Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration
Abstract
:1. Introduction
2. Methodology
2.1. Step 1. Identify Environmental Problems and Social Demands
2.2. Step 2. Link Problems and Demands to Relevant Ecosystem Services
2.3. Step 3. Establish Ecosystem Services Supply–Demand Matrix
2.4. Step 4. Assess ES Supply–Demand Amount and Type (Mis)Matches
2.4.1. Step 4-1. Assess City ES Supply–Demand (Mis)Matches Based on the ES Amount Index
2.4.2. Step 4-2. Assess City ES Supply–Demand (Mis)Matches Based on the ES Type Index
2.4.3. Step 4-3. Rating ES Supply–Demand (Mis)Matches
2.5. Step 5. Classify Cities by Double-Indices Assessment
2.6. Step 6. Design Differential Land Use Management Strategies
3. Case Study
3.1. Identify Environmental Problems and Demands
3.1.1. Study Area
3.1.2. Identify Environmental Problems and Demands
Year | Level | Official Document | Social Demands | Related Ecosystem Services | Reference |
---|---|---|---|---|---|
2016 | National | Development Plan of the Yangtze River Delta Urban Agglomeration (2016–2030) | Ecological/Environmental Integration; Resource Utilization; Cultural Integration | Regulating Services, e.g., Global Climate Regulation, Air Quality Regulation; Provisioning Services, e.g., Crops; Cultural Services, e.g., Recreation & Tourism, Knowledge System | [59] |
2010 | National | Regional Plan for the Yangtze River Delta Region (2009–2020) | Ecological/Environmental Integration; Resource Utilization; Cultural Integration | Regulating Services, e.g., Air Quality Regulation; Provisioning Services, e.g., Freshwater; Cultural Services, e.g., Recreation & Tourism | [60] |
2014 | Regional | Comprehensive Ecological Risk Prevention: Natural Disaster Factors and Risk Assessment in the Yangtze River Delta Region | Environmental Problem Solving: Global Warming; Green Effect; Flooding | Global Climate Regulation; Local Climate Regulation; Water Flow Regulation, Natural Hazard Regulation | [61] |
2008–2017 | Regional | The Health Status Report of Taihu Lake | Environmental Problem Solving: Flooding; Water and Soil Loss; Water Pollution | Water Purification, Freshwater, Aquaculture | [62] |
2013–2018 | Regional | Annual Report of Flood Control and Typhoon Prevention in Taihu Lake Basin | Environmental Problem Solving: Flooding; Water and Soil Loss | Water Flow Regulation, Natural Hazard Regulation, Erosion Regulation | [63] |
2020 | Municipal | Annual Report on the Resources and Environment of Shanghai | Environmental Problem Solving: Air Pollution; Water Pollution | Air Quality Regulation; Water Purification, Freshwater | [50] |
3.2. Link Problems and Demands to Relevant Ecosystem Services
3.3. Establish Ecosystem Services Supply–Demand Matrix
3.4. Assess ES Supply–Demand Amount and Type (Mis)Matches
3.4.1. Assess City ES Supply–Demand (Mis)Matches Based on the ES Amount Index
3.4.2. Assess City ES Supply–Demand (Mis)Matches Based on the Type Index
3.5. Classify Cities by Double-Indices Assessment
3.6. Design Differential Land Use Management Strategies
- (1)
- For the cities matched in both amount and type (Figure 6)—‘medium match, high match’, ‘medium match, medium match’, and ‘match, medium match’ in RS, ‘match, high match’ in PS, and ‘medium match, high match’ in CS—ecosystem conservation policies, e.g., Ecological Redline Policy, should be the main measurement of these cities for RS, PS, and CS management. These cities can be potential multiple ES providing areas for cities with mismatches in both amount and type. For example, forest, wetland, and other natural ecosystem conservation should be strengthened in the transboundary areas of cities, and the implementation of joint construction and co-protection of land use management should be carried out.
