Psychiatry in the Digital Age: A Blessing or a Curse?
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mental Health Care
3.1.1. Telepsychiatry
3.1.2. Computer-Delivered and Internet-Based Cognitive Behavioral Therapy
3.1.3. App-Based Cognitive Behavioral Therapy
3.1.4. Virtual Reality
3.1.5. Digital Applied Games
3.1.6. Digital Medicine System
3.2. The Promise of Big Data
3.2.1. Omics
3.2.2. Neuroimaging
3.2.3. Machine Learning
Definition of Artificial Intelligence and Machine Learning
ML for the Assessment of Suicide Risk
ML for the Prediction of Therapeutic Outcomes in Depression
ML in the Early Diagnosis of Psychosis
Further Areas of Research on ML in Psychiatry
Challenges around ML
3.2.4. Precision Psychiatry
3.3. Helping Physicians Manage and Leverage Information
3.3.1. Clinical Decision Support
3.3.2. EHR
3.3.3. Physician Charting
3.4. The Doctor–Patient Relationship
3.4.1. Digital Real-Time Language Translators
3.4.2. Online Mental Health Resources for Patients
3.4.3. Digitalization and the Therapeutic Relationship
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choueiri, P.; Hosseini, M.; Kaltenbach, T.; Neumann, K.; Rong, O. Future of Health: An Industry Goes Digital—Faster than Expected; Roland Berger GmbH: Munich, Germany, 2019. [Google Scholar]
- Bokolo, A. Use of Telemedicine and Virtual Care for Remote Treatment in Response to COVID-19 Pandemic. J. Med. Syst. 2020, 44, 132. [Google Scholar] [CrossRef]
- Wosik, J.; Fudim, M.; Cameron, B.; Gellad, Z.F.; Cho, A.; Phinney, D.; Curtis, S.; Roman, M.; Poon, E.G.; Ferranti, J.; et al. Telehealth transformation: COVID-19 and the rise of virtual care. J. Am. Med. Inform. Assoc. 2020, 27, 957–962. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- GBD 2019 Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Dieleman, J.L.; Squires, E.; Bui, A.L.; Campbell, M.; Chapin, A.; Hamavid, H.; Horst, C.; Li, Z.; Matyasz, T.; Reynolds, A.; et al. Factors Associated with Increases in US Health Care Spending, 1996–2013. JAMA 2017, 318, 1668–1678. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Disease International (ADI). World Alzheimer Report 2015: The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost & Trends; Alzheimer’s Disease International (ADI): London, UK, 2015. [Google Scholar]
- Vigo, D.; Thornicroft, G.; Atun, R. Estimating the true global burden of mental illness. Lancet 2016, 3, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Sporinova, B.; Manns, B.; Tonelli, M.; Hemmelgarn, B.; MacMaster, F.; Mitchell, N.; Au, F.; Ma, Z.; Weaver, R.; Quinn, A. Association of Mental Health Disorders with Health Care Utilization and Costs Among Adults With Chronic Disease. JAMA Netw. 2019, 2, e199910. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Strategy on Human Resources for Health: Workforce 2030; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. Mental Health Atlas; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- World Health Organization. Global Diffusion of eHealth: Making Universal Health Coverage Achievable, Report of the Third Global Survey on eHealth; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Bee, P.E.; Bower, P.; Lovell, K.; Gilbody, S.; Richards, D.; Gask, L.; Roach, P. Psychotherapy mediated by remote communication technologies: A meta-analytic review. BMC Psychiatry 2008, 8, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilty, D.M.; Ferrer, D.C.; Parish, M.B.; Johnston, B.; Callahan, E.J.; Yellowlees, P.M. The Effectiveness of Telemental Health: A 2013 Review. Telemed. e-Health 2013, 19, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.; Weingarden, H.; Ladis, I.; Braddick, V.; Shin, J.; Jacobson, N.C. Cognitive-Behavioral Therapy in the Digital Age: Presidential Address. Behav. Ther. 2020, 51, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bashshur, R.; Shannon, G.W.; Bashshur, N.; Yellowlees, P. The Empirical Evidence for Telemedicine Interventions in Mental Disorders. Telemed. e-Health 2016, 22, 87–113. [Google Scholar] [CrossRef] [Green Version]
- Hyler, S.E.; Gangure, D.P.; Batchelder, S.T. Can Telepsychiatry Replace In-Person Psychiatric Assessments? A Review and Meta-Analysis of Comparison Studies. CNS Spectr. 2005, 10, 403–413. [Google Scholar] [CrossRef]
- Garcia-Lizana, F.; Munoz-Mayorga, I. What About Telepsychiatry? A Systematic Review. Prim. Care Companion J. Clin. Psychiatry 2010, 12, PCC.09m00831. [Google Scholar] [CrossRef]
- Mohr, D.C.; Ho, J.; Duffecy, J.; Reifler, D.; Sokol, L.; Burns, M.N.; Jin, L.; Siddique, J. Effect of Telephone-Administered vs. Face-to-face Cognitive Behavioral Therapy on Adherence to Therapy and Depression Outcomes Among Primary Care Patients. JAMA 2012, 307, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, T.L.; Hogan, J.B.; Keegan, F.; Davis, M.L.; Wassef, M.; Day, S.; Lindsay, J.A. Recent Advances in Delivering Mental Health Treatment via Video to Home. Curr. Psychiatry Rep. 2018, 20, 56. [Google Scholar] [CrossRef]
- Luo, C.; Sanger, N.; Singhal, N.; Pattrick, K.; Shams, I.; Shahid, H.; Hoang, P.; Schmidt, J.; Lee, J.; Haber, S.; et al. A comparison of electronically-delivered and face to face cognitive behavioural therapies in depressive disorders: A systematic review and meta-analysis. EClinicalMedicine 2020, 24, 100442. [Google Scholar] [CrossRef] [PubMed]
- Shore, J.H. Telepsychiatry: Videoconferencing in the Delivery of Psychiatric Care. Am. J. Psychiatry 2013, 170, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Accenture. How Can Leaders Make Recent Digital Health Gains Last? Re-Examining the Accenture 2020 Digital Health Consumer Survey, US Findings; Accenture: Dublin, Ireland, 2020. [Google Scholar]
- Barnett, M.L.; Ray, K.N.; Souza, J.; Mehrotra, A. Trends in Telemedicine Use in a Large Commercially Insured Population 2005–2017. JAMA 2018, 320, 2147–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, P. Virtual health care in the era of COVID-19. Lancet 2020, 395, 1180–1181. [Google Scholar] [CrossRef]
- Connoly, S.L.; Stolzmann, K.L.; Heyworth, L.; Weaver, K.R.; Bauer, M.S.; Miller, C.J. Rapid Increase in Telemental Health within the Department of Veterans Affairs During the COVID-19 Pandemic. Telemed. e-Health 2021, 27, 454–458. [Google Scholar] [CrossRef]
- Kola, L. Global mental health and COVID-19. Lancet Psychiatry 2020, 7, 655–657. [Google Scholar] [CrossRef]
- Yao, H.; Chen, J.-H.; Xu, Y.-F. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry 2020, 7, e21. [Google Scholar] [CrossRef]
- Huskamp, H.; Bush, A.; Souza, J.; Uscher-Pines, L.; Rose, S.; Wilcock, A.; Landon, B.; Mehrotra, A. How is Telemedicine Being Used In Opioid and Other Substance Use Disorder Treatment? Health Aff. 2018, 37, 1940–1947. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.Y.; Huskamp, H.; Bush, A.; Mehrotra, A. Telemental Health and US Rural-Urban Differences in Specialty Mental Health Use, 2010–2017. Am. J. Public Health 2020, 110, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- Mehrotra, A.; Chernew, M.; Linetsky, D.; Hatch, H.; Cutler, D.; Schneider, E.C. The Impact of COVID-19 on Outpatient Visits in 2020: Visits Remained Stable, Despite a Late Surge in Cases. Commonwealth Fund. February 2021. Available online: www.commonwealthfund.org/publications/2021/feb/impact-covid-19-outpatient-visits-2020-visits-stable-despite-late-surge (accessed on 26 July 2021).
- Bush, A.B.; Sugarman, D.E.; Horvitz, L.E.; Greenfield, S.F. Telemedicine for treating mental health and substance use disorders: Reflections since the pandemic. Neuropsychopharmacology 2021, 46, 1068–1070. [Google Scholar] [CrossRef] [PubMed]
- Ramsetty, A.; Adams, C. Impact of the digital divide in the age of COVID-19. J. Am. Med. Inform. Assoc. 2020, 27, 1147–1148. [Google Scholar] [CrossRef]
- Yang, J.; Landrum, M.B.; Zhou, L.; Bush, A.B. Disparities in outpatient visits for mental health and/or substance use disorders during the COVID surge and partial reopening in Massachusetts. Gen. Hosp. Psychiatry 2020, 67, 100–106. [Google Scholar] [CrossRef]
- Ekeland, A.G.; Bowes, A.; Flottorp, S. Effectiveness of telemedicine: A systematic review of reviews. Int. J. Med. Inform. 2010, 79, 736–771. [Google Scholar] [CrossRef] [Green Version]
- Ekeland, A.G.; Bowes, A.; Flottorp, S. Methodologies for assessing telemedicine: A systematic review of reviews. Int. J. Med. Inform. 2012, 81, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kidholm, K.; Ekeland, A.G.; Jensen, L.K.; Rasmussen, J.; Pedersen, C.D.; Bowes, A.; Flottorp, S.A.; Bech, M. A model for assessment of telemedicine applications: MAST. Int. J. Technol. Assess. Health Care 2012, 28, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekeland, A.G.; Grottland, A. Assessment of MAST in European patient-centered telemedicine pilots. Int. J. Technol. Assess. Health Care 2015, 31, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Kidholm, K.; Clemensen, J.; Caffery, L.J.; Smith, A.C. The Model for Assessment of Telemedicine (MAST): A scoping review of empirical studies. J. Telemed. Telecare 2017, 23, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Bavor, C. Project Starline: Feel Like You’re There, Together. Available online: https://blog.google/technology/research/project-starline/ (accessed on 5 June 2021).
