The Influence of Traffic-Related Air Pollution (TRAP) in Primary Schools and Residential Proximity to Traffic Sources on Histone H3 Level in Selected Malaysian Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Study Population
2.3. Questionnaires
2.4. Measurements of TRAP in Schools
2.5. Gravimetric and Reflectometric Analysis of BC in Schools
2.6. Saliva Collection and Processing
2.7. Histone Extraction and Histone Modification Analysis
2.8. Statistical Analyses
2.9. Quality Control
3. Results and Discussion
3.1. Background Information
3.2. Estimation of Residential Proximity to Traffic Sources
3.3. Concentrations of Air Pollutants in Schools
3.4. The Trend of Air Pollutants in Nearby Continuous Air Quality Monitoring (CAQM) Stations
3.5. Level of Histone H3 Modification
3.6. Relationships between Children’s Mode of Transport to Schools and Histone H3 Level
3.7. Relationships between Respiratory Symptoms and Histone H3 Level
3.8. Correlations between TRAP Concentrations and Histone H3 Levels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leclercq, B.; Platel, A.; Antherieu, S.; Alleman, L.Y.; Hardy, E.M.; Perdrix, E.; Grova, N.; Riffault, V.; Appenzeller, B.M.; Happillon, M.; et al. Genetic and Epigenetic Alterations in Normal and Sensitive COPD-Diseased Human Bronchial Epithelial Cells Repeatedly Exposed to Air Pollution-Derived PM2.5. Environ. Pollut. 2017, 230, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Jin, Y.; Liu, X.; Ye, H.; Zhu, Z.; Zhang, Y.; Wang, T.; Xu, Y. Dose- and Time- Effect Responses of DNA Methylation and Histone H3K9 Acetylation Changes Induced by Traffic-Related Air Pollution. Sci. Rep. 2017, 7, 43737. [Google Scholar] [CrossRef] [PubMed]
- Hisamuddin, N.H.; Jalaludin, J.; Yusof, A.N.; Tualeka, A.R. Genotoxic Effects of Exposure to Urban Traffic Related Air Pollutants on Children in Klang Valley, Malaysia. Aerosol Air Qual. Res. 2020, 20, 2614–2623. [Google Scholar] [CrossRef]
- Suhaimi, N.F.; Jalaludin, J.; Abu Bakar, S. Deoxyribonucleic Acid (DNA) Methylation in Children Exposed to Air Pollution: A Possible Mechanism Underlying Respiratory Health Effects Development. Rev. Environ. Health 2021, 36, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Rider, C.F.; Carlsten, C. Air Pollution and DNA Methylation: Effects of Exposure in Humans. Clin. Epigenet. 2019, 11, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegseth, M.N.; Oftedal, B.M.; Höper, A.C.; Aminoff, A.L.; Thomassen, M.R.; Svendsen, M.V.; Fell, A.K.M. Self-Reported Traffic-Related Air Pollution and Respiratory Symptoms among Adults in An Area with Modest Levels of Traffic. PLoS ONE 2019, 14, e0226221. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.-J.; Shon, C.; Min, K.-D.; Kim, H.-C.; Leem, J.-H.; Kwon, H.-J.; Hong, S.; Kim, K.; Kim, S.-Y. Association between Exposure to Traffic-Related Air Pollution and Prevalence of Allergic Diseases in Children, Seoul, Korea. Biomed. Res. Int. 2017, 2017, 4216107. [Google Scholar] [CrossRef]
- Sharavanan, V.J.; Sivaramakrishnan, M.; Sivarajasekar, N.; Senthilrani, N.; Kothandan, R.; Dhakal, N.; Sivamani, S.; Show, P.L.; Awual, M.R.; Naushad, M. Pollutants Inducing Epigenetic Changes and Diseases. Environ. Chem. Lett. 2020, 18, 325–343. [Google Scholar] [CrossRef]
