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Abstract: The COVID-19 pandemic has strongly affected the dynamics of Emergency Departments
(EDs) worldwide and has accentuated the need for tackling different operational inefficiencies that
decrease the quality of care provided to infected patients. The EDs continue to struggle against this
outbreak by implementing strategies maximizing their performance within an uncertain healthcare
environment. The efforts, however, have remained insufficient in view of the growing number of
admissions and increased severity of the coronavirus disease. Therefore, the primary aim of this
paper is to review the literature on process improvement interventions focused on increasing the
ED response to the current COVID-19 outbreak to delineate future research lines based on the gaps
detected in the practical scenario. Therefore, we applied the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines to perform a review containing the research papers
published between December 2019 and April 2021 using ISI Web of Science, Scopus, PubMed, IEEE,
Google Scholar, and Science Direct databases. The articles were further classified taking into account
the research domain, primary aim, journal, and publication year. A total of 65 papers disseminated in
51 journals were concluded to satisfy the inclusion criteria. Our review found that most applications
have been directed towards predicting the health outcomes in COVID-19 patients through machine
learning and data analytics techniques. In the overarching pandemic, healthcare decision makers
are strongly recommended to integrate artificial intelligence techniques with approaches from the
operations research (OR) and quality management domains to upgrade the ED performance under
social-economic restrictions.

Keywords: healthcare; emergency department; COVID-19; process improvement; systematic review

1. Introduction

The SARS-CoV−2 (COVID-19) disease first appeared on 30 December 2019, in Wuhan,
China [1], and continues to affect the global population in the near future. The clinical signs
of COVID-19 range from unapparent non-symptomatic infection to severe pneumonia and
death [2]. From a healthcare perspective, the swift and unpredicted spread of COVID-
19 throughout the world in nearly four months in 2020 has significantly influenced the
emergency departments (EDs) of the affected countries in view of the large, irregular, and
overwhelming number of infected people to attend. The COVID-19 impact is even more
severe in regions with infrastructure restrictions and low preparedness in their EDs to
address disasters, which has contributed to greater infection and mortality rates in contrast
with more developed countries [3]. As of 20 May 2021, it has caused approximately
164.5 million cases and 3.4 million deaths in the world [4] without considering the huge
drain on the financial resources of emergency care systems.
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The here-described context has forced many EDs to operate at full capacity or near
full capacity. In pandemic conditions where demand peaks are expected, EDs may find
it arduous to perform their functional activities, and installed capacity may no longer
satisfy this demand [5]. An evidence of this is the aggravation of waiting times and
overcrowding experienced by the patients as well as the high left-without-being-seen rates
(LWBS) observed in the emergency care wards [6]. There is also a worrisome upward
trend to receive COVID-19 patients in a more critical health condition which, added to the
increased demand, poses a significant workload on EDs around the world. Being aware of
this situation, the decision makers are then advised to rapidly deploy robust emergency care
configurations to lessen the effects of the pandemic [7], thereby alleviating the burden faced
by the stakeholders (i.e., health professionals, COVID-19 patients, healthcare authorities)
involved in this service as the pandemic evolves. The accelerating nature of the COVID-19
virus demands that flexible EDs rearrange their systems to allocate scarce resources to save
the highest number of lives [8,9].

Despite the aforementioned scenario, most of the efforts against COVID-19 carried
out by governments, industry, and academia tend to focus only on monitoring the health
conditions of COVID-19 patients using connected health technologies [10]. Likewise,
little work has been carried out on the creation and deployment of strategies dealing
with the operational inefficiencies detected along the patient journey. In this regard,
Hundal et al. [11] proposed the use of lean six sigma to tackle the overriding patient
safety domain while supporting the supply chain resilience behind the emergency care
operations. On the other hand, Gupta et al. [12] identified how different operations
management techniques can provide a solution for outstripping a range of ED challenges
derived from the current pandemic scenario. The reported literature then evidences no
reviews presenting methodological approaches that can be used by ED decision makers to
deal with the fast and unexpected COVID-19 global spread and its widespread disruption
on ED functioning. This paper therefore bridges these gaps in evidence by a systematic
review directed towards establishing the (i) most popular ED operational aims targeted
during the COVID-19 outbreak, (ii) the process-improvement techniques that have been
frequently used by practitioners to increase the ED response against the pandemic, (iii)
trends in related publication as COVID-19 evolves, and (iv) the journals most contributing
to the groundwork of applications aiming at improving the ED dynamics when treating
COVID-19 patients. Our article then provides a solid framework for examining the progress
of this research field, designing cost-effective interventions upgrading the ED performance
against the COVID-19 outbreak, pointing out gaps in the practical scenario, and devising
opportunities for future research. In summary, this review was performed to address the
following Population-Intervention-Comparators-Outcomes (PICO) question: What process
improvement approaches from the industrial engineering domain have EDs implemented
to increase their operational response in managing COVID-19 patients?

