Issues and Challenges in the Application of the IEUBK Model in the Health Risk Assessment of Lead: A Case Study from Blantyre Malawi
Abstract
:1. Introduction
2. Methodology
2.1. Study Setting and Study Population
2.2. Recruitment of Children
2.3. Sampling and Sample Collection 3.1. Blood
2.3.2. Food and Water
2.3.3. House Dust and Soil
2.3.4. Food Consumption Data
2.4. Laboratory Analysis of Lead in Various Samples
2.4.1. Lead in Blood
2.4.2. Lead in Food and Water
2.4.3. Lead in House Dust and Soil
2.5. Data Processing and Analysis
2.5.1. Data Entry
2.5.2. Prediction of Blood Lead from Food, Water, House Dust, and Soil Using the IEUBK Model
2.5.3. Assessment of Model Performance
2.5.4. Assessment of Potential Effects of Lead
3. Results
3.1. Concentrations of Lead in Food, Water, House Dust, and Soil
3.2. Predictions by the IEUBK Model in Comparison with Measured Blood Lead
3.3. Potential Health Effects of Blood Lead
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iavicoli, I.; Carelli, G.; Stanek, E.; Castellino, N.; Calabrese, E. Effects of low doses of dietary lead on red blood cell production in male and female mice. Toxicol. Lett. 2003, 137, 193–199. [Google Scholar] [CrossRef]
- Nevin, R. How lead exposure relates to temporal changes in IQ, violent crime, and unwed pregnancy. Environ. Res. 2000, 83, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, S. Renal effects of environmental and occupational lead exposure. Indian J. Occup. Environ. Med. 2008, 12, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Hu, H.; Sánchez, B.N.; Ettinger, A.S.; Park, S.K.; Cantonwine, D.; Schnaas, L.; Wright, R.O.; Lamadrid-Figueroa, H.; Tellez-Rojo, M.M. Association between prenatal lead exposure and blood pressure in children. Environ. Health Perspect. 2012, 120, 445–450. [Google Scholar] [CrossRef]
- Nation, J.R.; Gleaves, D.H. Low-level lead exposure and intelligence in children. Arch. Clin. Neuropsychol. 2001, 16, 375–388. [Google Scholar] [CrossRef] [Green Version]
- CDC. What Do Parents Need to Know to Protect Their Children? Available online: http://www.cdc.gov/nceh/lead/ACCLPP/blood_lead_levels.htm (accessed on 21 May 2015).
- Lockitch, G. Perspectives on lead toxicity. Clin. Biochem. 1993, 26, 371–381. [Google Scholar] [CrossRef]
- Adebamowo, E.O.; Scott Clark, C.; Roda, S.; Agbede, O.A.; Sridhar, M.K.C.; Adebamowo, C.A. Lead content of dried films of domestic paints currently sold in Nigeria. Sci. Total Environ. 2007, 388, 116–120. [Google Scholar] [CrossRef]
- Cuadrado, C.; Kumpulainen, J.; Carbajal, A.; Moreiras, O. Cereals Contribution to the Total Dietary Intake of Heavy Metals in Madrid, Spain. J. Food Compos. Anal. 2000, 13, 495–503. [Google Scholar] [CrossRef]
- Edwards, M.; Triantafyllidou, S.; Best, D. Elevated Blood Lead in Young Children Due to Lead-Contaminated Drinking Water: Washington, DC, 2001−2004. Environ. Sci. Technol. 2009, 43, 1618–1623. [Google Scholar] [CrossRef]
- Greenway, J.A.; Gerstenberger, S. An evaluation of lead contamination in plastic toys collected from day care centers in the Las Vegas Valley, Nevada, USA. Bull. Environ. Contam. Toxicol. 2010, 85, 363–366. [Google Scholar] [CrossRef]
- Isidra, H.S.M.; Rosalba, R.M.; Carlos, G.G.; Hulme, J.M.; Gustavo, O.F. Factors associated with lead exposure in Oaxaca, Mexico. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Brandao, J.; Okonkwo, O.; Sehkula, M.; Raseleka, R. Concentrations of lead in cosmetics commonly used in South Africa. Toxicol. Environ. Chem. 2012, 94, 70–77. [Google Scholar] [CrossRef]
- Orisakwe, O.E.; Nduka, J.K. Lead and cadmium levels of commonly administered pediatric syrups in Nigeria: A public health concern? Sci. Total Environ. 2009, 407, 5993–5996. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, S.M. Implications of the exposome for exposure science. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 5–9. [Google Scholar] [CrossRef]
- FAO/WHO. Joint FAO/WHO Expert Committee on Food Additives Seventy-Third Meeting. Available online: http://www.who.int/foodsafety/publications/chem/summary73.pdf (accessed on 15 October 2018).