- Zheng, Y.; Sanchez-Guerra, M.; Zhang, Z.; Joyce, B.T.; Zhong, J.; Kresovich, J.K.; Liu, L.; Zhang, W.; Gao, T.; Chang, D.; et al. Traffic-Derived Particulate Matter Exposure and Histone H3 Modification: A Repeated Measures Study. Environ. Res. 2017, 153, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, L.; Carugno, M.; Bollati, V. Particulate Matter Exposure Shapes DNA Methylation through the Lifespan. Clin. Epigenet. 2019, 11, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarigiannis, D.A. The Exposome: A New Tool for Improved Health Risk Assessment. In Management of Emerging Public Health Issues and Risks: Multidisciplinary Approaches to the Changing Environment; Academic Press: Cambridge, MA, USA, 2019; pp. xxiii–xlv. ISBN 9780128132913. [Google Scholar]
- Lu, C.; Jain, S.U.; Hoelper, D.; Bechet, D.; Rosalynn, C.; Ran, L.; Murphy, D.; Venneti, S.; Hameed, M.; Bruce, R. Histone H3K36 Mutations Promote Sarcomagenesis through Altered Histone Methylation Landscape. Science 2016, 352, 844–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, D.; Khade, B.; Pandya, R.; Gupta, S. A Novel Method for Isolation of Histones from Serum and Its Implications in Therapeutics and Prognosis of Solid Tumours. Clin. Epigenet. 2017, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauer, M.; Reynolds, C.; Hystad, P. Traffic-Related Air Pollution and Health in Canada. CMAJ 2013, 185, 1557–1558. [Google Scholar] [CrossRef] [Green Version]
- Sopian, N.A.; Jalaludin, J.; Abu Bakar, S.; Hamedon, T.R.; Latif, M.T. Exposure to Particulate PAHs on Potential Genotoxicity and Cancer Risk among School Children Living Near the Petrochemical Industry. Int. J. Environ. Res. Public Health 2021, 18, 2575. [Google Scholar] [CrossRef] [PubMed]
- Jalaludin, J.; Syed Noh, S.N.; Suhaimi, N.F.; Md Akim, A. Tumor Necrosis Factor-Alpha as Biomarkers of Exposure to Indoor Pollutants among Primary School Children in Klang Valley. Am. J. Appl. Sci. 2014, 11, 1616–1630. [Google Scholar] [CrossRef]
- Lemeshow, S.; Hosmer, D.W., Jr.; Klar, J.; Lwanga, S.K. Adequacy of Sample Size in Health Studies; World Health Organization: Chichester, UK, 1990; ISBN 0471925179. [Google Scholar]
- Jalaludin, J.; Hashim, Z.; Taib, N.M.; Lubis, S.; Hashim, J.H. Comparison on the Influence of Residential Environment to Asthma Attacks among Children in Kuala Lumpur and Terengganu, Malaysia. Malays. J. Community Health 2002, 8, 51–62. [Google Scholar]
- Yang Razali, N.Y.; Latif, M.T.; Dominick, D.; Mohamad, N.; Sulaiman, F.R.; Srithawirat, T. Concentration of Particulate Matter, CO and CO2 in Selected Schools in Malaysia. Build. Environ. 2015, 87, 108–116. [Google Scholar] [CrossRef]
- Quincey, P. A Relationship between Black Smoke Index and Black Carbon Concentration. Atmos. Environ. 2007, 41, 7964–7968. [Google Scholar] [CrossRef]
- Ismail, I.; Jalaludin, J.; Abu Bakar, S.; Hisamuddin, N.; Suhaimi, N. Association of Traffic-Related Air Pollution (TRAP) with DNA Damage and Respiratory Health Symptoms among Primary School Children in Selangor. Asian J. Atmos. Environ. 2019, 13, 106–116. [Google Scholar] [CrossRef]
- Kamaruddin, A.S.; Jalaludin, J.; Hamedon, T.R.; Hisamuddin, N.H. FeNO as a Biomarker for Airway Inflammation Due to Exposure to Air Pollutants among School Children Nearby Industrial Areas in Terengganu. Pertanika J. Sci. Technol. 2019, 27, 589–600. [Google Scholar]
- Othman, M.; Latif, M.T.; Matsumi, Y. The Exposure of Children to PM2.5 and Dust in Indoor and Outdoor School Classrooms in Kuala Lumpur City Centre. Ecotoxicol. Environ. Saf. 2019, 170, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Public Works Department Malaysia. Statistik Jalan Malaysia Edisi 2019; Abd Kasim, M.E., Ismail, M.I., Abdullah, N.S., Hamzah, H.F., Abdullah, F., Muniandy, V., Abd Razak, M.N., Razak, M.A., Hashim, Z., Eds.; Cawangan Senggara Fasiliti Jalan, Ibu Pejabat JKR Malaysia: Kuala Lumpur, Malaysia, 2019.