- Hegstrom, T.G. Message impact: What percentage is nonverbal? West. J. Speech Commun. 1979, 43, 134–142. [Google Scholar] [CrossRef]
- Schmid Mast, M. On the importance of nonverbal communication in the physician-patient interaction. Patient Educ. Couns. 2007, 67, 315–318. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. International Classification of Diseases 11th Revision; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- DiMatteo, M.R.; Hays, R.D.; Prince, L.M. Relationship of Physicians’ Nonverbal Communication Skill to Patient Satisfaction, Appointment Noncompliance, and Physician Workload. Health Psychol. 1986, 5, 581–594. [Google Scholar] [CrossRef]
- Kumar, V.; Sattar, Y.; Bseiso, A.; Khan, S.; Rutkofsky, I.H. The Effectiveness of Internet-Based Cognitive Behavioral Therapy in Treatment of Psychiatric Disorders. Cureus 2017, 9, e1626. [Google Scholar] [CrossRef] [Green Version]
- International Telecommunication Union. Measuring Digital Development: Facts and Figures 2020; International Telecommunication Union: Geneva, Switzerland, 2020. [Google Scholar]
- Hedman, E.; Ljotsson, B.; Rück, C.; Bergström, J.; Andersson, G.; Kaldo, V.; Jansson, L.; Andersson, E.; Andersson, E.; Blom, K.; et al. Effectiveness of Internet-based cognitive behaviour therapy for panic disorder in routine psychiatric care. Acta Psychiatr. Scand. 2013, 128, 457–467. [Google Scholar] [CrossRef]
- Hadjistavropoulos, H.D.; Mehta, S.; Wilhelms, A.; Keough, M.T.; Sundström, C. A systematic review of internet-delivered cognitive behavior therapy for alcohol misuse: Study characteristics, program content and outcomes. Cogn. Behav. Ther. 2020, 49, 327–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, J.H.; Owen, J.J.; Richards, D.; Eells, T.D.; Richardson, T.; Brown, G.K.; Barrett, M.; Rasku, M.A.; Polser, G.; Thase, M.E. Computer-Assisted Cognitive-Behavior Therapy for Depression: A Systematic Review and Meta-Analysis. J. Clin. Psychiatry 2019, 80, 18r12188. [Google Scholar] [CrossRef]
- Etzelmueller, A.; Vis, C.; Karyotaki, E.; Baumeister, H.; Titov, N.; Berking, M.; Cuijpers, P.; Riper, H.; Ebert, D.D. Effects of Internet-Based Cognitive Behavioral Therapy in Routine Care for Adults in Treatment for Depression and Anxiety: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e18100. [Google Scholar] [CrossRef] [PubMed]
- NICE. NICE Guideline: Depression in Adults: Recognition and Management; NICE: London, UK, 2009. [Google Scholar]
- Cuijpers, P.; Marks, I.M.; van Straten, A.; Cavanagh, K.; Gega, L.; Andersson, G. Computer-Aided Psychotherapy for Anxiety Disorders: A Meta-Analytic Review. Cogn. Behav. Ther. 2009, 38, 66–82. [Google Scholar] [CrossRef]
- Andrews, G.; Basu, A.; Cuijpers, P.; Craske, M.G.; McEvoy, P.; English, C.L.; Newby, J.M. Computer therapy for the anxiety and depression disorders is effective, acceptable and practical health care: An updated meta-analysis. J. Anxiety Disord. 2018, 55, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Carlbring, P.; Andersson, G.; Cuijpers, P.; Riper, H.; Hedman-Lagerlöf, E. Internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: An updated systematic review and meta-analysis. Cogn. Behav. Ther. 2018, 47, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Thase, M.E.; Wright, J.H.; Eells, T.D.; Barrett, M.S.; Wisniewski, S.R.; Balasubramani, G.K.; McCrone, P.; Brown, G.K. Improving the Efficiency of Psychotherapy for Depression: Computer-Assisted Versus Standard CBT. Am. J. Psychiatry 2018, 175, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Carroll, K. Computerized Cognitive-Behavioral Therapy. Alcohol. Res. 2014, 36, 127–130. [Google Scholar]
- Alvarez-Jimenez, M.; Bendall, S.; Lederman, R.; Wadley, G.; Chinnery, G.; Vargas, S.; Larkin, M.; Killackey, E.; McGorry, P.D.; Gleeson, J.F. On the HORYZON: Moderated online social therapy for long-term recovery in first episode psychosis. Schizophr. Res. 2013, 143, 143–149. [Google Scholar] [CrossRef]
- Rüegg, N.; Moritz, S.; Berger, T.; Lüdtke, T.; Westermann, S. An internet-based intervention for people with psychosis (EviBaS): Study protocol for a randomized controlled trial. BMC Psychiatry 2018, 18, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lüdtke, T.; Platow-Kohlschein, H.; Rüegg, N.; Berger, T.; Moritz, S.; Westermann, S. Mindfulness Mediates the Effect of a Psychological Online Intervention for Psychosis on Self-Reported Hallucinations: A Secondary Analysis of Voice Hearers from the EviBaS Trial. Front. Psychiatry 2020, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Fleisch, E.; Franz, C.; Herrmann, A. The Digital Pill: What Everyone Should Know about the Future of Our Healthcare System, 1st ed.; Emerald Publishing: Bingley, UK, 2021. [Google Scholar]
- Clay, R.A. Mental Health Apps Are Gaining Traction: Self-Help Apps Are Leading More People to Therapy Rather than Replacing It, Psychologists Say. Available online: www.apa.org/monitor/2021/01/trends-mental-health-apps (accessed on 27 July 2021).
- Lagan, S.; Sandler, L.; Torous, J. Evaluating evaluation frameworks: A scoping review of frameworks for assessing health apps. BMJ Open 2021, 11, e047001. [Google Scholar] [CrossRef] [PubMed]
- Huckvale, K.; Nicholas, J.; Torous, J.; Larsen, M.E. Smartphone apps for the treatment of mental health conditions: Status and considerations. Curr. Opin. Psychiatry 2020, 36, 65–70. [Google Scholar] [CrossRef]
- Berry, N.; Lobban, F.; Emsley, R.; Bucci, S. Acceptability of Interventions Delivered Online and Through Mobile Phones for People Who Experience Severe Mental Health Problems: A Systematic Review. J. Med. Internet Res. 2016, 18, e121. [Google Scholar] [CrossRef]
- Batra, S.; Baker, R.A.; Wang, T.; Forma, F.; DiBiasi, F.; Peters-Strickland, T. Digital health technology for use in patients with serious mental illness: A systematic review of the literature. Med. Devices Evid. Res. 2017, 10, 237–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firth, J.; Torous, J.; Nicholas, J.; Carney, R.; Pratap, A.; Rosenbaum, S.; Sarris, J. The efficacy of smartphone-based mental health interventions for depressive symptoms: A meta-analysis of randomized controlled trials. World Psychiatry 2017, 16, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Torous, J.; Nicholas, J.; Carney, R.; Rosenbaum, S.; Sarris, J. Can smartphone mental health interventions reduce symptoms of anxiety? A meta-analysis of randomized controlled trials. J. Affect. Disord. 2017, 218, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Torous, J. Smartphone Apps for Schizophrenia: A Systematic Review. JMIR mHealth uHealth 2015, 3, e102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goreis, A.; Felnhofer, A.; Kafka, J.X.; Probst, T.; Kothgassner, O.D. Efficacy of Self-Management Smartphone-Based Apps for Post-traumatic Stress Disorder Symptoms: A Systematic Review and Meta-Analysis. Front. Neurosci. 2020, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Lagan, S.; Camacho, E.; Torous, J. Is there a clinically relevant, publicly accessible app for that? Exploring the clinical relevance and availability of mobile apps for schizophrenia and psychosis. Schizophr. Res. 2020. [Google Scholar] [CrossRef]
- Larsen, M.E.; Nicholas, J.; Christensen, H. A Systematic Assessment of Smartphone Tools for Suicide Prevention. PLoS ONE 2016, 11, e0152285. [Google Scholar] [CrossRef] [PubMed]
- Melia, R.; Francis, K.; Hickey, E.; Bogue, J.; Duggan, J.; O’Sullivan, M.; Young, K. Mobile Health Technology Interventions for Suicide Prevention: Systematic Review. JMIR mHealth uHealth 2020, 8, e12516. [Google Scholar] [CrossRef]
- Torok, M.; Han, J.; Baker, S.; Werner-Seidler, A.; Wong, I.; Larsen, M.E.; Christensen, H. Suicide prevention using self-guided digital interventions: A systematic review and meta-analysis of randomised controlled trials. Lancet Digit. Health 2020, 2, e25–e36. [Google Scholar] [CrossRef] [Green Version]
- Insel, T.R. Digital Phenotyping: Technology for a New Science of Behavior. JAMA 2017, 318, 1215–1216. [Google Scholar] [CrossRef] [PubMed]
- Nahum-Shani, I.; Smith, S.N.; Spring, B.J.; Collins, L.M.; Witkiewitz, K.; Tewari, A.; Murphy, S.A. Just-in-Time Adaptive Interventions (JITAIs) in Mobile Health: Key Components and Design Principles for Ongoing Health Behavior Support. Ann. Behav. Med. 2018, 52, 446–462. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.T.; Germine, L.T.; Ressler, K.J.; Rauch, S.L.; Carlezon, W.A. Digital devices and continuous telemetry: Opportunities for aligning psychiatry and neuroscience. Neuropsychopharmacology 2018, 43, 2499–2503. [Google Scholar] [CrossRef] [Green Version]
- Iliescu, R.; Kumaravel, A.; Smurawska, L.; Torous, J.; Keshavan, M. Smartphone ownership and use of mental health applications by psychiatric inpatients. Psychiatry Res. 2021, 299, 113806. [Google Scholar] [CrossRef] [PubMed]
- Tonning, M.L.; Kessing, L.V.; Bardram, J.E.; Faurholt-Jepsen, M. Methodological Challenges in Randomized Controlled Trials on Smartphone-Based Treatment in Psychiatry: Systematic Review. J. Med. Internet Res. 2019, 21, e15362. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.E.; Huckvale, K.; Nicholas, J.; Torous, J.; Birrell, L.; Li, E.; Reda, B. Using science to sell apps: Evaluation of mental health app store quality claims. NPJ Digit. Med. 2019, 2, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagan, S.; D’Mello, R.; Vaidyam, A.; Bilden, R.; Torous, J. Assessing mental health apps marketplaces with objective metrics from 29,190 data points from 278 apps. Acta Psychiatr. Scand. 2021, 144, 201–210. [Google Scholar] [CrossRef]
- Martinengo, L.; Van Galen, L.; Lum, E.; Kowalski, M.; Subramaniam, M.; Car, J. Suicide prevention and depression apps’ suicide risk assessment and management: A systematic assessment of adherence to clinical guidelines. BMC Med. 2019, 17, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sucala, M.; Cardos, R.; Achimas-Cadariu, P.; Cuijpers, P.; Soflau, R.; Muench, F.; Dobrean, A. Anxiety: There is an app for that. A systematic review of anxiety apps. Depress. Anxiety 2017, 34, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Stoyanov, S.R.; Hides, L.; Kavanagh, D.J.; Zelenko, O.; Tjondronegoro, D.; Mani, M. Mobile App Rating Scale: A New Tool for Assessing the Quality of Health Mobile Apps. JMIR mHealth uHealth 2015, 3, e27. [Google Scholar] [CrossRef] [Green Version]
- Lagan, S.; Aquino, P.; Emerson, M.R.; Fortuna, K.; Walker, R.; Torous, J. Actionable health app evaluation: Translating expert frameworks into objective metrics. NPJ Digit. Med. 2020, 3, 100. [Google Scholar] [CrossRef]
- Neary, M.; Schueller, S.M. State of the Field of Mental Health Apps. Cogn. Behav. Pract. 2018, 25, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Drouin, K.; Newmark, L.P.; Lee, J.; Faxvaag, A.; Rozenblum, R.; Pabo, E.A.; Landman, A.; Klinger, E.; Bates, D.W. Many Mobile Health Apps Target High-Need, High-Cost Populations, But Gaps Remain. Health Aff. 2016, 12, 2310–2318. [Google Scholar] [CrossRef] [PubMed]
- National Health Service (NHS). NHS Apps Library. Available online: www.nhs.uk/apps-library/filter/?categories=Mental%20health (accessed on 16 May 2021).