- (2)
- For the cities matched in amount but mismatched in type (Figure 6)—‘match, medium mismatch’ in RS, ‘match, medium mismatch’ in PS, and ‘match, medium mismatch’ and ‘match, mismatch’ in CS, i.e., these cities with total balance in ES but mismatches in multiple types of ES—it is suggested to carry out policies that can promote the synergy of multiple ES simultaneously. For example, these cities should carry out the PS supply capacity of cropland ecosystem by ‘Prime Farmland Policy’, as well as the ‘Grain for Green’ policy [38] for increasing the RS supply simultaneously, based on studies of ES multifunction management;
- (3)
- For the cities mismatched in both amount and type (Figure 6)— ‘medium mismatch, medium mismatch’ in RS—it is suggested that urban sprawl and population control policy should be emphasized, especially for PS management, since reducing demands of ES may be more effective if multiple ES supply may be hard to meet the demand. External environmental cooperation among different-level cities should also be carried out, e.g., payment for ES in RS and PS management, and tourism cooperation in CS management, since the demand of multiple ES of these types of cities cannot be satisfied by ES supply itself;
- (4)
- Cities mismatched in amount but matched in type (Figure 6)—‘medium mismatch, match’ in RS, ‘medium mismatch, medium match’ in PS, i.e., cities with a total imbalance in ES but matches in multiple types of ES—should focus on demand control strategies for specific ES.
4. Discussion
4.1. ES Framework
4.2. Double-Indices Assessment
4.3. Contributions and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, J.; Meng, X.; Zhou, X.; Yi, B.; Liu, M.; Xiang, W.-N. A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: A case study in China’s Yangtze River Delta region. J. Clean. Prod. 2017, 141, 1040–1050. [Google Scholar] [CrossRef]
- Yanez Soria, K.; Ribeiro Palacios, M.; Morales Gomez, C.A. Governance and policy limitations for sustainable urban land planning. The case of Mexico. J. Environ. Manag. 2020, 259, 109575. [Google Scholar] [CrossRef]
- Oliveira, G.; Vidal, D.; Ferraz, M. Urban Lifestyles and Consumption Patterns; Springer: Berlin, Germany, 2020; pp. 851–860. [Google Scholar]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Vidal, D.G.; Fernandes, C.O.; Viterbo, L.M.F.; Vilaca, H.; Barros, N.; Maia, R.L. Combining an evaluation grid application to assess ecosystem services of urban green spaces and a socioeconomic spatial analysis. Int. J. Sustain. Dev. World Ecol. 2021, 28, 291–302. [Google Scholar] [CrossRef]
- Cai, W.; Jiang, W.; Cai, Y. Developing an Ecosystem Services-Based Approach for Land Use Planning. Land 2021, 10, 419. [Google Scholar] [CrossRef]
- Kusi, K.K.; Khattabi, A.; Mhammdi, N.; Lahssini, S. Prospective evaluation of the impact of land use change on ecosystem services in the Ourika watershed, Morocco. Land Use Policy 2020, 97, 104796. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Potschin, M.B.; Haines-Young, R.H. Ecosystem services: Exploring a geographical perspective. Prog. Phys. Geogr. 2011, 35, 575–594. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands–Concepts for Spatial Localisation, Indication and Quantification. Landsc. Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Wei, H.; Fan, W.; Wang, X.; Lu, N.; Dong, X.; Zhao, Y.; Ya, X.; Zhao, Y. Integrating supply and social demand in ecosystem services assessment: A review. Ecosyst. Serv. 2017, 25, 15–27. [Google Scholar] [CrossRef]
- Geijzendorffer, I.R.; Martín-López, B.; Roche, P.K. Improving the identification of mismatches in ecosystem services assessments. Ecol. Indic. 2015, 52, 320–331. [Google Scholar] [CrossRef]
- Mashizi, A.K.; Sharafatmandrad, M. Investigating tradeoffs between supply, use and demand of ecosystem services and their effective drivers for sustainable environmental management. J. Environ. Manag. 2021, 289, 112534. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Jiang, W. Ecosystem services research in China: A critical review. Ecosyst. Serv. 2017, 26, 10–16. [Google Scholar] [CrossRef]