- USEPA Lead and Compounds (Inorganic) (CASRN 7439-92-1). Available online: http://www.epa.gov/iris/subst/0277.htm (accessed on 1 July 2019).
- Mahaffey, K.R. Predicting Blood Lead Concentrations from Lead in Environmental Media. Environ. Health Perspect. 1998, 106, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Zaragoza, L.; Hogan, K. The integrated exposure uptake biokinetic model for lead in children: Independent validation and verification. Environ. Health Perspect. 1998, 106, 1551–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaKind, J.S. Comparison of three models for predicting blood lead levels in children: Episodic exposures to lead. J. Expo. Anal. Environ. Epidemiol. 1998, 8, 399–406. [Google Scholar]
- CDTSC. 2007. LeadSpread 7. Available online: http://www.dtsc.ca.gov/AssessingRisk/leadspread7.cfm (accessed on 1 July 2020).
- USEPA. All-Ages Lead Model (AALM) Version 1.05 (External Draft Report). 2012. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=139314 (accessed on 5 February 2020).
- Oflaherty, E.J. Physiologically based models for bone-seeking elements: IV. Kinetics of lead disposition in humans. Toxicol. Appl. Pharmacol. 1993, 118, 16–29. [Google Scholar] [CrossRef]
- Rasmuson, J.O.; Rasmuson, E.; Olsen, R.L.; Hall, D.; Strode, R.; Larson, D.M.; Korchevskiy, A. Application of a Bio-Kinetic Model (IEUBK) to Estimate the Effectiveness of Different Soil Remediation Scenarios for Lead Contamination in Shymkent, Kazakhstan. XAБAPШЫCЫ 2012, 4, 1–8. [Google Scholar]
- Zhong, B.; Giubilato, E.; Critto, A.; Wang, L.; Marcomini, A.; Zhang, J. Probabilistic modeling of aggregate lead exposure in children of urban China using an adapted IEUBK model. Sci. Total Environ. 2017, 584, 259–267. [Google Scholar] [CrossRef]
- Lewandowski, T.A.; Forslund, B.L. Comparison of IEUBK model predictions and actual blood lead values at a former battery recycling site. Environ. Geochem. Health 1994, 16, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Mickle, M.H. Structure, use, and validation of the IEUBK model. Environ. Health Perspect. 1998, 106, 1531–1534. [Google Scholar] [CrossRef] [Green Version]
- Sathyanarayana, S.; Beaudet, N.; Omri, K.; Karr, C. Predicting children’s blood lead levels from exposure to school drinking water in Seattle, Washington, USA. Ambul. Pediatrics 2006, 6, 288–292. [Google Scholar] [CrossRef]
- Wang, B.; Shao, D.; Xiang, Z.; Ye, H.; Ni, W.; Yang, S.; Wu, C.E.; Li, P.; Fu, H. Contribution of environmental lead exposure to blood lead level among infants based on IEUBK model. J. Hyg. Res. 2011, 40, 478–480. [Google Scholar]
- Laidlaw, M.A.; Mohmmad, S.M.; Gulson, B.L.; Taylor, M.P.; Kristensen, L.J.; Birch, G. Estimates of potential childhood lead exposure from contaminated soil using the US EPA IEUBK Model in Sydney, Australia. Environ. Res. 2017, 156, 781–790. [Google Scholar] [CrossRef]
- Cornelis, C.; Berghmans, P.; Sprundel, M.; Auwera, J. The use of the IEUBK model for determination of exposure routes in view of site remediation. Hum. Ecol. Risk Assess. 2006, 12, 963–982. [Google Scholar] [CrossRef]
- von Lindern, I.; Spalinger, S.; Petroysan, V.; von Braun, M. Assessing remedial effectiveness through the blood lead:soil/dust lead relationship at the Bunker Hill Superfund Site in the Silver Valley of Idaho. Sci. Total Environ. 2003, 303, 139–170. [Google Scholar] [CrossRef]