- Huang, S.; Lawrence, J.; Kang, C.M.; Li, J.; Martins, M.; Vokonas, P.; Gold, D.R.; Schwartz, J.; Coull, B.A.; Koutrakis, P. Road Proximity Influences Indoor Exposures to Ambient Fine Particle Mass and Components. Environ. Pollut. 2018, 243, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Dorans, K.S.; Wilker, E.H.; Li, W.; Rice, M.B.; Ljungman, P.L.; Schwartz, J.; Coull, B.A.; Kloog, I.; Koutrakis, P.; D’Agostino, R.B.; et al. Residential Proximity to Major Roads, Exposure to Fine Particulate Matter and Aortic Calcium: The Framingham Heart Study, A Cohort Study. BMJ Open 2017, 7, 13455. [Google Scholar] [CrossRef]
- Amil, N.; Latif, M.T.; Khan, M.F.; Mohamad, M. Seasonal Variability of PM2.5 Composition and Sources in the Klang Valley Urban-Industrial Environment. Atmos. Chem. Phys. 2016, 16, 5357–5381. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, N.; Latif, M.T.; Khan, M.F. Source Apportionment and Health Risk Assessment of PM10 in A Naturally Ventilated School in a Tropical Environment. Ecotoxicol. Environ. Saf. 2016, 124, 351–362. [Google Scholar] [CrossRef]
- Urman, R.; Eckel, S.; Deng, H.; Berhane, K.; Avol, E.; Lurmann, F.; McConnell, R.; Gilliland, F. Risk Effects of Near-Roadway Pollutants and Asthma Status on Bronchitic Symptoms in Children. Environ. Epidemiol. 2018, 2, e012. [Google Scholar] [CrossRef]
- Mohd Shafie, S.H.; Mahmud, M. Public Perception on Traffic Pollution in Federal Territory of Kuala Lumpur, Malaysia. Plan. Malays. 2017, 15, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Wendt Hess, J.; Bachler, G.; Momin, F.; Sexton, K. Assessing Agreement in Exposure Classification between Proximity-Based Metrics and Air Monitoring Data in Epidemiology Studies of Unconventional Resource Development. Int. J. Environ. Res. Public Health 2019, 16, 3055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamaruddin, A.S.; Jalaludin, J.; Choo, C.P. Indoor Air Quality and Its Association with Respiratory Health among Malay Preschool Children in Shah Alam and Hulu Langat. Adv. Environ. Biol. 2015, 9, 17–26. [Google Scholar]
- Abdul Rahman, S.; Hamzah, M.S.; Elias, S.; Ashifa, N.; Salim, A.; Hashim, A.; Shukor, S.; Wood, A.K. A Long Term Study on Characterization and Source Apportionment of Particulate Pollution in Klang Valley, Kuala Lumpur. Aerosol Air Qual. Res. 2015, 15, 2291–2304. [Google Scholar] [CrossRef]
- Dons, E.; Temmerman, P.; Van Poppel, M.; Bellemans, T.; Wets, G.; Int Panis, L. Street Characteristics and Traffic Factors Determining Road Users’ Exposure to Black Carbon. Sci. Total Environ. 2013, 447, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Janssen, N.A.H.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; van Bree, L.; ten Brink, H.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Brunekreef, B.; et al. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.; Dai, J.; Liu, R.; Zhai, Y.; Yue, D.; Hu, Q. Integrated Assessment of Health Risk and Climate Effects of Black Carbon in The Pearl River Delta Region, China. Environ. Res. 2019, 176, 108522. [Google Scholar] [CrossRef] [PubMed]
- Pani, S.K.; Wang, S.H.; Lin, N.H.; Chantara, S.; Lee, C.-T.; Thepnuan, D. Black Carbon over an Urban Atmosphere in Northern Peninsular Southeast Asia: Characteristics, Source Apportionment, and Associated Health Risks. Environ. Pollut. 2020, 259, 113871. [Google Scholar] [CrossRef] [PubMed]
