ulger, Z.; Barak, A.; Karabulut, E.; Aytemir, K.; Kabakci, G.; et al. Novel cardiovascular risk factors in the elderly and their correlation with the Framingham risk score. J. Cardiovasc. Med. 2008, 9, 683–687. [Google Scholar] [CrossRef]
- Nam, G.-E.; Lee, K.-S.; Park, Y.-G.; Cho, K.-H.; Lee, S.-H.; Ko, B.-J.; Kim, D.-H. An increase in serum uric acid concentrations is associated with an increase in the Framingham risk score in Korean adults. Clin. Chem. Lab. Med. 2011, 49, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; Barrett-Connor, E.; Wenger, N.K. Sex/gender differences in cardiovascular disease prevention: What a difference a decade makes. Circulation 2011, 124, 2145–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender difference in oxidative stress: A new look at the mechanisms for cardiovascular diseases. J. Cell. Mol. Med. 2017, 21, 1024–1032. [Google Scholar] [CrossRef]
- EUGenMed, Cardiovascular Clinical Study Group; Regitz-Zagrosek, V.; Oertelt-Prigione, S.; Prescott, E.; Franconi, F.; Gerdts, E.; Foryst-Ludwig, A.; Maas, A.H.; Kautzky-Willer, A.; Knappe-Wegner, D. Gender in cardiovascular diseases: Impact on clinical manifestations, management, and outcomes. Eur. Heart J. 2016, 37, 24–34. [Google Scholar] [PubMed] [Green Version]
- Lin, W.; Hang, C.-M.; Yang, H.-C.; Hung, M.-H. 2005-2008 Nutrition and Health Survey in Taiwan: The nutrition knowledge, attitude and behavior of 19–64 year old adults. Asia Pac. J. Clin. Nutr. 2011, 20, 309–318. [Google Scholar]
- Felix-Redondo, F.J.; Fernández-Bergés, D.; Cobos, P.; Ramírez, B.; JF, P.C.; Mera, L. Prevalence alcohol consumption and cardiovascular risk factors in an Extremadura health area. Hermex study. Aten. Primaria 2012, 44, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, M.; Freeman, M.K.; Fleming, T.D.; Robinson, M.; Dwyer-Lindgren, L.; Thomson, B.; Wollum, A.; Sanman, E.; Wulf, S.; Lopez, A.D.; et al. Smoking Prevalence and Cigarette Consumption in 187 Countries, 1980–2012. JAMA 2014, 311, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Takenouchi, Y.; Kobayashi, T.; Matsumoto, T.; Kamata, K. Gender differences in age-related endothelial function in the murine aorta. Atherosclerosis 2009, 206, 397–404. [Google Scholar] [CrossRef]
- Kamper, E.; Chatzigeorgiou, A.; Tsimpoukidi, O.; Kamper, M.; Dalla, C.; Pitychoutis, P.; Papadopoulou-Daifoti, Z. Sex differences in oxidant/antioxidant balance under a chronic mild stress regime. Physiol. Behav. 2009, 98, 215–222. [Google Scholar] [CrossRef]
- O’Brien, E.; Asmar, R.; Beilin, L.; Imai, Y.; Mancia, G.; Mengden, T.; Myers, M.; Padfield, P.; Palatini, P.; Parati, G.; et al. Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement. J. Hypertens. 2005, 23, 697–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Cholesterol Education Program Expert Panel on Detection; Treatment of High Blood Cholesterol. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wu, C.-H.; Liu, L.-K.; Chou, R.-H.; Kuo, C.-S.; Huang, P.-H.; Chen, L.-K.; Lin, S.-J. Association between serum uric acid and cardiovascular risk in nonhypertensive and nondiabetic individuals: The Taiwan I-Lan Longitudinal Aging Study. Sci. Rep. 2018, 8, 5234. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-J.; Choi, J.-S.; Kim, K.-M.; Joo, N.-S.; Lee, S.-H.; Kim, K.-N. Combined Effect of Serum Gamma-glutamyltransferase and Uric Acid on Framingham Risk Score. Arch. Med. Res. 2014, 45, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Boyko, E.J. Effects of menopause and hormone replacement therapy on the associations of hyperuricemia with mortality. Atherosclerosis 2013, 226, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reslan, O.M.; Khalil, R.A. Vascular effects of estrogenic menopausal hormone therapy. Rev. Recent Clin. Trials 2012, 7, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ding, X.; Li, J.; Wu, Z.; Wang, Y.; He, H.; Yang, Z.; Wu, J.; Wang, Y.; Xie, D. White blood cell count: An independent predictor of coronary heart disease risk in middle-aged and elderly population with hyperuricemia. Medicine 2018, 97, e13729. [Google Scholar] [CrossRef]
- Orakzai, S.H.; Orakzai, R.H.; Nasir, K.; Carvalho, J.A.; Blumenthal, R.S.; Santos, R.D. Relationship between White Blood Cell Count and Framingham Risk Score in Asymptomatic Men. Arch. Med. Res. 2007, 38, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Kounis, N.G.; Soufras, G.D.; Tsigkas, G.; Hahalis, G. White Blood Cell Counts, Leukocyte Ratios, and Eosinophils as Inflammatory Markers in Patients with Coronary Artery Disease. Clin. Appl. Thromb. 2015, 21, 139–143. [Google Scholar] [CrossRef]
- Cushman, M.; Arnold, A.M.; Psaty, B.M.; Manolio, T.A.; Kuller, L.H.; Burke, G.L.; Polak, J.F.; Tracy, R.P. C-reactive protein and the 10-year incidence of coronary heart disease in older men and women: The cardiovascular health study. Circulation 2005, 112, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Shahin, Y.; Hatfield, J.; Chetter, I. C-reactive protein and the Framingham coronary risk score in patients newly diagnosed with intermittent claudication: A prospective study. Vasc. Endovasc. Surg. 2012, 46, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-M.; An, J. Cytokines, Inflammation, and Pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, D.C.; Dhillon, B.; Yan, H.; Szmitko, P.E.; Verma, S. Adipokines: Molecular links between obesity and atheroslcerosis. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H2031–H2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellulu, M.S.; Patimah, I.; Khaza’Ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Lumeng, C.N. Innate immune activation in obesity. Mol. Asp. Med. 2013, 34, 12–29. [Google Scholar] [CrossRef] [Green Version]
- Geissmann, F.; Manz, M.G.; Jung, S.; Sieweke, M.; Merad, M.; Ley, K. Development of Monocytes, Macrophages, and Dendritic Cells. Science 2010, 327, 656–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables 1 | Total n = 404 | Male n = 202 | Female n = 202 | p 2 |
---|---|---|---|---|
Age (y) | 39.5 ± 9.0 | 37.6 ± 9.2 | 41.4 ± 8.3 | <0.001 |
BMI (kg/m2) | 23.6 ± 3.6 | 23.4 ± 3.4 | 23.8 ± 3.8 | 0.363 |
Smoking | ||||
With | 71 (17.6) | 66 (32.7) | 5 (2.5) | <0.001 |
Without | 333 (82.4) | 136 (67.3) | 197 (97.5) | |
Alcohol | ||||
With | 118 (29.2) | 90 (44.6) | 28 (13.9) | <0.001 |