- U.S. Food & Drug Administration. FDA Permits Marketing of Mobile Medical Application for Substance Use Disorder; U.S. Food & Drug Administration: Silver Spring, MD, USA, 2017.
- U.S. Food & Drug Administration. FDA Clears Mobile Medical App to Help Those with Opioid Use Disorder Stay in Recovery Programs; U.S. Food & Drug Administration: Silver Spring, MD, USA, 2018.
- Pear Therapeutics. reSET® & reSET-O®. Available online: https://peartherapeutics.com/products/reset-reset-o/ (accessed on 26 May 2021).
- Pear Therapeutics. Pear Therapeutics Obtains FDA Authorization for Somryst™, a Prescription Digital Therapeutic for the Treatment of Adults with Chronic Insomnia. Available online: https://peartherapeutics.com/pear-therapeutics-obtains-fda-authorization-for-somryst-a-prescription-digital-therapeutic-for-the-treatment-of-adults-with-chronic-insomnia/ (accessed on 27 May 2021).
- Christensen, H.; Batterham, P.J.; Gosling, J.A.; Ritterband, L.M.; Griffiths, K.M.; Thorndike, F.P.; Glozier, N.; O’Dea, B.; Hickie, I.B.; Mackinnon, A.J. Effectiveness of an online insomnia program (SHUTi) for prevention of depressive episodes (the GoodNight Study): A randomized controlled trial. Lancet Psychiatry 2016, 3, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Ritterband, L.M.; Thorndike, F.P.; Ingersoll, K.S.; Lord, H.R.; Gonder-Frederick, L.; Frederick, C.; Quigg, M.S.; Cohn, W.F.; Morin, C.M. Effect of a Web-Based Cognitive Behavior Therapy for Insomnia Intervention with 1-Year Follow-up: A Randomized Clinical Trial. JAMA Psychiatry 2017, 74, 68–75. [Google Scholar] [CrossRef]
- Proudfoot, J.; Parker, G.; Pavlovic, D.H.; Manicavasagar, V.; Adler, E.; Whitton, A. Community Attitudes to the Appropriation of Mobile Phones for Monitoring and Managing Depression, Anxiety, and Stress. J. Med. Internet Res. 2010, 12, e64. [Google Scholar] [CrossRef]
- Powell, A.C.; Singh, P.; Torous, J. The Complexity of Mental Health App Privacy Policies: A Potential Barrier to Privacy. JMIR mHealth uHealth 2018, 6, e158. [Google Scholar] [CrossRef] [PubMed]
- Grundy, Q.; Chiu, K.; Held, F.; Continella, A.; Bero, L.; Holz, R. Data sharing practices of medicines related apps and the mobile ecosystem: Traffic, content, and network analysis. Br. Med. J. 2019, 364, l920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagliari, C. Commercial health apps: In the user’s interest? Br. Med. J. 2019, 364, l1280. [Google Scholar] [CrossRef] [Green Version]
- Mooney, S.J.; Pejaver, V. Big Data in Public Health: Terminology, Machine Learning and Privacy. Annu. Rev. Public Health 2018, 39, 95–112. [Google Scholar] [CrossRef] [Green Version]
- McKee, M.; van Schalkwyk, M.C.I.; Stuckler, D. The second information revolution: Digitalization brings opportunities and concerns for public health. Eur. J. Public Health 2019, 29, 3–6. [Google Scholar] [CrossRef]
- Nicholas, J.; Fogarty, A.S.; Boydell, K.; Christensen, H. The Reviews Are in: A Qualitative Content Analysis of Consumer Perspectives on Apps for Bipolar Disorder. J. Med. Internet Res. 2017, 19, e105. [Google Scholar] [CrossRef]
- Torous, J.; Nicholas, J.; Larsen, M.E.; Firth, J.; Christensen, H. Clinical review of user engagement with mental health smartphone apps: Evidence, theory and improvements. Evid. Based Ment. Health 2018, 21, 116–119. [Google Scholar] [CrossRef]
- Torous, J.; Vaidyam, A. Multiple uses of app instead of using multiple apps—A case for rethinking the digital health technology toolbox. Epidemiol. Psychiatr. Sci. 2020, 29, e100. [Google Scholar] [CrossRef] [Green Version]
- The Division of Digital Psychiatry at BIDMC. mindLAMP. Available online: www.digitalpsych.org/lamp (accessed on 15 May 2021).
- Fitzpatrick, K.K.; Darcy, A.; Vierhile, M. Delivering Cognitive Behavior Therapy to Young Adults With Symptoms of Depression and Anxiety Using a Fully Automated Conversational Agent (Woebot): A Randomized Controlled Trial. JMIR Ment. Health 2017, 4, e19. [Google Scholar] [CrossRef] [PubMed]
- Deloitte. Digital Reality: A Technical Primer. Available online: www2.deloitte.com/us/en/insights/topics/emerging-technologies/digital-reality-technical-primer.html (accessed on 6 June 2021).