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.; Porfirio, L.; et al. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecol. Model. 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Ndong, G.O.; Therond, O.; Cousin, I. Analysis of relationships between ecosystem services: A generic classification and review of the literature. Ecosyst. Serv. 2020, 43, 101120. [Google Scholar] [CrossRef]
- Campagne, C.S.; Roche, P.; Müller, F.; Burkhard, B. Ten years of ecosystem services matrix: Review of a (r)evolution. One Ecosyst. 2020, 5, e51103. [Google Scholar] [CrossRef]
- Mehring, M.; Ott, E.; Hummel, D. Ecosystem services supply and demand assessment: Why social-ecological dynamics matter. Ecosyst. Serv. 2018, 30, 124–125. [Google Scholar] [CrossRef]
- Schirpke, U.; Candiago, S.; Vigl, L.E.; Jager, H.; Labadini, A.; Marsoner, T.; Meisch, C.; Tasser, E.; Tappeiner, U. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Sci. Total Environ. 2019, 651, 928–941. [Google Scholar] [CrossRef] [PubMed]
- Uthes, S.; Matzdorf, B. Budgeting for government-financed PES: Does ecosystem service demand equal ecosystem service supply? Ecosyst. Serv. 2016, 17, 255–264. [Google Scholar] [CrossRef]
- Vrebos, D.; Staes, J.; Vandenbroucke, T.; D’Haeyer, T.; Johnston, R.; Muhumuza, M.; Kasabeke, C.; Meire, P. Mapping ecosystem service flows with land cover scoring maps for data-scarce regions. Ecosyst. Serv. 2015, 13, 28–40. [Google Scholar] [CrossRef]
- Feurer, M.; Zaehringer, J.G.; Heinimann, A.; Naing, S.M.; Blaser, J.; Celio, E. Quantifying local ecosystem service outcomes by modelling their supply, demand and flow in Myanmar’s forest frontier landscape. J. Land Use Sci. 2021, 16, 55–93. [Google Scholar] [CrossRef]
- Martinez-Lopez, J.; Bagstad, K.J.; Balbi, S.; Magrach, A.; Voigt, B.; Athanasiadis, L.; Pascual, M.; Willcock, S.; Villa, F. Towards globally customizable ecosystem service models. Sci. Total Environ. 2019, 650, 2325–2336. [Google Scholar] [CrossRef]
- Shen, J.; Du, S.; Huang, Q.; Yin, J.; Zhang, M.; Wen, J.; Gao, J. Mapping the city-scale supply and demand of ecosystem flood regulation services-A case study in Shanghai. Ecol. Indic. 2019, 106, 105544. [Google Scholar] [CrossRef]
- Li, F.; Guo, S.; Li, D.; Li, X.; Li, J.; Xie, S. A multi-criteria spatial approach for mapping urban ecosystem services demand. Ecol. Indic. 2020, 112, 106119. [Google Scholar] [CrossRef]
- Paudyal, K.; Baral, H.; Burkhard, B.; Bhandari, S.P.; Keenan, R.J. Participatory assessment and mapping of ecosystem services in a data-poor region: Case study of community-managed forests in central Nepal. Ecosyst. Serv. 2015, 13, 81–92. [Google Scholar] [CrossRef]
- Peña, L.; Casado-Arzuaga, I.; Onaindia, M. Mapping recreation supply and demand using an ecological and a social evaluation approach. Ecosyst. Serv. 2015, 13, 108–118. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for spatial-temporal comparisons of ecosystem service status between regions: A case study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Bryan, B.A.; Ye, Y.; Zhang, J.; Connor, J.D. Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosyst. Serv. 2018, 32, 144–157. [Google Scholar] [CrossRef]
- Goldenberg, R.; Kalantari, Z.; Cvetkovic, V.; Mortberg, U.; Deal, B.; Destouni, G. Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Sci. Total Environ. 2017, 593, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Baro, F.; Haase, D.; Gomez-Baggethun, E.; Frantzeskaki, N. Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities. Ecol. Indic. 2015, 55, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Bai, Y.; Chen, J.; Alatalo, J.M.; Xu, X.; Liu, G.; Wang, Q. Land management to reconcile ecosystem services supply and demand mismatches-A case study in Shanghai municipality, China. Land Degrad. Dev. 2020, 31, 2684–2699. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, H.; Ou, W.; Guo, J. A land-cover-based approach to assessing ecosystem services supply and demand dynamics in the rapidly urbanizing Yangtze River Delta region. Land Use Policy 2018, 72, 250–258. [Google Scholar] [CrossRef]