Without | 286 (70.8) | 112 (55.4) | 174 (86.1) | |
Nutrition behavior score | 2.4 ± 0.4 | 2.3 ± 0.4 | 2.5 ± 0.4 | <0.001 |
Exercise behavior score | 1.7 ± 0.5 | 1.7 ± 0.5 | 1.7 ± 0.4 | 0.725 |
Total cholesterol (mg/dL) | 193.6 ± 36.1 | 190.2 ± 34.7 | 197.1 ± 37.3 | 0.055 |
HDL-C (mg/dL) | 57.5 ± 16.6 | 53.9 ± 11.7 | 61.0 ± 13.4 | <0.001 |
Systolic BP (mmHg) | 123.3 ± 16.6 | 126.5 ± 14.9 | 120.2 ± 17.6 | <0.001 |
FRS (%) | 1.7 ± 3.2 | 3.0 ± 4.0 | 0.3 ± 0.7 | <0.001 |
hsCRP (mg/L) | 1.3 ± 2.2 | 1.4 ± 2.7 | 1.3 ± 1.6 | 0.461 |
WBC (103 cells/µL) | 6.8 ± 1.8 | 6.9 ± 1.7 | 6.7 ± 1.9 | 0.207 |
Serum UA (mg/dL) | 5.8 ± 1.5 | 6.6 ± 1.7 | 5.1 ± 1.3 | <0.001 |
Variables 1 | FRS | 2 | Age | 2 | BMI | 2 | Smoking | 2 | Alcohol | 2 | Nutrition | 2 | Exercise | 2 | hsCRP | 2 | WBC | 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FRS (%) | -- | |||||||||||||||||
Age (years) | 0.603 | *** | -- | * | ||||||||||||||
BMI (kg/m2) | 0.173 | * | 0.161 | -- | ||||||||||||||
Smoking | 0.295 | *** | −0.177 | * | −0.081 | -- | ||||||||||||
Alcohol | 0.123 | −0.035 | 0.112 | 0.247 | ** | -- | ||||||||||||
Nutrition | 0.149 | * | 0.236 | ** | 0.129 | −0.044 | 0.083 | -- | ||||||||||
Exercise | 0.187 | ** | 0.259 | *** | −0.004 | −0.047 | 0.047 | 0.349 | *** | -- | ||||||||
hsCRP (mg/L) | 0.134 | −0.012 | 0.337 | *** | 0.128 | 0.015 | 0.083 | −0.041 | -- | |||||||||
WBC (103 cells/µL) | 0.199 | ** | −0.001 | 0.236 | ** | 0.242 | ** | 0.118 | −0.096 | −0.050 | 0.319 | *** | -- | |||||
Serum UA (mg/dL) | 0.034 | 0.240 | ** | 0.294 | *** | 0.016 | 0.157 | * | 0.016 | 0.027 | 0.040 | 0.114 |
Variables 1 | FRS | 2 | Age | 2 | BMI | 2 | Smoking | 2 | Alcohol | 2 | Nutrition | 2 | Exercise | 2 | hsCRP | 2 | WBC | 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FRS (%) | -- | |||||||||||||||||
Age (years) | 0.642 | *** | -- | |||||||||||||||
BMI (kg/m2) | 0.081 | −0.017 | -- | |||||||||||||||
Smoking | 0.014 | −0.226 | ** | 0.181 | * | -- | ||||||||||||
Alcohol | −0.012 | −0.039 | 0.172 | * | 0.021 | -- | ||||||||||||
Nutrition | −0.041 | −0.002 | −0.083 | −0.084 | * | 0.092 | -- | |||||||||||
Exercise | 0.128 | 0.117 | 0-.055 | −0.007 | −0.076 | 0.183 | ** | -- | ||||||||||
hsCRP (mg/L) | 0.115 | 0-.015 | 0.478 | *** | 0.145 | * | 0.049 | −0.109 | −0.059 | -- | ||||||||
WBC (103 cells/µL) | −0.037 | −0.213 | ** | 0.384 | *** | −0.007 | −0.019 | 0.057 | −0.023 | 0.344 | *** | -- | ||||||
Serum UA (mg/dL) | 0.179 | * | 0.165 | * | 0.318 | *** | 0.032 | 0.129 | −0.005 | 0.084 | 0.119 | 0.114 |
FRS (%) 2,4 (Separate Analysis) | FRS (%) 3,4 (Simultaneous Analysis) | |||||||
---|---|---|---|---|---|---|---|---|
Variables 1 | B | β | p | 95.0% CI for B | B | β | p | 95.0% CI for B |
(Constant) | −9.479 | <0.001 | (−11.762, −7.196) | |||||
Gender | 2.653 | 0.419 | <0.001 | (2.089, 3.218) | 2.316 | 0.366 | <0.001 | (1.755, 2.878) |
Age (years) | 0.129 | 0.365 | <0.001 | (0.097, 0.161) | 0.196 | 0.554 | <0.001 | (0.169, 0.222) |
BMI (kg/m2) | 0.081 | 0.093 | 0.062 | (−0.004, 0.166) | 0.025 | 0.029 | 0.485 | (−0.046, 0.096) |
Smoking | 3.307 | 0.397 | <0.001 | (2.558, 4.056) | 2.905 | 0.349 | <0.001 | (2.248, 3.562) |