- Sulong, N.A.; Latif, M.T.; Khan, M.F.; Amil, N.; Ashfold, M.J.; Abdul Wahab, M.I.; Chan, K.M.; Sahani, M. Source Apportionment and Health Risk Assessment among Specific Age Groups During Haze and Non-Haze Episodes in Kuala Lumpur, Malaysia. Sci. Total Environ. 2017, 601–602, 556–570. [Google Scholar] [CrossRef]
- Deng, Q.; Deng, L.; Miao, Y.; Guo, X.; Li, Y. Particle Deposition in The Human Lung: Health Implications of Particulate Matter from Different Sources. Environ. Res. 2019, 169, 237–245. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Zhang, T.; Wang, H.; Peng, L.; Zhou, L. Effect of NF-κB Signal Pathway on Mucus Secretion Induced by Atmospheric PM2.5 in Asthmatic Rats. Ecotoxicol. Environ. Saf. 2020, 190, 110094. [Google Scholar] [CrossRef]
- Lippmann, M. Regional Deposition of Particles in the Human Respiratory Tract. In Comprehensive Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 213–232. [Google Scholar]
- Hassanpour Matikolaei, S.A.H.; Jamshidi, H.; Samimi, A. Characterizing the Effect of Traffic Density on Ambient CO, NO2, and PM2.5 in Tehran, Iran: An Hourly Land-Use Regression Model. Transp. Lett. 2019, 11, 436–446. [Google Scholar] [CrossRef]
- Nathan, C.; Cunningham-Bussel, A. Beyond Oxidative Stress: An Immunologist’s Guide to Reactive Oxygen Species. Nat. Rev. Immunol. 2013, 13, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Petit, P.C.; Fine, D.H.; Vásquez, G.B.; Gamero, L.; Slaughter, M.S.; Dasse, K.A. The Pathophysiology of Nitrogen Dioxide during Inhaled Nitric Oxide Therapy. ASAIO J. 2017, 63, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Gaffin, J.M.; Hauptman, M.; Lai, P.; Petty, C.R.; Wolfson, J.M.; Kang, C.-M.; Sheehan, W.J.; Baxi, S.N.; Bartnikas, L.M.; Permaul, P.; et al. Nitrogen Dioxide Exposure in School Classrooms Is Associated with Airflow Obstruction in Students with Asthma. J. Allergy Clin. Immunol. 2017, 139, AB174. [Google Scholar] [CrossRef]
- Sopian, N.A.; Jalaludin, J.; Tengku Mayusi, T.Z.A.; Latif, M.T. Increased Chromosomal Damage among Children in Proximity to Industrial Zone. Aerosol Air Qual. Res. 2020, 20, 944–955. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T. Pollution Characteristics, Sources, and Health Risk Assessments of Urban Road Dust in Kuala Lumpur City. Environ. Sci. Pollut. Res. 2020, 27, 11227–11245. [Google Scholar] [CrossRef]
- Orellano, P.; Reynoso, J.; Quaranta, N. Short-Term Exposure to Sulphur Dioxide (SO2) and All-Cause and Respiratory Mortality: A Systematic Review and Meta-Analysis. Environ. Int. 2021, 150, 106434. [Google Scholar] [CrossRef]
- Mohamad Fandi, N.F.; Jalaludin, J.; Latif, M.T.; Abd Hamid, H.H.; Awang, M.F. BTEX Exposure Assessment and Inhalation Health Risks to Traffic Policemen in The Klang Valley Region, Malaysia. Aerosol Air Qual. Res. 2020, 20, 1922–1937. [Google Scholar] [CrossRef]
- Ahamad, F.; Latif, M.T.; Tang, R.; Juneng, L.; Dominick, D.; Juahir, H. Variation of Surface Ozone Exceedance around Klang Valley, Malaysia. Atmos. Res. 2014, 139, 116–127. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Y.; Fang, Z. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Clark, T.E.; Undem, B.J. Ozone Activates Airway Nerves via The Selective Stimulation of TRPA1 Ion Channels. J. Physiol. 2010, 588, 423–433. [Google Scholar] [CrossRef]
- Awang, M.F.; Jalaludin, J.; Abu Bakar, S.; Latif, M.T.; Mohamad Fandi, N.F.; Abdul Hamid, H.H. Assessment of Micronucleus Frequency and Respiratory Health Symptoms among Traffic Policemen Exposed to BTEX and PM2.5 in Klang Valley, Malaysia. J. Teknol. 2020, 82, 73–82. [Google Scholar]