- Sun, W.; Li, D.; Wang, X.; Li, R.; Li, K.; Xie, Y. Exploring the scale effects, trade-offs and driving forces of the mismatch of ecosystem services. Ecol. Indic. 2019, 103, 617–629. [Google Scholar] [CrossRef]
- Qiao, X.; Gu, Y.; Zou, C.; Xu, D.; Wang, L.; Ye, X.; Yang, Y.; Huang, X. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Maragno, D.; Gaglio, M.; Robbi, M.; Appiotti, F.; Fano, E.A.; Gissi, E. Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows. Ecol. Model. 2018, 386, 1–10. [Google Scholar] [CrossRef]
- Fugiel, A.; Burchart-Korol, D.; Czaplicka-Kolarz, K.; Smolinski, A. Environmental impact and damage categories caused by air pollution emissions from mining and quarrying sectors of European countries. J. Clean. Prod. 2017, 143, 159–168. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin-Young, M. Revision of the Common International Classification for Ecosystem Services (CICES V5.1): A Policy Brief. One Ecosyst. 2018, 3, e27108. [Google Scholar] [CrossRef]
- Almeida, C.M.V.B.; Mariano, M.V.; Agostinho, F.; Liu, G.Y.; Yang, Z.F.; Coscieme, L.; Giannetti, B.F. Comparing costs and supply of supporting and regulating services provided by urban parks at different spatial scales. Ecosyst. Serv. 2018, 30, 236–247. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; Polasky, S.; Hawthorne, P.L.; O’Connor, P.; Wang, L.; Li, R.; Xiao, Y.; Wu, T.; Ouyang, Z. Ecosystem restoration on Hainan Island: Can we optimize for enhancing regulating services and poverty alleviation? Environ. Res. Lett. 2020, 15, 084039. [Google Scholar] [CrossRef]
- Kamiyama, C.; Hashimoto, S.; Kohsaka, R.; Saito, O. Non-market food provisioning services via homegardens and communal sharing in satoyama socio-ecological production landscapes on Japan’s Noto peninsula. Ecosyst. Serv. 2016, 17, 185–196. [Google Scholar] [CrossRef]
- Herrero-Jauregui, C.; Arnaiz-Schmitz, C.; Herrera, L.; Smart, S.M.; Montes, C.; Pineda, F.D.; Fe Schmitz, M. Aligning landscape structure with ecosystem services along an urban-rural gradient. Trade-offs and transitions towards cultural services. Landsc. Ecol. 2019, 34, 1525–1545. [Google Scholar] [CrossRef]
- Jarvis, D.; Stoeckl, N.; Liu, H.B. New methods for valuing, and for identifying spatial variations, in cultural services: A case study of the Great Barrier Reef. Ecosyst. Serv. 2017, 24, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Gibbs, D.; Zhang, L.; Ferrier, G.; Cai, Y. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze River Delta Region, China. J. Environ. Manag. 2017, 191, 258–267. [Google Scholar] [CrossRef]
- Kroll, F.; Mueller, F.; Haase, D.; Fohrer, N. Rural-urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Lin, M.; Lin, T.; Sun, C.; Jones, L.; Sui, J.; Zhao, Y.; Liu, J.; Xing, L.; Ye, H.; Zhang, G.; et al. Using the Eco-Erosion Index to assess regional ecological stress due to urbanization—A case study in the Yangtze River Delta urban agglomeration. Ecol. Indic. 2020, 111, 106028. [Google Scholar] [CrossRef]
- Zhou, F.; Hu, J. Annual Report on Resources and Environment of Shanghai (2020); Social Sciences Academic Press(CHINA): Shanghai, China, 2020. [Google Scholar]
- Cai, W.; Wu, T.; Jiang, W.; Peng, W.; Cai, Y. Integrating Ecosystem Services Supply-Demand and Spatial Relationships for Intercity Cooperation: A Case Study of the Yangtze River Delta. Sustainability 2020, 12, 4131. [Google Scholar] [CrossRef]
- Nedkov, S.; Burkhard, B. Flood regulating ecosystem services—Mapping supply and demand, in the Etropole municipality, Bulgaria. Ecol. Indic. 2012, 21, 67–79. [Google Scholar] [CrossRef]
- Kandulu, J.M.; MacDonald, D.H.; Dandy, G.; Marchi, A. Ecosystem Service Impacts of Urban Water Supply and Demand Management. Water Resour. Manag. 2017, 31, 4785–4799. [Google Scholar] [CrossRef]
- Parsa, V.A.; Salehi, E.; Yavari, A.R.; van Bodegom, P.M. An improved method for assessing mismatches between supply and demand in urban regulating ecosystem services: A case study in Tabriz, Iran. PLoS ONE 2019, 14, e0220750. [Google Scholar]