- Park, M.J.; Kim, D.J.; Lee, U.; Na, E.J.; Jeon, H.J. A Literature Overview of Virtual Reality (VR) in Treatment of Psychiatric Disorders: Recent Advances and Limitations. Front. Psychiatry 2019, 10, 505. [Google Scholar] [CrossRef]
- Botella, C.; Fernandez-Alvarez, J.; Guillen, V.; Garcia-Palacios, A.; Banos, R. Recent Progress in Virtual Reality Exposure Therapy for Phobias: A Systematic Review. Curr. Psychiatry Rep. 2017, 19, 42. [Google Scholar] [CrossRef]
- Dellazizzo, L.; Potvin, S.; Luigi, M.; Dumais, A. Evidence on Virtual Reality-Based Therapies for Psychiatric Disorders: Meta-Review of Meta-Analyses. J. Med. Internet Res. 2020, 22, e20889. [Google Scholar] [CrossRef] [PubMed]
- Bentz, D.; Wang, N.; Ibach, M.K.; Schicktanz, N.S.; Zimmer, A.; Papassotiropoulos, A.; de Quervain, D.J.F. Effectiveness of a stand-alone, smartphone-based virtual reality exposure app to reduce fear of heights in real-life: A randomized trial. NPJ Digit. Med. 2021, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Chou, P.-H.; Tseng, P.-T.; Wu, Y.-C.; Chang, J.P.-C.; Tu, Y.-K.; Stubbs, B.; Carvalho, A.F.; Lin, P.-Y.; Chen, Y.-W.; Su, K.-P. Efficacy and acceptability of different interventions for acrophobia: A network meta-analysis of randomised controlled trials. J. Affect. Disord. 2021, 282, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Eshuis, L.V.; van Gelderen, M.J.; van Zuiden, M.; Nijdam, M.J.; Vermetten, E.; Olff, M.; Bakker, A. Efficacy of immersive PTSD treatments: A systematic review of virtual and augmented reality exposure therapy and a meta-analysis of virtual reality exposure therapy. J. Psychiatr. Res. 2020. [Google Scholar] [CrossRef]
- Leff, J.; Williams, G.; Huckvale, M.A.; Arbuthnot, M.; Leff, A.P. Computer-assisted therapy for medication-resistant auditory hallucinations: Proof-of-concept study. Br. J. Psychiatry 2013, 202, 428–433. [Google Scholar] [CrossRef] [Green Version]
- Craig, T.K.J. AVATAR therapy: A promising new approach for persistent distressing voices. World Psychiatry 2019, 8, 98–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, T.K.J.; Rus-Calafell, M.; Ward, T.; Leff, J.P.; Huckvale, M.; Howarth, E.; Emsley, R.; Garety, P.A. AVATAR therapy for auditory verbal hallucinations in people with psychosis: A single-blind, randomised controlled trial. Lancet Psychiatry 2018, 5, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Ward, T.; Rus-Calafell, M.; Ramadhan, Z.; Soumelidou, O.; Fornells-Ambrojo, M.; Garety, P.; Craig, T.K.J. AVATAR Therapy for Distressing Voices: A Comprehensive Account of Therapeutic Targets. Schizophr. Bull. 2020, 46, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Aali, G.; Kariotis, T.; Shokraneh, F. Avatar Therapy for people with schizophrenia or related disorders (Review). Cochrane Database Syst. Rev. 2020, 5, CD011898. [Google Scholar] [CrossRef] [PubMed]
- Geraets, C.N.W.; van der Stouwe, E.C.D.; Pot-Kolder, R.; Veling, W. Advances in immersive virtual reality interventions for mental disorders: A new reality? Curr. Opin. Psychol. 2021, 41, 40–45. [Google Scholar] [CrossRef]
- Rus-Calafell, M.; Garety, P.; Sason, E.; Craig, T.J.K.; Valmaggia, L.R. Virtual reality in the assessment and treatment of psychosis: A systematic review of its utility, acceptability and effectiveness. Psychol. Med. 2018, 48, 362–391. [Google Scholar] [CrossRef]
- Saredakis, D.; Szpak, A.; Birckhead, B.; Keage, H.A.D.; Rizzo, A.; Loetscher, T. Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2020, 14, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vajawat, B.; Varshney, P.; Banerjee, D. Digital Gaming Interventions in Psychiatry: Evidence, Applications and Challenges. Psychiatry Res. 2021, 295, 113585. [Google Scholar] [CrossRef]
- ESA Entertainment Software Association. 2020 Essential Facts About the Video Game Industry; ESA Entertainment Software Association: Washington, DC, USA, 2020. [Google Scholar]
- Cheng, V.W.S.; Davenport, T.; Johnson, D.; Vella, K.; Hickie, I.B. Gamification in Apps and Technologies for Improving Mental Health and Well-Being: Systematic Review. JMIR Ment. Health 2019, 6, e13717. [Google Scholar] [CrossRef] [Green Version]
- Fleming, T.M.; Bavin, L.; Stasiak, K.; Hermansson-Webb, E.; Merry, S.N.; Cheek, C.; Lucassen, M.; Lau, H.M.; Pollmuller, B.; Hetrick, S. Serious Games and Gamification for Mental Health: Current Status and Promising Directions. Front. Psychiatry 2017, 7, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brühl, A.B.; Sahakian, B.J. Drugs, games, and devices for enhancing cognition: Implications for work and society. Ann. N. Y. Acad. Sci. 2016, 1369, 195–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Adherence to Long-Term Therapies: Evidence for Action; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Bulloch, A.G.M.; Patten, S.B. Non-adherence with psychotropic medications in the general population. Soc. Psychiatry Psychiatr. Epidemiol. 2010, 45, 47–56. [Google Scholar] [CrossRef]
- Geretsegger, C.; Pichler, E.-M.; Gimpl, K.; Aichhorn, W.; Stelzig, R.; Grabher-Stoeffler, G.; Hiemke, C.; Zernig, G. Non-adherence to psychotropic medication assessed by plasma level in newly admitted psychiatric patients: Prevalence before acute admission. Psychiatry Clin. Neurosci. 2019, 73, 175–178. [Google Scholar] [CrossRef]
- Levin, J.B.; Krivenko, A.; Howland, M.; Schlachet, R.; Sajatovic, M. Medication Adherence in Patients with Bipolar Disorder: A Comprehensive Review. CNS Drugs 2016, 30, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Ljungdalh, P.M. Non-adherence to pharmacological treatment in schizophrenia and schizophrenia spectrum disorders—An updated systematic literature review. Eur. J. Psychiatry 2017, 31, 172–186. [Google Scholar] [CrossRef]
- Gilmer, T.P.; Dolder, C.R.; Lacro, J.P.; Folsom, D.P.; Lindamer, L.; Garcia, P.; Jeste, D.V. Adherence to Treatment With Antipsychotic Medication and Health Care Costs Among Medicaid Beneficiaries With Schizophrenia. Am. J. Psychiatry 2004, 161, 692–699. [Google Scholar] [CrossRef]
- Forsman, J.; Taipale, H.; Masterman, T.; Tiihonen, J.; Tanskanen, A. Adherence to psychotropic medication in completed suicide in Sweden 2006-2013: A forensic-toxicological matched case-control study. Eur. J. Clin. Pharmacol. 2019, 75, 1421–1430. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, J.H.; McInnis, T.; Hirsch, J.D. Cost of Prescription Drug-Related Morbidity and Mortality. Ann. Pharmacother. 2018, 52, 829–837. [Google Scholar] [CrossRef]
- Iuga, A.O.; McGuire, M. Adherence and health care costs. Risk Manag. Healthc. Policy 2014, 7, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Stentzel, U.; van den Berg, N.; Schulze, L.N.; Schwaneberg, T.; Radicke, F.; Langosch, J.M.; Freyberger, H.J.; Hoffmann, W.; Grabe, H.-J. Predictors of medication adherence among patients with severe psychiatric disorders: Findings from the baseline assessment of a randomized controlled trial (Tecla). BMC Psychiatry 2018, 18, 155. [Google Scholar] [CrossRef] [Green Version]
- Steinkamp, J.M.; Goldblatt, N.; Borodovsky, J.T.; LaVertu, A.; Kronish, I.M.; Marsch, L.A.; Schuman-Olivier, Z. Technological Interventions for Medication Adherence in Adult Mental Health and Substance Use Disorders: A Systematic Review. JMIR Ment. Health 2019, 6, e12493. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, H.; Fang, Q.; Xie, L.; Shu, L.; Sun, W.; Liu, Q. Effectiveness of Mobile Applications on Medication Adherence in Adults with Chronic Diseases: A Systematic Review and Meta-Analysis. J. Manag. Care Spec. Pharm. 2020, 26, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Armitage, L.C.; Kassavou, A.; Sutton, S. Do mobile device apps designed to support medication adherence demonstrate efficacy? A systematic review of randomised controlled trials, with meta-analysis. BMJ Open 2020, 10, e032045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, J.M.; Perlis, R.H.; DiCarlo, L.A.; Au-Yeung, K.; Duong, J.; Petrides, G. First Experience with a Wireless System Incorporating Physiologic Assessments and Direct Confirmation of Digital Tablet Ingestions in Ambulatory Patients with Schizophrenia or Bipolar Disorder. J. Clin. Psychiatry 2013, 74, e533–e540. [Google Scholar] [CrossRef]
- Peters-Strickland, T.; Pestreich, L.; Hatch, A.; Rohatagi, S.; Baker, R.A.; Docherty, J.P.; Markovtsova, L.; Raja, P.; Weiden, P.J.; Walling, D.P. Usability of a novel digital medicine system in adults with schizophrenia treated with sensor-embedded tablets of aripiprazole. Neuropsychiatr. Dis. Treat. 2016, 12, 2587–2594. [Google Scholar] [CrossRef] [Green Version]
- Rohatagi, S.; Profit, D.; Hatch, A.; Zhao, C.; Docherty, J.P.; Peters-Strickland, T.S. Optimization of a Digital Medicine System in Psychiatry. J. Clin. Psychiatry 2016, 77, e1101. [Google Scholar] [CrossRef] [Green Version]
- Kopelowicz, A.; Baker, R.A.; Zhao, C.; Brewer, C.; Lawson, E.; Peters-Strickland, T. A multicenter, open-label, pilot study evaluating the functionality of an integrated call center for a digital medicine system to optimize monitoring of adherence to oral aripiprazole in adult patients with serious mental illness. Neuropsychiatr. Dis. Treat. 2017, 13, 2641–2651. [Google Scholar] [CrossRef] [Green Version]
- Frias, J.; Virdi, N.; Raja, P.; Kim, Y.; Savage, G.; Osterberg, L. Effectiveness of Digital Medicines to Improve Clinical Outcomes in Patients with Uncontrolled Hypertension and Type 2 Diabetes: Prospective, Open-Label, Cluster-Randomized Pilot Clinical Trial. J. Med. Internet Res. 2017, 19, e246. [Google Scholar] [CrossRef]
- Alipour, A.; Gabrielson, S.; Patel, P.B. Ingestible Sensors and Medication Adherence: Focus on Use in Serious Mental Illness. Pharmacy 2020, 8, 103. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. FDA Approves Pill with Sensor that Digitally Tracks If Patients Have Ingested Their Medication. Available online: www.fda.gov/news-events/press-announcements/fda-approves-pill-sensor-digitally-tracks-if-patients-have-ingested-their-medication (accessed on 28 May 2021).