- Jez, E.; Lestan, D. Prediction of blood lead levels in children before and after remediation of soil samples in the upper Meza Valley, Slovenia. J. Hazard. Mater. 2015, 296, 138–146. [Google Scholar] [CrossRef]
- Triantafyllidou, S.; Le, T.; Gallagher, D.; Edwards, M. Reduced risk estimations after remediation of lead (Pb) in drinking water at two US school districts. Sci. Total Environ. 2014, 466, 1011–1021. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Wu, W.; Liu, S.; Li, M.; Yao, N.; Chen, J.; Ye, L.; Wang, Q.; Zhou, Y. Application of IEUBK model in lead risk assessment of children aged 61–84months old in central China. Sci. Total Environ. 2016, 541, 673–682. [Google Scholar] [CrossRef]
- Chen, F.; Cheng, H.G.; Cui, X.F. Predicting the children’s blood lead level in a lead and zinc smelting area based on IEUBK model. Adv. Mater. Res. 2015, 1092, 687–691. [Google Scholar] [CrossRef]
- Yang, K.; Cattle, S.R. Bioaccessibility of lead in urban soil of Broken Hill, Australia: A study based on in vitro digestion and the IEUBK model. Sci. Total Environ. 2015, 538, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Huynh, T.; Gasparon, M.; Ng, J.; Noller, B. Human health risk assessment of lead from mining activities at semi-arid locations in the context of total lead exposure. Environ. Sci. Pollut. Res. 2013, 20, 8404–8416. [Google Scholar] [CrossRef] [PubMed]
- NSO. Population and Housing Census; National Statistical Office: Zomba, Malawi, 2008.
- Mbongwe, B.; Barnes, B.; Tshabang, J.; Zhai, M.; Rajaram, S.; Mpuchane, S.; Mathee, A. Exposure to lead among children aged 1-6 years in the city of Gaberone. J. Environ. Health Res. 2005, 10, 17–26. [Google Scholar]
- Naing, L.; Winn, T.; Rusli, B. Practical issues in calculating the sample size for prevalence studies. Arch. Orofac. Sci. 2006, 1, 9–14. [Google Scholar]
- WHO. WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy. 2010. Available online: https://www.euro.who.int/__data/assets/pdf_file/0005/268790/WHO-guidelines-on-drawing-blood-best-practices-in-phlebotomy-Eng.pdf (accessed on 24 April 2018).
- WHO. Guidelines for Predicting Dietary Intake of Pesticide Residues. 1997. Available online: www.who.int›publications›chem›pesticide_en (accessed on 23 April 2021).
- Haider, T.; Haider, M.; Wruss, W.; Sommer, R.; Kundi, M. Lead in drinking water of Vienna in comparison to other European countries and accordance with recent guidelines. Int. J. Hyg. Environ. Health 2002, 205, 399–403. [Google Scholar] [CrossRef]
- Lewis, R.; Fortmann, R.; Camann, D. Evaluation of methods for monitoring the potential exposure of small children to pesticides in the residential environment. Arch. Environ. Contam. Toxicol. 1994, 26, 37–46. [Google Scholar] [CrossRef]
- Sterling, D.A.; Roegner, K.C.; Lewis, R.D.; Luke, D.A.; Wilder, L.C.; Burchette, S.M. Evaluation of Four Sampling Methods for Determining Exposure of Children to Lead-Contaminated Household Dust. Environ. Res. 1999, 81, 130–141. [Google Scholar] [CrossRef]
- Farfel, M.R.; Lees, P.S.J.; Rohde, C.A.; Lim, B.S.; Bannon, D.; Chisolm, J.J. Comparison of a Wipe and a Vacuum Collection Method for the Determination of Lead in Residential Dusts. Environ. Res. 1994, 65, 291–301. [Google Scholar] [CrossRef]
- USHUD. Guidelines for the Evaluation and Control of Lead-Based Paint Hazards in Housing. Available online: www.hud.gov›documents›second_edition_2012 (accessed on 20 May 2020).
- NSO. Second Integrated Household Survey, 2004: Household Characteristics, Income and Expenditure Questionnaire; NSO: Zomba, Malawi, 2004.