The rest of the paper is organized as follows. Section 2 describes the framework
followed to perform the systematic review whereas Section 3 presents the results. Finally,
conclusions and future research lines are outlined in Section 4.

2. Methods

This review was performed and reported considering the Preferred Reporting Items
for Systematic Reviews and Meta-analyses (PRISMA) structure:

2.1. Search Strategy and Information Sources

The PICO declaration was employed to establish the eligibility criteria underpin-
ning the review in order to pinpoint the population, intervention, comparators, and out-
comes [13]. The ISI Web of Science, Scopus, PubMed, IEEE, Google Scholar, and Science
Direct databases were chosen in view of the wide coverage of Health Sciences, Industrial
Engineering, Software Engineering, and Management literature. This review was not
recorded in any database.
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We constrained our comprehensive literature examination to full-text case articles from
December 2019 (the date on which the pandemic was initiated) and April 2021 evidencing
process improvement methodologies implemented by decision makers, policymakers,
ED administrators, practitioners, and researchers to upgrade the response of EDs when
managing COVID-19 patients. The papers had to be written in English and provide data
grounding the outcomes achieved during the interventions. Research papers depicting
conceptual frameworks without application in the practical scenario were not considered
in this review. Additionally, conference articles, doctoral theses, textbooks, master’s dis-
sertations, and review papers were discarded. The search strategy included the codes
(Figure 1) considering the most prominent process improvement techniques identified
in Ortíz-Barrios and Alfaro-Saíz [6] as well as keywords related to the topic of review.
The techniques included here can serve as a methodological framework supporting inter-
ventions undertaken by healthcare administrators, ED managers, health authorities, and
practitioners involved in the strategic and tactic decision levels of the emergency care sys-
tem. These terms are also familiar for these stakeholders as evidenced in Elamir [14] (lean),
Rotteau et al. [15] (continuous quality improvement), Cheng et al. [16] (regression), Ashour
and Kremer [17] (simulation), Feng et al. [18] (optimization), Bellew et al. [19] (critical path-
ways), Youseffi and Ferreira [20] (decision making), Nezamoddini and Khasawneh [21]
(integer programming), Bish et al. [22] (queuing), Blick [23] (2013) (six sigma), Azadeh
et al. [24] (fuzzy logic), Acuna et al. [25] (game theory), Sorrentino [26], and Saghafian
et al. [27] (operational research) where real applications have been fully reported before the
pandemic era with the participation of different healthcare workers, especially those from
the managerial dependencies. Additionally, we performed a manual search taking into
account the references related to the reviewed manuscripts. The use of the “improvement”
keyword and the ample number of techniques from the industrial engineering area consid-
ered in this review also ensures a significant literature coverage granting the identification
of manuscripts with great contribution to the evidence base.

2.2. Selection Process and Data Extraction

Specifically, the selection process and data extraction were performed by three inde-
pendent reviewers (M. O., D. C., and D. S.) who profoundly examined the papers in their
full length considering the criteria for exclusion and inclusion outlined in Section 2.2.1. Op-
posite positions among reviewers regarding the inclusion of a manuscript were addressed
via discussion and consensus. The manuscripts were later enlisted in a data extraction tem-
plate containing the paper title, authors, publication date, journal, process-improvement
approaches used, approach nature, and primary aims. The articles were then classified into
four strategic categories (quality management, operational research, machine learning and
data analysis, and design and implementation of protocols) representing the research field
that was employed by authors for increasing the response of EDs against COVID-19. In
this regard, some papers evidenced the use of approaches from two domains and were
therefore included in both classifications. The process improvement techniques, either
single or hybrid, used in these applications were also specified. Moreover, the selected
papers were further categorized considering the publication time to identify trends and
patterns in the reported related literature.
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Figure 1. Search algorithms used in the literature review.

2.2.1. Criteria for Including Studies in this Review
Types of Studies

We particularly considered manuscripts evidencing the implementation of an indus-
trial engineering approach for increasing the operational response of a real emergency
department during the current COVID-19 outbreak. The studies had to report high-quality
data supporting the interventions as well as the outcomes achieved after implementation.
Controlled before-and-after studies (CBAs) and randomized controlled trials (RCTs) sat-
isfying the quality criteria outlined by the Cochrane Effective Practice and Organization
of Care Group (EPOC) [28] were principally taken into consideration. Manuscripts only
limited to descriptive statistics and/or no application in the wild were discarded.