- Cosgrove, L.; Cristea, I.A.; Shaughnessy, A.F.; Mintzes, B.; Naudet, F. Digital aripiprazole or digital evergreening? A systematic review of the evidence and its dissemination in the scientific literature and in the media. BMJ Evid. Based Med. 2019, 24, 231–238. [Google Scholar] [CrossRef]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef]
- Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The Need for Multi-Omics Biomarker Signatures in Precision Medicine. Int. J. Mol. Sci. 2019, 20, 4781. [Google Scholar] [CrossRef] [Green Version]
- International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004, 431, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Docherty, A.R.; Moscati, A.A.; Fanous, A.H. Cross-Disorder Psychiatric Genomics. Curr. Behav. Neurosci. Rep. 2016, 3, 256–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, F.J. Population-Based Estimates of Heritability Shed New Light on Clinical Features of Major Depression. Am. J. Psychiatry 2018, 175, 1058–1060. [Google Scholar] [CrossRef]
- Smoller, J.W.; Finn, C.T. Family, Twin, and Adoption Studies of Bipolar Disorder. Am. J. Med. Genet. C 2003, 123, 48–58. [Google Scholar] [CrossRef]
- Gejman, P.V.; Sanders, A.R.; Duan, J. The Role of Genetics in the Etiology of Schizophrenia. Psychiatr. Clin. N. Am. 2010, 33, 35–66. [Google Scholar] [CrossRef] [Green Version]
- Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of Genes and Environments for Explaining Alzheimer Disease. Arch. Gen. Psychiatry 2006, 63, 168–174. [Google Scholar] [CrossRef]
- Guffanti, G.; Gameroff, M.J.; Warner, V.; Talati, A.; Glatt, C.E.; Wickramaratne, P.; Weissman, M.M. Heritability of Major Depressive and Comorbid Anxiety Disorders in Multi-Generational Families at High Risk for Depression. Am. J. Med. Genet. B 2016, 171, 1072–1079. [Google Scholar] [CrossRef]
- Reilly, M.T.; Noronha, A.; Goldman, D.; Koob, G.F. Genetic studies of alcohol dependence in the context of the addiction cycle. Neuropharmacology 2017, 122, 3–21. [Google Scholar] [CrossRef]
- Skoglund, C.; Tiger, A.; Rück, C.; Petrovic, P.; Asherson, P.; Hellner, C.; Mataix-Cols, D.; Kuja-Halkola, R. Familial risk and heritability of diagnosed borderline personality disorder: A register study of the Swedish population. Mol. Psychiatry 2021, 26, 999–1008. [Google Scholar] [CrossRef] [Green Version]
- Hettema, J.M.; Neale, M.C.; Kendler, K.S. A Review and Meta-Analysis of the Genetic Epidemiology of Anxiety Disorders. Am. J. Psychiatry 2001, 158, 1568–1578. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-K. (Ed.) Frontiers in Psychiatry. Artificial Intelligence, Precision Medicine, and Other Paradigm Shifts; Springer Nature Singapore: Singapore, 2019; Volume 1192. [Google Scholar]
- van Loo, H.M.; Romeijn, J.-W.; Peter, D.J.; Schoevers, R.A. Psychiatric comorbidity and causal disease models. Prev. Med. 2013, 57, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Sivakumaran, S.; Agakov, F.; Theodoratou, E.; Prendergast, J.G.; Zgaga, L.; Manolio, T.; Rudan, I.; McKeigue, P.; Wilson, J.F.; Campbell, H. Abundant Pleiotropy in Human Complex Diseases and Traits. Am. J. Hum. Genet. 2011, 89, 607–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zannas, A.S.; Chrousos, G.P. Epigenetic programming by stress and glucocorticoids along the human lifespan. Mol. Psychiatry 2017, 22, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Lehrner, A. Intergenerational transmission of trauma effects: Putative role of epigenetic mechanisms. World Psychiatry 2018, 17, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Xavier, M.J.; Roman, S.D.; Aitken, R.J.; Nixon, B. Transgenerational inheritance: How impacts to the epigenetic and genetic information of parents affect offspring health. Hum. Reprod. Update 2019, 25, 519–541. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.N.; King, J.B.; Anderson, J.S. Neuroimaging in Psychiatry and Neurodevelopment: Why the emperor has no clothes. Br. J. Radiol. 2019, 92, 20180910. [Google Scholar] [CrossRef]
- Arslan, A. Genes, Brains, and Behavior: Imaging Genetics for Neuropsychiatric Disorders. J. Neuropsychiatry Clin. Neurosci. 2015, 27, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Ambrosen, K.S.; Skjerbaek, M.W.; Foldager, J.; Axelsen, M.C.; Bak, N.; Arvastson, L.; Christensen, S.R.; Johansen, L.B.; Raghava, J.M.; Oranje, B.; et al. A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data. Transl. Psychiatry 2020, 10, 276. [Google Scholar] [CrossRef]
- Cui, L.-B.; Fu, Y.-F.; Liu, L.; Wu, X.-S.; Xi, Y.-B.; Wang, H.-N.; Qin, W.; Yin, H. Baseline structural and functional magnetic resonance imaging predicts early treatment response in schizophrenia with radiomics strategy. Eur. J. Neurosci. 2021, 53, 1961–1975. [Google Scholar] [CrossRef]
- Cohen, S.E.; Zantvoord, J.B.; Wezenberg, B.N.; Bockting, C.L.H.; van Wingen, G.A. Magnetic resonance imaging for individual prediction of treatment response in major depressive disorders: A systematic review and meta-analysis. Transl. Psychiatry 2021, 11, 168. [Google Scholar] [CrossRef]
- Lee, D.H.; Yoon, S.N. Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. Int. J. Environ. Res. Public Health 2021, 18, 271. [Google Scholar] [CrossRef]
- Maddox, T.M.; Rumsfeld, J.S.; Payne, P.R.O. Questions for Artificial Intelligence in Health Care. JAMA 2019, 321, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Lee, Y.; Ragguett, R.-M.; Mansur, R.B.; Boutilier, J.J.; Rosenblat, J.D.; Trevizol, A.; Brietzke, E.; Lin, K.; Pan, Z.; Subramaniapillai, M.; et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. J. Affect. Disord. 2018, 241, 519–532. [Google Scholar] [CrossRef]
- Bzdok, D.; Meyer-Lindenberg, A. Machine Learning for Precision Psychiatry: Opportunities and Challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naylor, D. On the Prospects for a (Deep) Learning Health Care System. JAMA 2018, 320, 1099–1100. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.E.; Torous, J.; De Choudhury, M.; Depp, C.A.; Graham, S.A.; Kim, H.-C.; Paulus, M.P.; Krystal, J.H.; Jeste, D.V. Artificial Intelligence for Mental Healthcare: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021. [Google Scholar] [CrossRef]
- Stead, W.W. Clinical Implications and Challenges of Artificial Intelligence and Deep Learning. JAMA 2018, 320, 1107–1108. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Suicide in the World: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Arsenault-Lapierre, G.; Kim, C.; Turecki, G. Psychiatric diagnoses in 3275 suicides: A meta-analysis. BMC Psychiatry 2004, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, S. Epidemiology of Suicide and the Psychiatric Perspective. Int. J. Environ. Res. Public Health 2018, 15, 1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, J.; Geddes, J.; Hawton, K.; Deeks, J.; Goldacre, M. Suicide in psychiatric hospital in-patients: Risk factors and their predictive power. Br. J. Psychiatry 2000, 176, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, D.T.; Ryan, C.J.; Hadzi-Pavlovic, D.; Singh, S.P.; Stanton, C.; Large, M.M. Suicide Rates After Discharge From Psychiatric Facilities. JAMA Psychiatry 2017, 74, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Luoma, J.B.; Martin, C.E.; Pearson, J.L. Contact with Mental Health and Primary Care Providers Before Suicide: A Review of the Evidence. Am. J. Psychiatry 2002, 159, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.C. Suicide Risk Assessment in Clinical Practice: Pragmatic Guidelines for Imperfect Assessments. Psychotherapy 2012, 49, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Isometsä, E.T.; Heikkinen, M.E.; Marttunen, M.J.; Henriksson, M.M.; Aro, H.; Lönnqvist, J.K. The Last Appointment Before Suicide: Is Suicide Intent Communicated? Am. J. Psychiatry 1995, 152, 919–922. [Google Scholar] [CrossRef]
- Fazel, S.; Wolf, A.; Larsson, H.; Mallett, S.; Fanshawe, T.R. The prediction of suicide in severe mental illness: Development and validation of a clinical prediction rule (OxMIS). Transl. Psychiatry 2019, 9, 98. [Google Scholar] [CrossRef]
- Chan, M.K.Y.; Bhatti, H.; Meader, N.; Stockton, S.; Evans, J.; O’Connor, R.C.; Kapur, N.; Kendall, T. Predicting suicide following self-harm: Systematic review of risk factors and risk scales. Br. J. Psychiatry 2016, 209, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Runeson, B.; Odeberg, J.; Pettersson, A.; Edbom, T.; Adamsson, I.J.; Waern, M. Instruments for the assessment of suicide risk: A systematic review evaluating the certainty of the evidence. PLoS ONE 2017, 12, e0180292. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.; Spittal, M.J. Suicide Risk Assessment: Risk Stratification Is Not Accurate Enough to Be Clinically Useful and Alternative Approaches Are Needed. Crisis 2018, 39, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Lindh, A.U.; Beckman, K.; Carlborg, A.; Waern, M.; Salander Renberg, E.; Dahlin, M.; Runeson, B. Predicting suicide: A comparison between clinical suicide risk assessment and the Suicide Intent Scale. J. Affect. Disord. 2020, 263, 445–449. [Google Scholar] [CrossRef]