- Senekal, M.; Steyn, N.P. The Food Photo Manual; Medical Research Council: Capetown, South Africa, 2004.
- NSO. Living Standards measurement study: Note on Conversion Factors for Food Item-Non-standard Measurement Unit Combinations. In The Malawi Third Integrated Household Survey (IHS3) 2010/11 Data; NSO: Zomba, Malawi, 2013. [Google Scholar]
- USEPA. Exposure Factors Handbook; National Center for Environmental Assessment: Washington, DC, USA, 1997.
- Hallén, I.P.; Oskarsson, A. Bioavailability of lead from various milk diets studied in a suckling rat model. Biometals 1995, 8, 231–236. [Google Scholar] [CrossRef]
- Scorza Júnior, R.; Boesten, J. Simulation of pesticide leaching in a cracking clay soil with the PEARL model. Pest Manag. Sci. 2005, 61, 432–448. [Google Scholar] [CrossRef]
- Smith, P.; Smith, J.; Powlson, D.; McGill, W.; Arah, J.; Chertov, O.; Coleman, K.; Franko, U.; Frolking, S.; Jenkinson, D. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 1997, 81, 153–225. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Int. J. Nurs. Stud. 2010, 47, 931–936. [Google Scholar] [CrossRef]
- Fewtrell, L.; Kaufmann, R.; Prüss-Üstün, A. Lead: Assessing the Environmental Burden of Disease at National and Local Levels. Available online: http://www.who.int/quantifying_ehimpacts/publications/en/leadebd2.pdf (accessed on 8 March 2016).
- Bland, J.M.; Altman, D.G. Applying the right statistics: Analyses of measurement studies. Ultrasound Obstet. Gynecol. 2003, 22, 85–93. [Google Scholar] [CrossRef]
- Bradham, K.D.; Dayton, E.A.; Basta, N.T.; Schroder, J.; Payton, M.; Lanno, R.P. Effect of soil properties on lead bioavailability and toxicity to earthworms. Environ. Toxicol. Chem. An Int. J. 2006, 25, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, M.B.; Kopple, J.D.; Wetherill, G.W. Effect of food intake and fasting on gastrointestinal lead absorption in humans. Am. J. Clin. Nutr. 1980, 33, 1784–1788. [Google Scholar] [CrossRef] [PubMed]
- Peijnenburg, W.; Jager, T. Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicol. Environ. Saf. 2003, 56, 63–77. [Google Scholar] [CrossRef]
- Gersberg, R.M.; Gaynor, K.; Tenczar, D.; Bartzen, M.; Ginsberg, M.; Gresham, L.S.; Molgaard, C. Quantitative modeling of lead exposure from glazed ceramic pottery in childhood lead poisoning cases. Int. J. Environ. Health Res. 1997, 7, 193–202. [Google Scholar] [CrossRef]
- Batres-Marquez, S.P.; Jensen, H.H.; Upton, J. Rice Consumption in the United States: Recent Evidence from Food Consumption Surveys. J. Am. Diet. Assoc. 2009, 109, 1719–1727. [Google Scholar] [CrossRef]
- Duan, X.; Shen, G.; Yang, H.; Tian, J.; Wei, F.; Gong, J.; Zhang, J.J. Dietary intake polycyclic aromatic hydrocarbons (PAHs) and associated cancer risk in a cohort of Chinese urban adults: Inter-and intra-individual variability. Chemosphere 2016, 144, 2469–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beerman, K.A.; Dittus, K. Sources of error associated with self-repots of food intake. Nutr. Res. 1993, 13, 765–770. [Google Scholar] [CrossRef]
- Lacey, R.F.; Moore, M.R.; Richards, W.N. Lead in water, infant diet and blood: The Glasgow duplicate diet study. Sci. Total Environ. 1985, 41, 235–257. [Google Scholar] [CrossRef]
- Stanek, K.; Manton, W.; Angle, C.; Eskridge, K.; Kuehneman, A.; Hanson, C. Lead Consumption of 18- to 36-Month-Old Children as Determined from Duplicate Diet Collections: Nutrient Intakes, Blood Lead Levels, and Effects on Growth. J. Am. Diet. Assoc. 1998, 98, 155–158. [Google Scholar] [CrossRef]
- JECFA. Codex Alimentarius: Code of Practice for the Prevention and Reduction of Lead Contamination in Foods. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/codes-of-practice/en/ (accessed on 23 October 2020).