Types of Participants

We included EDs of any healthcare level caring for suspected/confirmed COVID-19 patients.

Types of Interventions

We took into account applications from the industrial engineering domain aimed
at ramping up the operational response of EDs against COVID-19. The improvement
interventions were classified based upon the following research domains:

Operational research (OR) is a discipline employing analytical and soft techniques
capable of supporting decision making within the healthcare domain and specifically
unraveling the dynamics of COVID-19 and its effects on the emergency care provision [29].
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Additionally, OR can offer quantitative evidence to deploy scale-up interventions along
the ED patient journey while administering interactions among health centers [30,31].

Quality management (QM) is a broad theme encompassing a set of approaches focused
on the continuous improvement of emergency care towards maximizing customer satisfac-
tion. QM can be only derived from planned management action which entails a certain
degree of quality culture within the institutions leading the emergency care services [32].

Machine learning and data analytics (MLDA) is based on learning models integrated
by inputs categorized as predictor measures, and outputs, representing the optimal so-
lution [33]. On the other hand, the big data analysis tool contains a set of complex data
nested to the application of artificial intelligence algorithms and automated learning with
high potential in ED healthcare. This is of fundamental support for health personnel in
operations planning and implementation, decision making, disease detection, and other
areas; thereby contributing to the increase in the quality of care provided in EDs and the
intricate reduction of costs [34].

Protocol design and implementation (PDI) is related to the procedures carried out
in the EDs with a particular view on their design and implementation. ED protocols are
called to strengthen the response of the emergency care units considering the practices
undertaken by the health personnel [35] and the communications flows within the ED
teams [36].

We also deemed a standard practice comparator (e.g., no intervention/routine practice
or another approach) or any type of ongoing strategy targeting improved ED operational
response during the pandemic.

Outcome Measures

We included performance indicators that are commonly used in different ED stages
and/or patient evolution pathways. Some of them are:

� Mean length of stay (LOS)
� Left-without-being-seen rate (LWBS)
� Average flow time
� Median time to ED revisit
� Median waiting time for consultation

Additionally, there are measures linked to the particular COVID-19 pandemic
(i.e., % of available ventilators, number of patients with unfavorable outcomes, predicted
number of COVID-19 patients, median time to COVID-19 results) and new safety outcomes
(i.e., COVID-19 infection rate within the ED wards). The costs derived from the emergency
care attention during the COVID-19 pandemic were not determined in this review.

2.3. Risk of Bias Assessment

Three independent reviewers (M. O., D. C., and D. S.) appraised the risk of bias in
each paper according to Balini et al. [37] and EPOC [28]. A total of 8 evaluation factors
were considered: (i) random sequence generation, (ii) allocation concealment, (iii) baseline
outcome measurements similar, (iv) baseline characteristics similar, (v) incomplete outcome
data, (vi) knowledge of the allocated interventions adequately prevented during the study,
(vii) selective outcome reporting, and (viii) other risks of bias. A grade was assigned to
each manuscript taking into account the following scoring system:

� Low risk: all the factors were graded as “low risk”
� Moderate risk: one or two factors were qualified as “unclear risk” or “high risk”
� High risk: more than two factors were graded as “unclear risk” or “high risk”

2.4. Effect Measures

For CBAs and RCTs, we provided different comparison measures representing the
extent at which the improvement was achieved. The set of indicators include:
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� Mean length of stay (LOS) (percentage difference; absolute change with 95% confi-
dence interval, inter-quartile range—IQR)

� Left-without-being-seen rate (LWBS) (average rate difference)
� Average flow time (absolute difference)
� Median time to ED revisit (median difference)
� Median waiting time for consultation (percentage change)
� % of available ventilators (percentage difference)
� Number of patients with unfavorable outcomes
� Predicted number of COVID-19 patients (percentage difference, absolute change with

95% confidence interval, p-value)
� Median time to COVID-19 results (IQR, absolute change with 95% confidence interval)
� COVID-19 infection rate within the ED wards (percentage difference)

2.5. Dealing with Missing Data

In this case, all the selected studies completely reported the data of interest; it was
therefore unnecessary to contact authors for additional information.

2.6. Heterogeneity Evaluation

We descriptively outlined heterogeneity of selected studies via appraising differences
in terms of primary aims, process-improvement approaches used in the interventions,
contributing research domain, and outcomes.