- Mulder, R.; Newton-Howes, G.; Coid, J.W. The futility of risk prediction in psychiatry. Br. J. Psychiatry 2016, 209, 271–272. [Google Scholar] [CrossRef] [Green Version]
- Deisenhammer, E.A.; Ing, C.-M.; Strauss, R.; Kemmler, G.; Hinterhuber, H.; Weiss, E.M. The Duration of the Suicidal Process: How Much Time Is Left for Intervention Between Consideration and Accomplishment of a Suicide Attempt? J. Clin. Psychiatry 2009, 70, 19–24. [Google Scholar] [CrossRef]
- Bernert, R.A.; Hilberg, A.M.; Melia, R.; Kim, J.P.; Shah, N.H.; Abnousi, F. Artificial Intelligence and Suicide Prevention: A Systematic Review of Machine Learning Investigations. Int. J. Environ. Res. Public Health 2020, 17, 5929. [Google Scholar] [CrossRef]
- Belsher, B.E.; Smolenski, D.J.; Pruitt, L.D.; Bush, N.E.; Beech, E.H.; Workman, D.E.; Morgan, R.L.; Evatt, D.P.; Tucker, J.; Skopp, N.A. Prediction Models for Suicide Attempts and Deaths: A Systematic Review and Simulation. JAMA Psychiatry 2019, 76, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.; Moscardini, E.H.; Cohen, A.S.; Tucker, R.P. Machine learning for suicidology: A practical review of exploratory and hypothesis-driven approaches. Clin. Psychol. Rev. 2020, 82, 101940. [Google Scholar] [CrossRef] [PubMed]
- Barak-Corren, Y.; Castro, V.M.; Javitt, S.; Hoffnagle, A.G.; Dai, Y.; Perlis, R.H.; Nock, M.K.; Smoller, J.W.; Reis, B.Y. Predicting Suicidal Behavior From Longitudinal Electronic Health Records. Am. J. Psychiatry 2017, 174, 154–162. [Google Scholar] [CrossRef] [Green Version]
- McHugh, C.M.; Large, M.M. Can machine-learning methods really help predict suicide? Curr. Opin. Psychiatry 2020, 33, 369–374. [Google Scholar] [CrossRef]
- Torous, J.; Walker, R. Leveraging Digital Health and Machine Learning Toward Reducing Suicide—From Panacea to Practical Tool. JAMA Psychiatry 2019, 76, 999–1000. [Google Scholar] [CrossRef] [PubMed]
- Baldessarini, R.J.; Tondo, L.; Davis, P.; Pompili, M.; Goodwin, F.K.; Hennen, J. Decreased risk of suicides and attempts during long-term lithium treatment: A meta-analytic review. Bipolar Disord. 2006, 8, 625–639. [Google Scholar] [CrossRef]
- Zalsman, G.; Hawton, K.; Wasserman, D.; van Heeringen, K.; Arensman, E.; Sarchiapone, M.; Carli, V.; Höschl, C.; Barzilay, R.; Balazs, J.; et al. Suicide prevention strategies revisited: 10-year systematic review. Lancet Psychiatry 2016, 3, 646–659. [Google Scholar] [CrossRef]
- Canuso, C.M.; Singh, J.B.; Fedgchin, M.; Alphs, L.; Lane, R.; Lim, P.; Pinter, C.; Hough, D.; Sanacora, G.; Manji, H.; et al. Efficacy and Safety of Intranasal Esketamine for the Rapid Reduction of Symptoms of Depression and Suicidality in Patients at Imminent Risk for Suicide: Results of a Double-Blind, Randomized, Placebo-Controlled Study. Am. J. Psychiatry 2018, 175, 620–630. [Google Scholar] [CrossRef]
- Ionescu, D.F.; Fu, D.-J.; Qiu, X.; Lane, R.; Lim, P.; Kasper, S.; Hough, D.; Drevets, W.C.; Manji, H.; Canuso, C.M. Esketamine Nasal Spray for Rapid Reduction of Depressive Symptoms in Patients With Major Depressive Disorder Who Have Active Suicide Ideation With Intent: Results of a Phase 3, Double-Blind, Randomized Study (ASPIRE II). Int. J. Neuropsychopharmacol. 2021, 24, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Dunster-Page, C.; Haddock, G.; Wainwright, L.; Berry, K. The relationship between therapeutic alliance and patient’s suicidal thoughts, self-harming behaviours and suicide attempts: A systematic review. J. Affect. Disord. 2017, 223, 165–174. [Google Scholar] [CrossRef]
- Flückiger, C.; Del Re, A.C.; Wampold, B.E.; Horvath, A.O. The Alliance in Adult Psychotherapy: A Meta-Analytic Synthesis. Psychotherapy 2018, 55, 316–340. [Google Scholar] [CrossRef]
- Comtois, K.A.; Kerbrat, A.H.; DeCou, C.R.; Atkins, D.C.; Majeres, J.J.; Baker, J.C.; Ries, R.K. Effect of Augmenting Standard Care for Military Personnel With Brief Caring Text Messages for Suicide Prevention. JAMA Psychiatry 2019, 76, 474–483. [Google Scholar] [CrossRef]
- Pompili, M.; Belvederi Murri, M.; Patti, S.; Innamorati, M.; Lester, D.; Girardi, P.; Amore, M. The communication of suicidal intentions: A meta-analysis. Psychol. Med. 2016, 46, 2239–2253. [Google Scholar] [CrossRef]
- Pourmand, A.; Roberson, J.; Caggiula, A.; Monsalve, N.; Rahimi, M.; Torres-Llenza, V. Social Media and Suicide: A Review of Technology-Based Epidemiology and Risk Assessment. Telemed. e-Health 2019, 25, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Sánchez, G.; Marques, G.; Dorronzoro, E.; Rivera-Romero, O.; Franco-Martin, M.; De la Torre-Díez, I. Suicide Risk Assessment Using Machine Learning and Social Networks: A Scoping Review. J. Med. Syst. 2020, 44, 205. [Google Scholar] [CrossRef] [PubMed]
- Ruderfer, D.M.; Walsh, C.G.; Aguirre, M.W.; Tanigawa, Y.; Ribeiro, J.D.; Franklin, J.C.; Rivas, M.A. Significant shared heritability underlies suicide attempt and clinically predicted probability of attempting suicide. Mol. Psychiatry 2020, 25, 2422–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Psychiatric Genomics Consortium. Genome-wide association study of suicide attempt in psychiatric disorders identifies association with major depression polygenic risk scores. Am. J. Psychiatry 2019, 176, 651–660. [Google Scholar] [CrossRef]
- Trivedi, M.; Morris, D.W.; Wisniewski, S.R.; Lesser, I.; Nierenberg, A.A.; Daly, E.; Kurian, B.T.; Gaynes, B.N.; Balasubramani, G.K.; Rush, A.J. Increase in Work Productivity of Depressed Individuals With Improvement in Depressive Symptom Severity. Am. J. Psychiatry 2013, 170, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Rosenblat, J.D.; Lee, Y.; McIntyre, R.S. The effect of pharmacogenomic testing on response and remission rates in the acute treatment of major depressive disorder: A meta-analysis. J. Affect. Disord. 2018, 241, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Zeier, Z.; Carpenter, L.L.; Kalin, N.H.; Rodriguez, C.I.; McDonald, W.M.; Widge, A.S.; Nemeroff, C.B. Clinical Implementation of Pharmacogenetic Decision Support Tools for Antidepressant Drug Prescribing. Am. J. Psychiatry 2018, 175, 873–886. [Google Scholar] [CrossRef]
- Pigoni, A.; Delvecchio, G.; Madonna, D.; Bressi, C.; Soares, J.; Brambilla, P. Can Machine Learning help us in dealing with treatment resistant depression? A review. J. Affect. Disord. 2019, 259, 21–26. [Google Scholar] [CrossRef]
- Gaynes, B.N.; Lux, L.; Gartlehner, G.; Asher, G.; Forman-Hoffman, V.; Green, J.; Boland, E.; Weber, R.P.; Randolph, C.; Bann, C.; et al. Defining treatment-resistant depression. Depress. Anxiety 2020, 37, 134–145. [Google Scholar] [CrossRef]
- Mueser, K.T.; McGurk, S.R. Schizophrenia. Lancet 2004, 363, 2063–2072. [Google Scholar] [CrossRef]
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global Epidemiology and Burden of Schizophrenia: Findings From the Global Burden of Disease Study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Borgwardt, S.; Bechdolf, A.; Addington, J.; Riecher-Rössler, A.; Schultze-Lutter, F.; Keshavan, M.; Wood, S.; Ruhrmann, S.; Seidman, L.J.; et al. The Psychosis High-Risk State: A Comprehensive State-of-the-Art Review. JAMA Psychiatry 2013, 70, 107–120. [Google Scholar] [CrossRef]
- Sanfelici, R.; Dwyer, D.B.; Antonucci, L.A.; Koutsouleris, N. Individualized Diagnostic and Prognostic Models for Patients With Psychosis Risk Syndromes: A Meta-analytic View on the State of the Art. Biol. Psychiatry 2020, 88, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusar-Poli, P.; Bonoldi, I.; Yung, A.R.; Borgwardt, S.; Kempton, M.J.; Valmaggia, L.; Barale, F.; Caverzasi, E.; McGuire, P. Predicting Psychosis. Arch. Gen. Psychiatry 2012, 69, 220–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusar-Poli, P.; Cappucciati, M.; Rutigliano, G.; Schultze-Lutter, F.; Bonoldi, I.; Borgwardt, S.; Riecher-Rössler, A.; Addington, J.; Perkins, D.; Woods, S.W.; et al. At risk or not at risk? A meta-analysis of the prognostic accuracy of psychometric interviews for psychosis prediction. World Psychiatry 2015, 14, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Koutsouleris, N.; Kambeitz-Ilankovic, L.; Ruhrmann, S.; Rosen, M.; Ruef, A.; Dwyer, D.B.; Paolini, M.; Chisholm, K.; Kambeitz, J.; Haidl, T.; et al. Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression. JAMA Psychiatry 2018, 75, 1156–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Lima, L.F.; Waikamp, V.; Antonelli-Salgado, T.; Passos, I.C.; Freitas, L.H.M. The use of machine learning techniques in trauma-related disorders: A systematic review. J. Psychiatr. Res. 2020, 121, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.R.; Tsamardinos, I.; Eskelund, K.; Gradus, J.L.; Andersen, S.B.; Karstoft, K.-I. Forecasting military mental health in a complete sample of Danish military personnel deployed between 1992–2013. J. Affect. Disord. 2021, 288, 167–174. [Google Scholar] [CrossRef]
- Schultebraucks, K.; Sijbrandij, M.; Galatzer-Levy, I.; Mouthaan, J.; Olff, M.; van Zuiden, M. Forecasting individual risk for long-term Posttraumatic Stress Disorder in emergency medical settings using biomedical data: A machine learning multicenter cohort study. Neurobiol. Stress 2021, 14, 100297. [Google Scholar] [CrossRef]