- Li, J.H.; Fang, W.; Wang, T.; Qureshi, S.; Alatalo, J.M.; Bai, Y. Correlations between Socioeconomic Drivers and Indicators of Urban Expansion: Evidence from the Heavily Urbanised Shanghai Metropolitan Area, China. Sustainability 2017, 9, 1199. [Google Scholar] [CrossRef] [Green Version]
- Shu, H.; Xiong, P.-p. Reallocation planning of urban industrial land for structure optimization and emission reduction: A practical analysis of urban agglomeration in China’s Yangtze River Delta. Land Use Policy 2019, 81, 604–623. [Google Scholar] [CrossRef]
- Peng, W.T.; Liu, W.Q.; Cai, W.B.; Wang, X.; Huang, Z.; Wu, C.Z. Evaluation of ecosystem cultural services of urban protected areas based on public participation GIS (PPGIS): A case study of Gongqing Forest Park in Shanghai, China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2019, 30, 439–448. [Google Scholar]
- He, S.; Su, Y.; Shahtahmassebi, A.R.; Huang, L.; Zhou, M.; Gan, M.; Deng, J.; Zhao, G.; Wang, K. Assessing and mapping cultural ecosystem services supply, demand and flow of farmlands in the Hangzhou metropolitan area, China. Sci. Total Environ. 2019, 692, 756–768. [Google Scholar] [CrossRef] [PubMed]
- DPYRDUA, Development Plan of the Yangtze River Delta Urban Agglomeration (2016–2030). State Council of the PRC. 2016. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201606/W020190905497826154295.pdf (accessed on 29 July 2021).
- RPYRDR, Regional Plan for the Yangtze River Delta Region (2009–2020). China’s State Council and the National Development and Reform Commission (NDRC). 2010. Available online: https://wenku.baidu.com/view/4ae7c62c2af90242a895e5ee.html (accessed on 29 July 2021).
- Xu, W.; Tian, Y.; Zhang, Y.; Zhen, J.; Fang, W.; Lv, H.; Yang, X.; Wan, R.; Zhao, T.; Shi, P. Comprehensive Ecological Risk Prevention: Natural Disaster Factors and Risk Assessment in the Yangtze River Delta Region; Science Press: Beijing, China, 2014; Volume 1. (In Chinese) [Google Scholar]
- TBA. The Health Status Report of Taihu Lake. In Resources. Available online: http://www.tba.gov.cn/slbthlyglj/thjkzkbg/content/slth1_5d691c607c6c4b6fae10962853b6b9de.html (accessed on 29 July 2021).
- TBA. Annual Report of Flood Control and Typhoon Prevention in Taihu Lake Basin. In Resources. Available online: http://www.tba.gov.cn/slbthlyglj/fxkhnb/content/slth1_1ac642f144de41c39c51906301205d0a.html (accessed on 29 July 2021).
- Shou, F.; Li, Z.; Huang, L.; Huang, S.; Yan, L. Spatial differentiation and ecological patterns of urban agglomeration based on evaluations of supply and demand of ecosystem services: A case study on the Yangtze River Delta. Acta Ecol. Sin. 2020, 40, 2813–2826. [Google Scholar]
- Gao, Y.; Li, J.; Liu, R.; Wang, Z.; Wang, H.; Liu, Y. Temporal and spatial evolution of greenspace system and evaluation of ecosystem services in the core area of the Yangtze River Delta. Chin. J. Ecol. 2020, 39, 956–968. [Google Scholar]
- Li, Z.; Sun, Z.; Tian, Y.; Zhong, J.; Yang, W. Impact of Land Use/Cover Change on Yangtze River Delta Urban Agglomeration Ecosystem Services Value: Temporal-Spatial Patterns and Cold/Hot Spots Ecosystem Services Value Change Brought by Urbanization. Int. J. Environ. Res. Public Health 2019, 16, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopalakrishnan, V.; Bakshi, B.R.; Ziv, G. Assessing the capacity of local ecosystems to meet industrial demand for ecosystem services. AIChE J. 2016, 62, 3319–3333. [Google Scholar] [CrossRef] [Green Version]
- Jie, X.; Yu, X.; Na, L.; Hao, W. Spatial and temporal patterns of supply and demand balance of water supply services in the Dongjiang Lake Basin and its beneficiary areas. J. Resour. Ecol. 2015, 6, 386–396. [Google Scholar] [CrossRef]
- Wu, W. On the Population Distribution and Changes of YRD Region from 2000~2010 (in Chinese, English Abstract). Northwest Popul. 2017, 38, 39–53. [Google Scholar]