- Schulze, F.; Gao, X.; Virzonis, D.; Damiati, S.; Schneider, M.R.; Kodzius, R. Air Quality Effects on Human Health and Approaches for Its Assessment through Microfluidic Chips. Genes 2017, 8, 244. [Google Scholar] [CrossRef]
- Mohammadyan, M.; Alizadeh-Larimi, A.; Etemadinejad, S.; Latif, M.T.; Heibati, B.; Yetilmezsoy, K.; Abdul-Wahab, A. Particulate Air Pollution at Schools: Indoor-Outdoor Relationship and Determinants of Indoor Concentrations. Aerosol Air Qual. Res. 2017, 17, 857–864. [Google Scholar] [CrossRef]
- Sofwan, N.M.; Latif, M.T. Characteristics of The Real-Driving Emissions from Gasoline Passenger Vehicles in the Kuala Lumpur Urban Environment. Atmos. Pollut. Res. 2021, 2, 306–315. [Google Scholar] [CrossRef]
- Chong, H.S.; Park, Y.; Kwon, S.; Hong, Y. Analysis of Real Driving Gaseous Emissions from Light-Duty Diesel Vehicles. Transp. Res. Part D Transp. Environ. 2018, 65, 485–499. [Google Scholar] [CrossRef]
- Rose, J.J.; Xu, Q.; Wang, L.; Gladwin, M.T. Shining a Light on Carbon Monoxide Poisoning. Am. J. Respir. Crit. Care Med. 2015, 192, 1145–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vliet, E.D.S.; Kinney, P.L.; Owusu-Agyei, S.; Schluger, N.W.; Ae-Ngibise, K.A.; Whyatt, R.M.; Jack, D.W.; Agyei, O.; Chillrud, S.N.; Boamah, E.A.; et al. Current Respiratory Symptoms and Risk Factors in Pregnant Women Cooking with Biomass Fuels in Rural Ghana. Environ. Int. 2019, 124, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.L.A.; Azid, A.; Khalit, S.I.; Juahir, H.; Samsudin, M.S. Air Pollution Index Trend Analysis in Malaysia, 2010–2015. Pol. J. Environ. Stud. 2018, 27, 801–808. [Google Scholar] [CrossRef]
- Muhammad, N.S.; Jalaludin, J.; Sundrasegaran, S. Exposure to Respirable Dust (PM10) and Respiratory Health among Traffic Policemen in Selangor. Adv. Environ. Biol. 2014, 8, 199–206. [Google Scholar]
- Abdul Rahman, S.; Hamzah, M.S.; Wood, A.K.; Elias, M.S.; Salim, N.A.A.; Sanuri, E. Sources Apportionment of Fine and Coarse Aerosol in Klang Valley, Kuala Lumpur using Positive Matrix Factorization. Atmos. Pollut. Res. 2011, 2, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Sulong, N.A.; Latif, M.T.; Sahani, M.; Khan, M.F.; Fadzil, M.F.; Tahir, N.M.; Mohamad, N.; Sakai, N.; Fujii, Y.; Othman, M.; et al. Distribution, Sources and Potential Health Risks of Polycyclic Aromatic Hydrocarbons (PAHs) in PM2.5 Collected During Different Monsoon Seasons and Haze Episode in Kuala Lumpur. Chemosphere 2019, 219, 1–14. [Google Scholar] [CrossRef]
- Abrams, S.T.; Zhang, N.; Manson, J.; Liu, T.; Dart, C.; Baluwa, F.; Wang, S.S.; Brohi, K.; Kipar, A.; Yu, W.; et al. Circulating Histones are Mediators of Trauma-Associated Lung Injury. Am. J. Respir. Crit. Care Med. 2013, 187, 160–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhamdi, Y.; Abrams, S.T.; Cheng, Z.; Jing, S.; Su, D.; Liu, Z.; Lane, S.; Welters, I.; Wang, G.; Toh, C.-H. Circulating Histones Are Major Mediators of Cardiac Injury in Patients With Sepsis. Crit. Care Med. 2015, 43, 2094–2103. [Google Scholar] [CrossRef] [PubMed]
- Azeez, O.S.; Pradhan, B.; Shafri, H.Z.M. Vehicular CO Emission Prediction using Support Vector Regression Model and GIS. Sustainability 2018, 10, 3434. [Google Scholar] [CrossRef] [Green Version]