- International Society for Traumatic Stress Studies. Posttraumatic Stress Disorder: Prevention and Treatment Guidelines. Methodology and Recommendations; International Society for Traumatic Stress Studies: Oakbrook Terrace, IL, USA, 2019. [Google Scholar]
- Roberts, N.P.; Kitchiner, N.J.; Kenardy, J.; Lewis, C.E.; Bisson, J.I. Early psychological intervention following recent trauma: A systematic review and meta-analysis. Eur. J. Psychotraumatol. 2019, 10, 1695486. [Google Scholar] [CrossRef] [Green Version]
- Thom, R.P.; Levy-Carrick, N.C.; Bui, M.; Silbersweig, D. Delirium. Am. J. Psychiatry 2019, 176, 785–793. [Google Scholar] [CrossRef]
- Witlox, J.; Eurelings, L.S.M.; de Jonghe, J.F.M.; Kalisvaart, K.J.; Eikelenboom, P.; van Gool, W.A. Delirium in Elderly Patients and the Risk of Postdischarge Mortality, Institutionalization, and Dementia. JAMA 2010, 304, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Hercus, C.; Hudaib, A.-R. Delirium misdiagnosis risk in psychiatry: A machine learning-logistic regression predictive algorithm. BMC Health Serv. Res. 2020, 20, 151. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Lee, K.; Park, C. Applications of machine learning in addiction studies: A systematic review. Psychiatry Res. 2019, 275, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Barenholtz, E.; Fitzgerald, N.D.; Hahn, W.E. Machine-learning approaches to substance-abuse research: Emerging trends and their implications. Curr. Opin. Psychiatry 2020, 33, 334–342. [Google Scholar] [CrossRef]
- Vayena, E.; Blasimme, A.; Cohen, I.G. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018, 15, e1002689. [Google Scholar] [CrossRef]
- Cearns, M.; Hahn, T.; Baune, B.T. Recommendations and future directions for supervised machine learning in psychiatry. Transl. Psychiatry 2019, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, N.C.; Bentley, K.H.; Walton, A.; Wang, S.B.; Fortgang, R.G.; Millner, A.J.; Coombs III, G.; Rodman, A.M.; Coppersmith, D.D.L. Ethical dilemmas posed by mobile health and machine learning in psychiatry research. Bull. World Health Organ. 2020, 98, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Monteith, S.; Geddes, J.; Gitlin, M.J.; Grof, P.; Whybrow, P.C.; Glenn, T. Automation to optimise physician treatment of individual patients: Examples in psychiatry. Lancet Psychiatry 2019, 6, 338–349. [Google Scholar] [CrossRef]
- Brown, L.A.; Benhamou, K.; May, A.M.; Mu, W.; Berk, R. Machine Learning Algorithms in Suicide Prevention: Clinician Interpretations as Barriers to Implementation. J. Clin. Psychiatry 2020, 81, 19m12970. [Google Scholar] [CrossRef] [PubMed]
- Hinton, G. Deep Learning—A Technology With the Potential to Transform Health Care. JAMA 2018, 320, 1101–1102. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, P.-H.C.; Krause, J.; Peng, L. How to Read Articles That Use Machine Learning: Users’ Guides to the Medical Literature. JAMA 2019, 322, 1806–1816. [Google Scholar] [CrossRef]
- Gottesman, I.I.; Gould, T.D. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am. J. Psychiatry 2003, 160, 636–645. [Google Scholar] [CrossRef]
- Insel, T.; Cuthbert, B.; Garvey, M.; Heinssen, R.; Pine, D.S.; Quinn, K.; Sanislow, C.; Wang, P. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. Am. J. Psychiatry 2010, 167, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Steinhubl, S.R.; Topol, E.J. Moving from Digitalization to Digitization in Cardiovascular Care: Why is it Important and What Can it Mean for Patients and Providers? J. Am. Coll. Cardiol. 2015, 66, 1489–1496. [Google Scholar] [CrossRef] [Green Version]
- Rohani, D.A.; Faurholt-Jepsen, M.; Kessing, L.V.; Bardram, J.E. Correlations Between Objective Behavioral Features Collected From Mobile and Wearable Devices and Depressive Mood Symptoms in Patients With Affective Disorders: Systematic Review. JMIR mHealth uHealth 2018, 6, e165. [Google Scholar] [CrossRef] [Green Version]
- Osheroff, J.A.; Teich, J.M.; Middleton, B.; Steen, E.B.; Wright, A.; Detmer, D.E. A Roadmap for National Action on Clinical Decision Support. J. Am. Med. Inform. Assoc. 2007, 14, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.-L.; Chan, H.-Y.; Pan, Y.-J.; Chen, C.-H. The Effectiveness of a Computer Reminder System for Laboratory Monitoring of Metabolic Syndrome in Schizophrenic Outpatients Using Second-generation Antipsychotics. Pharmacopsychiatry 2015, 48, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Adli, M.; Wiethoff, K.; Baghai, T.C.; Fisher, R.; Seemüller, F.; Laakmann, G.; Brieger, P.; Cordes, J.; Malevani, J.; Laux, G.; et al. How Effective Is Algorithm-Guided Treatment for Depressed Inpatients? Results from the Randomized Controlled Multicenter German Algorithm Project 3 Trial. Int. J. Neuropsychopharmacol. 2017, 20, 721–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallgren, K.A.; Bauer, A.M.; Atkins, D.C. Digital Technology and Clinical Decision-Making in Depression Treatment: Current Findings and Future Opportunities. Depress. Anxiety 2017, 34, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.; Carr, E.; Goldsmith, K.; Young, A.H.; Ashworth, M.; Fennema, D.; Barrett, B.; Zahn, R. Study protocol for the antidepressant advisor (ADeSS): A decision support system for antidepressant treatment for depression in UK primary care: A feasibility study. BMJ Open 2020, 10, e035905. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Schooler, N.R.; Correll, C.U.; John, M.; Kurian, B.T.; Marcy, P.; Miller, A.L.; Pipes, R.; Trivedi, M.H.; Kane, J.M. Psychopharmacological Treatment in the RAISE-ETP Study: Outcomes of a Manual and Computer Decision Support System Based Intervention. Am. J. Psychiatry 2018, 175, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Tasma, M.; Roebroek, L.O.; Liemburg, E.J.; Knegtering, H.; Delespaul, P.A.; Boonstra, A.; Swart, M.; Castelein, S. The development and evaluation of a computerized decision aid for the treatment of psychotic disorders. BMC Psychiatry 2018, 18, 163. [Google Scholar] [CrossRef] [Green Version]
- Fraccaro, P.; Casteleiro, M.A.; Ainsworth, J.; Buchan, I. Adoption of Clinical Decision Support in Multimorbidity: A Systematic Review. JMIR Med. Inform. 2015, 3, e4. [Google Scholar] [CrossRef] [PubMed]
- Forman-Hoffman, V.; Batts, K.; Hedden, S.L.; Spagnola, K.; Bose, J. Comorbid mental disorders among adults in the mental health surveillance survey. Ann. Epidemiol. 2018, 28, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Apple HealthKit. Available online: https://developer.apple.com/documentation/healthkit (accessed on 22 May 2021).
- CNBC. Tim Cook: Apple’s Greatest Contribution Will Be about Health. Available online: www.cnbc.com/2019/01/08/tim-cook-teases-new-apple-services-tied-to-health-care.html (accessed on 22 May 2021).
- Sinsky, C.; Colligan, L.; Li, L.; Prgomet, M.; Reynolds, S.; Goeders, L.; Westbrook, J.; Tutty, M.; Blike, G. Allocation of Physician Time in Ambulatory Practice: A Time and Motion Study in 4 Specialties. Ann. Intern. Med. 2016, 165, 753–760. [Google Scholar] [CrossRef]
- Arndt, B.G.; Beasley, J.W.; Watkinson, M.D.; Temte, J.L.; Tuan, W.-J.; Sinsky, C.A.; Gilchrist, V.J. Tethered to the EHR: Primary Care Physician Workload Assessment Using EHR Event Log Data and Time-Motion Observations. Ann. Fam. Med. 2017, 15, 419–426. [Google Scholar] [CrossRef]
- Gellert, G.A.; Ramirez, R.; Webster, S.L. The Rise of the Medical Scribe Industry: Implications for the Advancement of Electronic Health Records. JAMA 2015, 313, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Rosen, D.C.; Nakash, O.; Alegria, M. The Impact of Computer Use on Therapeutic Alliance and Continuance in Care During the Mental Health Intake. Psychotherapy 2016, 53, 117–123. [Google Scholar] [CrossRef]
- Rasminsky, S.; Berman, R.; Burt, V.K. Are We Turning Our Backs on Our Patients? Training Psychiatrists in the Era of the Electronic Health Record. Am. J. Psychiatry 2015, 172, 708–709. [Google Scholar] [CrossRef] [PubMed]
- Payne, T.H.; Alonso, W.D.; Markiel, J.A.; Lybarger, K.; Lordon, R.; Yetisgen, M.; Zech, J.M.; White, A.A. Using voice to create inpatient progress notes: Effects on note timeliness, quality, and physician satisfaction. JAMIA Open 2018, 1, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufman, D.R.; Sheehan, B.; Stetson, P.; Bhatt, A.R.; Field, A.I.; Patel, C.; Maisel, J.M. Natural Language Processing-Enabled and Conventional Data Capture Methods for Input to Electronic Health Records: A Comparative Usability Study. JMIR Med. Inform. 2016, 4, e35. [Google Scholar] [CrossRef] [PubMed]
- Flores, G. The Impact of Medical Interpreter Services on the Quality of Health Care: A Systematic Review. Med. Care Res. Rev. 2005, 62, 255–299. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.M.; Alegria, M. The Impact of Patient Language Proficiency and Interpreter Service Use on the Quality of Psychiatric Care: A Systematic Review. Psychiatr. Serv. 2010, 61, 765–773. [Google Scholar] [CrossRef]
- The National Institute of Mental Health. Mental Illness. Available online: www.nimh.nih.gov/health/statistics/mental-illness#part_154785 (accessed on 12 May 2021).