- Shira, D.; Devonshire-Ellis, C.; Jones, S.L.; Ku, E. The Yangtze River Delta: Business Guide to the Shanghai Region; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Tao, Q.; Tao, Y.; Ou, W. Spatial variation of supply and demand relationships of recreational service in the Yangtze River Delta. Acta Ecol. Sin. 2021, 41, 1777–1785. [Google Scholar]
- Cai, H.; Ma, K.; Luo, Y. Geographical Modeling of Spatial Interaction between Built-Up Land Sprawl and Cultivated Landscape Eco-Security under Urbanization Gradient. Sustainability 2019, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chi, G.; Li, J. The spatial aspect of ecosystem services balance and its determinants. Land Use Policy 2020, 90, 104263. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Wu, W.; Mo, Z.; Wang, Z. Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment. Chemosphere 2003, 50, 557–562. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y.; Zhuang, Q.; Li, H.; Wan, R.; Su, W.; Zhang, J. Ecological risk assessment of ecosystem services in the Taihu Lake Basin of China from 1985 to 2020. Sci. Total Environ. 2016, 554, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhou, S.; Burkhard, B.; Muller, F. Socioeconomic influences on biodiversity, ecosystem services and human well-being: A quantitative application of the DPSIR model in Jiangsu, China. Sci. Total Environ. 2014, 490, 1012–1028. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, G.; Tan, Y.; Liu, J.; Hu, H. Ecosystem services trade-offs and determinants in China’s Yangtze River Economic Belt from 2000 to 2015. Sci. Total Environ. 2018, 634, 1601–1614. [Google Scholar] [CrossRef]
- Calzolari, C.; Ungaro, F.; Filippi, N.; Guermandi, M.; Malucelli, F.; Marchi, N.; Staffilani, F.; Tarocco, P. A methodological framework to assess the multiple contributions of soils to ecosystem services delivery at regional scale. Geoderma 2016, 261, 190–203. [Google Scholar] [CrossRef]
- Lorilla, R.S.; Kalogirou, S.; Poirazidis, K.; Kefalas, G. Identifying spatial mismatches between the supply and demand of ecosystem services to achieve a sustainable management regime in the Ionian Islands (Western Greece). Land Use Policy 2019, 88, 104171. [Google Scholar] [CrossRef]
- Hou, Y.; Burkhard, B.; Muller, F. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manag. 2013, 127, S117–S131. [Google Scholar] [CrossRef] [PubMed]
Level | Meaning | Range |
---|---|---|
I | High Match | 0.5 ≤ Amount/Type ≤ 1.0 |
II | Medium Match | 0.1 ≤ Amount/Type < 0.5 |
III | Match | −0.1 < Amount/Type < 0.1 |
IV | Medium Mismatch | −0.5 < Amount/Type < −0.1 |
V | High Mismatch | −1.0 ≤ Amount/Type ≤ −0.5 |
CORINE Land Cover | YRDUA Land Cover | Ecosystem Types |
---|---|---|
Continuous urban fabric | Urban land | Urban |
Discontinuous urban fabric | Country residential land | |
Construction sites | Other built-up land | |
Non-irrigated arable land | Rainfed croplands | Cropland |
Permanently irrigated arable land | Paddy fields | |
Broad-leaved forest | Forest land/Open Forest land/Other woodland | Woodland and forest |
Coniferous forest | ||
Mixed forest | ||
Transitional woodland shrub | Shrub land | |
Natural grassland | Grassland | Grassland |
Bare rock | Bareland | Sparsely vegetated areas |
Inland marshes | Inland marshes | Wetlands |
Salt marshes | Salt marshes | |
Water bodies | Lakes/Ponds | Rivers and lakes |
Water courses | River and Streams |
Regulating Services | Global Climate Regulation | Local Climate Regulation | Air Quality Regulation | Water Flow Regulation | Water Purfication | Erosion Regulation | Natural Hazard Regulation | Pollination | Provisioning Services | Crops | Biomass of Energy | Livestock (Domestic) | Timber | Aquaculture | Freshwater | Culture Services | Recreation & Tourism | Landscape Aesthetics & Inspiration | Knowledge System | Cultural Heritage & Cultural Diversity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Paddy fields | 0 | 2 | 1 | 4 | 0 | 0 | 0 | 1 | 4 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | |||
Rainfed Cropland | 1 | 2 | 1 | 2 | 0 | 0 | 1 | 3 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | |||