- Both, A.F.; Westerdahl, D.; Fruin, S.; Haryanto, B.; Marshall, J.D. Exposure to Carbon Monoxide, Fine Particle Mass, and Ultrafine Particle Number in Jakarta, Indonesia: Effect of Commute Mode. Sci. Total Environ. 2013, 443, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Abdul Manan, M.M.; Várhelyi, A.; Çelik, A.K.; Hashim, H.H. Road Characteristics and Environment Factors Associated with Motorcycle Fatal Crashes in Malaysia. IATSS Res. 2018, 42, 207–220. [Google Scholar] [CrossRef]
- Suhaimi, N.F.; Jalaludin, J.; Mohd Juhari, M.A. The Impact of Traffic-Related Air Pollution on Lung Function Status and Respiratory Symptoms among Children in Klang Valley, Malaysia. Int. J. Environ. Health Res. 2020, 1–12. [Google Scholar] [CrossRef]
- Gawda, A.; Majka, G.; Nowak, B.; Marcinkiewicz, J. Air Pollution, Oxidative Stress, and Exacerbation of Autoimmune Diseases. Cent. Eur. J. Immunol. 2017, 42, 305–312. [Google Scholar] [CrossRef]
- Niu, Y.; Desmarais, T.L.; Tong, Z.; Yao, Y.; Costa, M. Oxidative Stress Alters Global Histone Modification and DNA Methylation. Free Radic. Biol. Med. 2015, 82, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Biagini Myers, J.M.; Brandt, E.B.; Brokamp, C.; Ryan, P.H.; Khurana Hershey, G.K. Air Pollution, Epigenetics, and Asthma. Allergy Asthma Clin. Immunol. 2016, 12, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, E.-J.; Song, W.-J. Environmental Triggers for Chronic Cough. Asia Pac. Allergy 2019, 9, e16. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zong, D.; Zhou, Z.; Chen, P. Pulmonary Diseases and Epigenetics. In Medical Epigenetics; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 221–242. ISBN 9780128032404. [Google Scholar]
- Jirtle, R.L.; Skinner, M.K. Environmental Epigenomics and Disease Susceptibility. Nat. Rev. Genet. 2007, 8, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, A.; Bunkar, N.; Aglawe, A.; Pandey, K.C.; Tiwari, R.; Chaudhury, K.; Goryacheva, I.Y.; Mishra, P.K. Epigenetic Biomarkers for Risk Assessment of Particulate Matter Associated Lung Cancer. Curr. Drug Targets 2018, 19, 1127–1147. [Google Scholar] [CrossRef] [PubMed]
- Kietzmann, T.; Petry, A.; Shvetsova, A.; Gerhold, J.M.; Görlach, A. The Epigenetic Landscape Related to Reactive Oxygen Species Formation in The Cardiovascular System. Br. J. Pharmacol. 2017, 174, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Vrijens, K.; Trippas, A.J.; Lefebvre, W.; Vanpoucke, C.; Penders, J.; Janssen, B.G.; Nawrot, T.S. Association of Prenatal Exposure to Ambient Air Pollution With Circulating Histone Levels in Maternal Cord Blood. JAMA Netw. Open 2020, 3, e205156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, L.; Xing, X.; Li, D.; Gao, C.; He, Z.; Li, J.; Zhu, X.; Xiao, X.; Wang, S.; et al. Specific Histone Modifications Were Associated with the PAH-Induced DNA Damage Response in Coke Oven Workers. Toxicol. Res. 2016, 5, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
Variables | HT (N = 124) | LT (N = 124) | χ2 | p |
---|---|---|---|---|
Number (%) | ||||
Age | ||||
7–9 years | 59 (47.6) | 63 (50.8) | 0.26 | 0.611 |
10–11 years | 65 (52.4) | 61 (49.2) | ||
Gender | ||||
Boy | 65 (52.4) | 53 (42.7) | 2.33 | 0.127 |
Girl | 59 (47.6) | 71 (57.3) | ||
Types of Residence | ||||
Landed | 53 (42.7) | 112 (90.3) | 63.04 | <0.001 * |
Strata | 71 (57.3) | 12 (9.7) | ||
Distance of Residence from Highways | ||||
<500 m | 77 (62.1) | 7 (5.6) | 88.21 | <0.001 * |
≥500 m | 47 (37.9) | 117 (94.4) | ||