- Kumar, A.; Mms, C.P.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gup-ta, D.K.; Malyan, S.K.; Kumar, S.; Khan, S.; et al. Lead toxicity: Health haz-ards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2013, 2179, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Fralick, M.; Thomspson, A.; Mourad, O. Lead toxicity from glazed ceramic cookware. CMAJ 2016, 188, E521–E524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahran, S.; Laidlaw, M.A.; McElmurry, S.P.; Filippelli, G.M.; Taylor, M. Linking source and effect: Resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 2013, 47, 2839–2845. [Google Scholar] [CrossRef] [PubMed]
- Mathee, A.; von Schirnding, Y.E.R.; Levin, J.; Ismail, A.; Huntley, R.; Cantrell, A. A survey of blood lead levels among young Johannesburg school children. Environ. Res. 2002, 90, 181–184. [Google Scholar] [CrossRef]
- Li, T.; Dai, Y.-H.; Xie, X.-H.; Tan, Z.-W.; Zhang, S.-M.; Zhu, Z.-H. Surveillance of childhood blood lead levels in 11 cities of China. World J. Pediatr. 2014, 10, 29–37. [Google Scholar] [CrossRef]
- USEPA. Validation strategy for the Integrated Exposure Uptake Biokinetic Model for Lead in Children. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.5739&rep=rep1&type=pdf (accessed on 14 June 2021).
- Gulson, B.; Taylor, A.; Stifelman, M. Lead exposure in young children over a 5-year period from urban environments using alternative exposure measures with the US EPA IEUBK model—A trial. Environ. Res. 2018, 161, 87–96. [Google Scholar] [CrossRef]
- Rudge, C.V.; Röllin, H.B.; Nogueira, C.M.; Thomassen, Y.; Rudge, M.C.; Odland, J.Ø. The placenta as a barrier for toxic and essential elements in paired maternal and cord blood samples of South African delivering women. J. Environ. Monit. 2009, 11, 1322–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulson, B.L.; Jameson, C.W.; Mahaffey, K.R.; Mizon, K.J.; Patison, N.; Law, A.J.; Korsch, M.J.; Salter, M.A. Relationships of lead in breast milk to lead in blood, urine, and diet of the infant and mother. Environ. Health Perspect. 1998, 106, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, M.B.; Wetherill, G.W.; Kopple, J.D. Kinetic analysis of lead metabolism in healthy humans. J. Clin. Investig. 1976, 58, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabinowitz, M.B. Toxicokinetics of bone lead. Environ. Health Perspect. 1991, 91, 33–37. [Google Scholar] [CrossRef]
- Thomas, V.M.; Socolow, R.H.; Fanelli, J.J.; Spiro, T.G. Effects of Reducing Lead in Gasoline: An Analysis of the International Experience. Environ. Sci. Technol. 1999, 33, 3942–3948. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utembe, W.; Gulumian, M. Issues and Challenges in the Application of the IEUBK Model in the Health Risk Assessment of Lead: A Case Study from Blantyre Malawi. Int. J. Environ. Res. Public Health 2021, 18, 8207. https://doi.org/10.3390/ijerph18158207
Utembe W, Gulumian M. Issues and Challenges in the Application of the IEUBK Model in the Health Risk Assessment of Lead: A Case Study from Blantyre Malawi. International Journal of Environmental Research and Public Health. 2021; 18(15):8207. https://doi.org/10.3390/ijerph18158207
Chicago/Turabian StyleUtembe, Wells, and Mary Gulumian. 2021. "Issues and Challenges in the Application of the IEUBK Model in the Health Risk Assessment of Lead: A Case Study from Blantyre Malawi" International Journal of Environmental Research and Public Health 18, no. 15: 8207. https://doi.org/10.3390/ijerph18158207
APA StyleUtembe, W., & Gulumian, M. (2021). Issues and Challenges in the Application of the IEUBK Model in the Health Risk Assessment of Lead: A Case Study from Blantyre Malawi. International Journal of Environmental Research and Public Health, 18(15), 8207. https://doi.org/10.3390/ijerph18158207