2.7. Data Synthesis, Summary Tables, and Confidence Assessment

We qualitatively depicted the results of the selected studies. In this case, meta-analysis
was not possible considering the significant statistical heterogeneity and variability of the
interventions (methodological diversity) identified in the selected studies. Furthermore,
the outcomes presented in the reported related literature are too diverse; therefore pooling
and analyzing the combined data is not appropriate [38]. We did not carry out any
sensitivity analysis. Instead, evidence tables are provided in Sections 3.1 and 3.2. for
authors to review data and principal outcomes of the manuscripts included in the review.
In addition, summary tables indicating the techniques employed in each study were
displayed complemented by graphs depicting the most used approaches, the most popular
primary aims, and the evolution of the research body against time. On the other hand, we
assessed the quality of evidence for the outcomes provided in each manuscript by using the
GRADE method [37]. The evaluation scale is as follows: “Very low”, “Low”, “Moderate”,
and “High”.

3. Results

In this section, we present the results of the search and selection process based on
the search codes shown in Figure 1. After removing the duplicates (n = 33), the resulting
papers (n = 301) were exhaustively screened to select the relevant papers meeting the
above-mentioned inclusion criteria. As a result, 65 papers were found to satisfy the
inclusion requirements. Most of the discarded manuscripts were merely descriptive, did
not present data supporting the intervention outcomes or evidenced approaches out of the
industrial-engineering domain. The resulting PRISMA scheme can be observed in Figure 2.
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Figure 2. PRISMA flow diagram.

3.1. Study Characteristics, Quality of the Evidence, and Risk of Bias

Table 1 details the characteristics of the papers that were finally included in the review.
In particular, the outcomes pursued in each study and the sample supporting the interven-
tion are presented. Sample values without units are assumed to be the number of patients
enrolled in the project. In some cases, the sample size was too small which may limit
the applicability of the related proposed methods in the practical scenario. On the other
hand, the outcomes revealed in the body of evidence were noted to be ample and diverse
which denotes the multidimensional nature of emergency care operations and the evolving
dynamics of the COVID-19 outbreak. In fact, new measures have been created to evaluate
the effectiveness of the proposed process improvement approaches. Likewise, the papers
were highly heterogeneous based upon the different types of interventions and clinical
aspects that became glaring from the literature and thus making it unfeasible to undergo
a meta-analysis. On a different tack, most of the comparators (n = 53 articles; 81.53%) were
found to be “Routine practice” (no intervention) which is expected given the recentness of
the pandemic scenario. A challenge, however, is posed regarding the implementation of
comparative studies delineating an alternative avenue through the context in which ED
operations are now being performed. The key findings and conclusions are also outlined
in this table for supporting practitioners, researchers, and ED administrators in plotting
actions directed towards better operational response against the COVID-19 outbreak. The
majority of interventions evidenced in the literature are data-grounded which also fa-
cilitates their adoption and replication in the wild; likewise, the upheaval required for
more aggressive and agile methodologies reducing the waiting times in consideration of
a rapidly evolving disease was glaring.
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Table 1. Characteristics of the manuscripts selected for the review.

First Author;
Year; Country Sample Primary Measure

of Outcome Comparator Key Findings/Conclusion Quality of
the Evidence

Abadi [39] *;
2021; Iran 250

Total deviation from
the nurse scheduling

constraints

Grasshopper
Optimization

Algorithm (GOA);
Gray Wolf

Optimization
algorithm (GWO);

Cuckoo Optimization
Algorithm (COA);

Whale Optimization
Algorithm (WOA)

HSSAGA outperformed
GOA, GWO, COA, and

WOA with a total deviation
of 561,020. The absolute

difference with the above
approaches are:

297,722 (GWO), 385,491
(GOA), 388,944 (WOA), and

164,844 (COA).

High

AbdelAziz
[40] *; 2020;

Saudi Arabia
254 WT; secondary

outcome: accuracy Lexicographic method

The WT for admission
passed from 0.0016217 s to
2.48 × 10−4 s when using

Pareto optimization.
Likewise, the accuracy

increased from 89% to 97%
approximately.

High

Aggarwal
[41] **; 2020;

India
8 states

Precision; F-Score;
Receiver Operating

Characteristic (ROC);
Precision–Recall
(PRC); Matthews

Correlation Coefficient
(MCC)

TreesJ48; logistics;
decision table; ZeroR

The precision, recall, and
F-score achieved via the
MCDM approach were

found to be 0.66, 1.0, and
0.795, respectively. On the
other hand, the ROC, PRC,

and MCC values were
calculated to be 0.5, 0.6,

and 0

Moderate

Albahri [42] **;
2021 56 Patient priority Other MCDM

approaches

The maximum patient
priority derived from
Entropy-TOPSIS was

0.80139 (critical condition)
while the minimum was

0.11366 (well
health condition)

Moderate

Alfaro-
Martinez

[43] **; 2021;
1470 Area under curve

(AUC) No intervention

The AUC was found to be
0.8625 and 0.848 for the

numerical and categorical
scores of the generating

cohort, respectively,
whereas in the validation

cohort, the AUC were
0.8505 and 0.8313 for the

same scores.