- Powell, J.; Clarke, A. Internet information-seeking in mental health. Br. J. Psychiatry 2006, 189, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Ayers, J.W.; Althouse, B.M.; Allem, J.-P.; Rosenquist, J.N.; Ford, D.E. Seasonality in Seeking Mental Health Information on Google. Am. J. Prev. Med. 2013, 44, 520–525. [Google Scholar] [CrossRef]
- Yigzaw, K.Y.; Wynn, R.; Marco-Ruiz, L.; Budrionis, A.; Oyeyemi, S.O.; Fagerlund, A.; Bellika, J.G. The Association Between Health Information Seeking on the Internet and Physician Visits (The Seventh Tromso Study—Part 4): Population-Based Questionnaire Study. J. Med. Internet Res. 2020, 22, e13120. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Health Literacy: The Solid Facts; World Health Organization: Copenhagen, Denmark, 2013. [Google Scholar]
- Spatz, E.; Krumholz, H.M.; Moulton, B.W. Prime Time for Shared Decision Making. JAMA 2017, 317, 1309–1310. [Google Scholar] [CrossRef]
- Fiorillo, A.; Barlati, S.; Bellomo, A.; Corrivetti, G.; Nicolo, G.; Sampogna, G.; Stanga, V.; Veltro, F.; Maina, G.; Vita, A. The role of shared decision-making in improving adherence to pharmacological treatments in patients with schizophrenia: A clinical review. Ann. Gen. Psychiatry 2020, 19, 43. [Google Scholar] [CrossRef] [PubMed]
- Barry, M.J.; Edgman-Levitan, S. Shared Decision Making—The Pinnacle of Patient-Centered Care. N. Engl. J. Med. 2012, 366, 780–781. [Google Scholar] [CrossRef] [Green Version]
- Stacey, D.; Légaré, F.; Col, N.F.; Bennett, C.L.; Barry, M.J.; Eden, K.B.; Holmes-Rovner, M.; Llewellyn-Thomas, H.; Lyddiatt, A.; Thomson, R.; et al. Decision aids for people facing health treatment or screening decisions (Review). Cochrane Database Syst. Rev. 2014, 1, CD001431. [Google Scholar] [CrossRef]
- Coulter, A. Shared decision making—Everyone wants it, so why isn’t it happening? World Psychiatry 2017, 16, 117–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slade, M. Implementing shared decision making in routine mental health care. World Psychiatry 2017, 16, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Duncan, E.; Best, C.; Hagen, S. Shared decision making interventions for people with mental health conditions (Review). Cochrane Database Syst. Rev. 2010, 1, CD007297. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, A.; Herrin, J.; Williams, M.D.; Inselman, J.W.; Branda, M.E.; Shah, N.D.; Heim, E.M.; Dick, S.R.; Linzer, M.; Boehm, D.H.; et al. Shared decision making for antidepressants in primary care—A clustered randomized trial. JAMA Intern. Med. 2015, 175, 1761–1770. [Google Scholar] [CrossRef]
- Stovell, D.; Morrison, A.P.; Panayiotou, M.; Hutton, P. Shared treatment decision-making and empowerment-related outcomes in psychosis: Systematic review and meta-analysis. Br. J. Psychiatry 2016, 209, 23–28. [Google Scholar] [CrossRef]
- Hamann, J.; John, M.; Holzhüter, F.; Siafis, S.; Brieger, P.; Heres, S. Shared decision making, aggression, and coercion in inpatients with schizophrenia. Eur. Psychiatry 2020, 63, e90. [Google Scholar] [CrossRef] [PubMed]
- Doherty-Torstrick, E.R.; Walton, K.E.; Fallon, B.A. Cyberchondria: Parsing Health Anxiety from Online Behavior. Psychosomatics 2016, 57, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Grabner-Kräuter, S.; Waiguny, M.K.J. Insights into the Impact of Online Physician Reviews on Patients’ Decision Making: Randomized Experiment. J. Med. Internet Res. 2015, 17, e93. [Google Scholar] [CrossRef] [Green Version]
- Hanauer, D.A.; Zheng, K.; Singer, D.C.; Gebremariam, A.; Davis, M.M. Public Awareness, Perception, and Use of Online Physician Rating Sites. JAMA 2014, 311, 734–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulgund, P.; Sharman, R.; Anand, P.; Shekhar, S.; Karadi, P. Data Quality Issues With Physician-Rating Websites: Systematic Review. J. Med. Internet Res. 2020, 22, e15916. [Google Scholar] [CrossRef] [PubMed]
- Okike, K.; Peter-Bibb, T.K.; Xie, K.C.; Okike, O.N. Association Between Physician Online Rating and Quality of Care. J. Med. Internet Res. 2016, 18, e324. [Google Scholar] [CrossRef] [PubMed]
- Lee, V. Transparency and Trust—Online Patient Reviews of Physicians. N. Engl. J. Med. 2017, 376, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G.P.; Radadia, K.D.; Breyer, B.N. Online physician reviews: Is there a place for them? Risk Manag. Healthc. Policy 2019, 12, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Norcross, J.C.; Lambert, M.J. Evidence-Based Therapy Relationships. In Psychotherapy Relationships That Work, Evidence-Based Responsiveness, 2nd ed.; Oxford University Press: New York, NY, USA, 2011; pp. 3–21. [Google Scholar]
- Zeber, J.E.; Copeland, L.A.; Good, C.B.; Fine, M.J.; Bauer, M.S.; Kilbourne, A.M. Therapeutic alliance perceptions and medication adherence in patients with bipolar disorder. J. Affect. Disord. 2008, 107, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Zilcha-Mano, S.; Roose, S.P.; Barber, J.P.; Rutherford, B.R. Therapeutic Alliance in Antidepressant Treatment: Cause or Effect of Symptomatic Levels? Psychother. Psychosom. 2015, 84, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Tessier, A.; Boyer, L.; Husky, M.; Baylé, F.; Llorca, P.-M.; Misdrahi, D. Medication adherence in schizophrenia: The role of insight, therapeutic alliance and perceived trauma associated with psychiatric care. Psychiatry Res. 2017, 257, 315–321. [Google Scholar] [CrossRef]
- Sucala, M.; Schnur, J.B.; Constantino, M.J.; Miller, S.J.; Brackman, E.H.; Montgomery, G.H. The Therapeutic Relationship in E-Therapy for Mental Health: A Systematic Review. J. Med. Internet Res. 2012, 14, e110. [Google Scholar] [CrossRef]
- Hilty, D.M.; Zalpuri, I.; Stubbe, D.; Snowdy, C.E.; Shoemaker, E.Z.; Myint, M.T.; Joshi, S.V.; Liu, H.Y. Social Media/Networking and Psychiatric Education: Competencies, Teaching Methods, and Implications. J. Technol. Behav. Sci. 2018, 3, 268–293. [Google Scholar] [CrossRef]
- United Nations. Resolution Adopted by the General Assembly on 12 December 2012; United Nations: New York, NY, USA, 2012.
- European Medicines Agency. Abilify MyCite: Withdrawal of the Marketing Authorisation Application. Available online: www.ema.europa.eu/en/medicines/human/withdrawn-applications/abilify-mycite (accessed on 28 May 2021).
- U.S. Food & Drug Administration. Digital Health Software Precertification (Pre-Cert) Program. Available online: www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-program (accessed on 27 May 2021).
- Hilty, D.M.; Chan, S.; Torous, J.; Luo, J.; Boland, R.J. Mobile Health, Smartphone/Device, and Apps for Psychiatry and Medicine. Psychiatr. Clin. N. Am. 2019, 42, 513–534. [Google Scholar] [CrossRef]
- Krückl, J.S.; Moeller, J.; Gaupp, R.; Meier, C.; Roth, C.B.; Lang, U.E.; Huber, C.G. The Implementation of Home Office Work in a Large Psychiatric University Hospital in Switzerland during the Covid-19 Pandemic: A Field Report. JMIR Ment. Health 2021, in press. [Google Scholar] [CrossRef]
- Torous, J.; Hsin, H. Empowering the digital therapeutic relationship: Virtual clinics for digital health interventions. NPJ Digit. Med. 2018, 1, 16. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roth, C.B.; Papassotiropoulos, A.; Brühl, A.B.; Lang, U.E.; Huber, C.G. Psychiatry in the Digital Age: A Blessing or a Curse? Int. J. Environ. Res. Public Health 2021, 18, 8302. https://doi.org/10.3390/ijerph18168302
Roth CB, Papassotiropoulos A, Brühl AB, Lang UE, Huber CG. Psychiatry in the Digital Age: A Blessing or a Curse? International Journal of Environmental Research and Public Health. 2021; 18(16):8302. https://doi.org/10.3390/ijerph18168302
Chicago/Turabian StyleRoth, Carl B., Andreas Papassotiropoulos, Annette B. Brühl, Undine E. Lang, and Christian G. Huber. 2021. "Psychiatry in the Digital Age: A Blessing or a Curse?" International Journal of Environmental Research and Public Health 18, no. 16: 8302. https://doi.org/10.3390/ijerph18168302
APA StyleRoth, C. B., Papassotiropoulos, A., Brühl, A. B., Lang, U. E., & Huber, C. G. (2021). Psychiatry in the Digital Age: A Blessing or a Curse? International Journal of Environmental Research and Public Health, 18(16), 8302. https://doi.org/10.3390/ijerph18168302