Alcohol | 1.508 | 0.229 | <0.001 | (0.878, 2.137) | 0.144 | 0.022 | 0.569 | (−0.353, 0.641) |
Nutrition behavior score | −0.034 | −0.005 | 0.924 | (−0.734, 0.666) | 0.156 | 0.022 | 0.559 | (−0.369, 0.682) |
Exercise behavior score | 0.860 | 0.134 | 0.007 | (0.234, 1.485) | 0.294 | 0.046 | 0.210 | (−0.167, 0.755) |
hsCRP (mg/L) | 0.184 | 0.127 | 0.011 | (0.043, 0.324) | −0.057 | −0.039 | 0.604 | (−0.272, 0.158) |
WBC (103 cells/µL) | 0.250 | 0.141 | 0.004 | (0.078, 0.422) | 0.185 | 0.104 | 0.043 | (0.006, 0.364) |
Serum UA (mg/dL) | 0.538 | 0.251 | <0.001 | (0.335, 0.742) | −0.194 | −0.091 | 0.131 | (−0.446, 0.058) |
Gender × hsCRP 5 | 0.143 | 0.085 | 0.244 | (−0.098, 0.385) | ||||
Gender × WBC 5 | 0.013 | 0.005 | 0.923 | (−0.254, 0.280) | ||||
Gender × Serum UA 5 | 0.551 | 0.172 | 0.002 | (0.201, 0.901) | ||||
Male | ||||||||
(Constant) | −11.391 | <0.001 | (−14.678, −8.103) | |||||
Age (years) | 0.313 | 0.715 | <0.001 | (0.267, 0.359) | ||||
BMI (kg/m2) | 0.044 | 0.037 | 0.470 | (−0.075, 0.163) | ||||
Smoking | 3.586 | 0.419 | <0.001 | (2.751, 4.420) | ||||
Alcohol | 0.104 | 0.014 | 0.780 | (−0.626, 0.833) | ||||
Nutrition behavior score | −0.162 | −0.018 | 0.730 | (−1.087, 0.762) | ||||
Exercise behavior score | 0.164 | 0.022 | 0.673 | (−0.601, 0.928) | ||||
Serum UA (mg/dL) | 0.583 | 0.186 | <0.001 | (0.259, 0.908) | ||||
Female | ||||||||
(Constant) | −2.034 | <0.001 | (−2.819, −1.249) | |||||
Age (years) | 0.052 | 0.662 | <0.001 | (0.043, 0.060) | ||||
BMI (kg/m2) | 0.009 | 0.053 | 0.366 | (−0.011, 0.028) | ||||
Smoking | 0.639 | 0.153 | 0.007 | (0.175, 1.102) | ||||
Alcohol | −0.024 | −0.013 | 0.817 | (−0.229, 0.181) | ||||
Nutrition behavior score | −0.047 | −0.031 | 0.579 | (−0.213, 0.119) | ||||
Exercise behavior score | 0.081 | 0.055 | 0.317 | (−0.078, 0.240) | ||||
Serum UA (mg/dL) | 0.024 | 0.045 | 0.434 | (−0.036, 0.083) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.-H.; Li, R.-H.; Huang, S.-L.; Sia, H.-K.; Yu, C.-H.; Tang, F.-C. Gender Difference in the Relationships between Inflammatory Markers, Serum Uric Acid and Framingham Risk Score. Int. J. Environ. Res. Public Health 2021, 18, 7103. https://doi.org/10.3390/ijerph18137103
Huang J-H, Li R-H, Huang S-L, Sia H-K, Yu C-H, Tang F-C. Gender Difference in the Relationships between Inflammatory Markers, Serum Uric Acid and Framingham Risk Score. International Journal of Environmental Research and Public Health. 2021; 18(13):7103. https://doi.org/10.3390/ijerph18137103
Chicago/Turabian StyleHuang, Jui-Hua, Ren-Hau Li, Shu-Ling Huang, Hon-Ke Sia, Chao-Hung Yu, and Feng-Cheng Tang. 2021. "Gender Difference in the Relationships between Inflammatory Markers, Serum Uric Acid and Framingham Risk Score" International Journal of Environmental Research and Public Health 18, no. 13: 7103. https://doi.org/10.3390/ijerph18137103
APA StyleHuang, J. -H., Li, R. -H., Huang, S. -L., Sia, H. -K., Yu, C. -H., & Tang, F. -C. (2021). Gender Difference in the Relationships between Inflammatory Markers, Serum Uric Acid and Framingham Risk Score. International Journal of Environmental Research and Public Health, 18(13), 7103. https://doi.org/10.3390/ijerph18137103