Closed forest land | 4 | 5 | 5 | 3 | 4 | 5 | 3 | 1 | 0 | 1 | 0 | 2 | 0 | 0 | 4 | 4 | 4 | 2 | |||
Shrub land | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 3 | 4 | 1 | |||
Open forest land | 2 | 4 | 4 | 2 | 3 | 4 | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 3 | 3 | 3 | 1 | |||
Other woodland | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 3 | |||
Grassland | 2 | 2 | 0 | 1 | 3 | 5 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 3 | 4 | 4 | 2 | |||
River and Streams | 0 | 1 | 0 | 3 | 3 | 0 | 3 | 0 | 0 | 2 | 0 | 0 | 3 | 3 | 4 | 4 | 3 | 2 | |||
Lakes | 1 | 3 | 0 | 3 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 5 | 4 | 3 | 2 | |||
Ponds | 0 | 2 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 1 | 1 | 1 | 1 | |||
Salt marshes | 0 | 1 | 0 | 1 | 1 | 2 | 1 | 4 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 2 | 3 | 0 | |||
Inland marshes | 2 | 2 | 0 | 2 | 2 | 1 | 4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 3 | 1 | |||
Urban land | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 2 | 1 | |||
Contry residential land | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 2 | |||
Other build-up land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |||
Bareland | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 2 | 1 |
Regulating Services | Global Climate Regulation | Local Climate Regulation | Air Quality Regulation | Water Flow Regulation | Water Purfication | Erosion Regulation | Natural Hazard Regulation | Pollination | Provisioning Services | Crops | Biomass of Energy | Livestock (Domestic) | Timber | Aquaculture | Freshwater | Culture Services | Recreation & Tourism | Landscape Aesthetics & Inspiration | Knowledge System | Cultural Heritage & Cultural Diversity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Paddy fields | 2 | 2 | 1 | 5 | 5 | 2 | 2 | 2 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 0 | 2 | 3 | |||
Rainfed Cropland | 2 | 2 | 1 | 2 | 0 | 3 | 2 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 1 | 2 | 3 | |||
Closed forest land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Shrub land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Open forest land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Other woodland | 1 | 2 | 1 | 2 | 3 | 1 | 3 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 1 | 2 | 3 | |||
Grassland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
River and Streams | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Lakes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Ponds | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Salt marshes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Inland marshes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Urban land | 4 | 5 | 5 | 4 | 5 | 1 | 5 | 1 | 5 | 5 | 5 | 3 | 5 | 5 | 4 | 4 | 3 | 4 | |||
Contry residential land | 3 | 5 | 5 | 5 | 4 | 1 | 4 | 2 | 4 | 4 | 4 | 3 | 4 | 5 | 4 | 4 | 3 | 2 | |||
Other build-up land | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 0 | 0 | 4 | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | |||
Bareland | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, W.; Jiang, W.; Du, H.; Chen, R.; Cai, Y. Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2021, 18, 8130. https://doi.org/10.3390/ijerph18158130
Cai W, Jiang W, Du H, Chen R, Cai Y. Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration. International Journal of Environmental Research and Public Health. 2021; 18(15):8130. https://doi.org/10.3390/ijerph18158130
Chicago/Turabian StyleCai, Wenbo, Wei Jiang, Hongyu Du, Ruishan Chen, and Yongli Cai. 2021. "Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration" International Journal of Environmental Research and Public Health 18, no. 15: 8130. https://doi.org/10.3390/ijerph18158130
APA StyleCai, W., Jiang, W., Du, H., Chen, R., & Cai, Y. (2021). Assessing Ecosystem Services Supply-Demand (Mis)Matches for Differential City Management in the Yangtze River Delta Urban Agglomeration. International Journal of Environmental Research and Public Health, 18(15), 8130. https://doi.org/10.3390/ijerph18158130