Distance of Residence from Main Roads | ||||
<500 m | 106 (85.5) | 107 (86.3) | 0.033 | 0.855 |
≥500 m | 18 (14.5) | 17 (13.7) | ||
Distance of Residence from Factories § | ||||
<5 km | 12 (9.7) | 4 (3.2) | 4.28 | 0.070 |
≥5 km | 112 (90.3) | 120 (96.8) |
Variables | HT (N = 124) | LT (N = 124) | χ2 | p |
---|---|---|---|---|
Number (%) | ||||
Weekdays | ||||
Car | ||||
<100 vehicles/day | 53 (42.7) | 91 (73.4) | 23.91 | <0.001 * |
≥100 vehicles/day | 71 (57.3) | 33 (26.6) | ||
Bus § | ||||
<100 vehicles/day | 109 (87.9) | 122 (98.4) | 9.09 | 0.003 |
≥100 vehicles/day | 15 (12.1) | 2 (1.6) | ||
Lorry | ||||
<100 vehicles/day | 111 (89.5) | 118 (95.2) | 2.79 | 0.095 |
≥100 vehicles/day | 13 (10.5) | 6 (4.8) | ||
Motorcycle | ||||
<100 vehicles/day | 59 (47.6) | 85 (68.5) | 11.19 | 0.001 * |
≥100 vehicles/day | 65 (52.4) | 39 (31.5) | ||
Weekends | ||||
Car | ||||
<100 vehicles/day | 69 (55.6) | 89 (71.8) | 6.98 | 0.008 * |
≥100 vehicles/day | 55 (44.4) | 35 (28.2) | ||
Bus § | ||||
<100 vehicles/day | 109 (87.9) | 122 (98.4) | 9.09 | 0.003 |
≥100 vehicles/day | 15 (12.1) | 2 (1.6) | ||
Lorry § | ||||
<100 vehicles/day | 112 (90.3) | 120 (96.8) | 3.27 | 0.070 |
≥100 vehicles/day | 12 (9.7) | 4 (3.2) | ||
Motorcycle | ||||
<100 vehicles/day | 71 (57.3) | 88 (71.0) | 5.07 | 0.024 * |
≥100 vehicles/day | 53 (42.7) | 36 (29.0) |
Variables | Duration (minute) | High Histone H3 Level, N (%) | OR | 95% CI | |||
---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | ||||
Comparisons | |||||||
Car (N = 94) | 2 | 60 | 14.7 | 12.7 | 48 (51.1) | ||
Bus (N = 8) | 5 | 30 | 15.9 | 8.3 | 6 (75.0) | ||
Walk (N = 22) | 2 | 10 | 6.9 | 3.4 | 15 (68.2) | ||
Motorcycle (N = 124) | 1 | 30 | 10.0 | 6.1 | 50 (40.3) | ||
Associations | |||||||
Open (N = 146) | 54 (52.9) | 1.40 | 0.84–2.33 | ||||
Closed (N = 102) | 65 (44.5) |
Respiratory Symptoms | Histone H3 OR (95% CI) |
---|---|
Cough | 3.0 (1.39–6.58) * |
Phlegm | 2.8 (0.96–8.07) |
Wheezing | 2.1 (0.69–6.30) |
Chest Tightness | 1.3 (0.30–6.14) § |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhaimi, N.F.; Jalaludin, J.; Abu Bakar, S. The Influence of Traffic-Related Air Pollution (TRAP) in Primary Schools and Residential Proximity to Traffic Sources on Histone H3 Level in Selected Malaysian Children. Int. J. Environ. Res. Public Health 2021, 18, 7995. https://doi.org/10.3390/ijerph18157995
Suhaimi NF, Jalaludin J, Abu Bakar S. The Influence of Traffic-Related Air Pollution (TRAP) in Primary Schools and Residential Proximity to Traffic Sources on Histone H3 Level in Selected Malaysian Children. International Journal of Environmental Research and Public Health. 2021; 18(15):7995. https://doi.org/10.3390/ijerph18157995
Chicago/Turabian StyleSuhaimi, Nur Faseeha, Juliana Jalaludin, and Suhaili Abu Bakar. 2021. "The Influence of Traffic-Related Air Pollution (TRAP) in Primary Schools and Residential Proximity to Traffic Sources on Histone H3 Level in Selected Malaysian Children" International Journal of Environmental Research and Public Health 18, no. 15: 7995. https://doi.org/10.3390/ijerph18157995
APA StyleSuhaimi, N. F., Jalaludin, J., & Abu Bakar, S. (2021). The Influence of Traffic-Related Air Pollution (TRAP) in Primary Schools and Residential Proximity to Traffic Sources on Histone H3 Level in Selected Malaysian Children. International Journal of Environmental Research and Public Health, 18(15), 7995. https://doi.org/10.3390/ijerph18157995