Moderate

Angeli [44] **;
2021; Italy 301 Area under curve

(AUC) for prognosis No intervention

Integration of clinical and
laboratory data increases
the CT prognostic value

(AUC = 0.841).

Low

Araz [45] ***;
2020; United

States

Not
specified

Average time for
sample collection;

availability of
testing kits

No intervention

Drive-through COVID-19
testing sites are a strategy to
rapidly gather samples from

suspected cases with
minimal physician-patient

contact.

Very low
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Table 1. Cont.

First Author;
Year; Country Sample Primary Measure

of Outcome Comparator Key Findings/Conclusion Quality of
the Evidence

Assaf [46] **;
2020; Israel 6695

AUC; sensitivity,
Positive Predict Value

(PPV); Negative
Predict Value (NPP);

accuracy; F-Score. All
these measures are
related to risk for

critical disease

APACHE II risk
prediction score

Having a sensitivity of 88%,
specificity of 92.7%, and
accuracy of 92% for the

critical state of COVID-19
patients, it is demonstrated

that the ML models
outperformed the APACHE

II risk score

Moderate

Balbi [47] **;
2020; Italy 340

Median time from
symptom onset to ED
admission; prevalence

of SARS-CoV
−2 infection

No intervention

92% of patients presented in
ED obtained a positive

RT-PCR while the median
time from symptom onset to
ED admission was 7 days.

Low

Balmaks [48] **;
2020; Latvia 67

Percentage of failure
modes in medium or

high risk
No intervention

84.4% of failure modes
represent medium or high
average risk, with 40.7%

being related to
organizational factors, 40.7%

to individual factors, and
18.5% to

environmental factors

Low

Brendish
[49] **; 2020;

Germany
499 Median time to

COVID-19 results No intervention

Time to results was
significantly lower in the
testing group than in the

control group (hazard ratio
4023 (95% CI 545–29,696),

p < 0.0001).

Low

Bolourani
[50] *; 2021;

United States
11,525 Mean accuracy; Area

under curve (AUC)

Modified Early
Warning Score,

XGBoost +
SMOTEENN,

logistic regression

The XGBoost method
evidenced the highest mean
accuracy (0.919) while the
AUC was found to be 0.77

(standard deviation = 0.05).

High

Carlile [51] ***;
2020; United

States
1855

AUC; accuracy;
sensitivity; specificity;

percentage of
healthcare workers

agreed on the easiness
of AI implementation

in their workflow

No intervention

The resulting AUC was
0.854 while the accuracy,

sensitivity, and specificity
were 81.6%, 82.8%, and

72.6%, respectively.
Likewise, 86% of the

healthcare workers agreed
on the fact the AI model was

easy to implement in
their workflow.

Very low

Casiraghi
[52] **; 2021;

Italy
301

Area under curve
(AUC), sensitivity;

specificity; F1 score;
accuracy

Generalized linear
models

The risk prediction results
evidenced a reduction in

accuracy by an average of
0.06 concerning the five
performance measures
(AUC from 0.81 to 0.76,

sensitivity from 0.72 to 0.66,
specificity from 0.76 to 0.71,
F1 score from 0.62 to 0.55,

accuracy from 0.74 to 0.68).

High
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Table 1. Cont.

First Author;
Year; Country Sample Primary Measure

of Outcome Comparator Key Findings/Conclusion Quality of
the Evidence

Chen [53] **;
2020; China 2863

Time from
pre-examination to

virus screening;
hospital visiting time;

waiting time for
consultation

Secondary outcomes:
median waiting time

for image examination;
moving distance

No intervention

The time from
pre-examination to virus

screening was reduced from
34 to 3 h, the visiting time

was decreased from 18 to 8
h, and the WT for a

consultation was narrowed
from 2 h to 10 min. in

Addition, the median WT
for image examination was
slackened from 40 to 3 min.
Finally, the moving distance
passed from 800 to 10 min.

Low

Chopra [54] **;
2020; United

States
323 Median time to revisit;

median hospital LOS No intervention

A total of 8 were discharged
from the ED during their
index visit and 225 were
admitted to the hospital.

Among those discharged,
25/98 (25.5%) returned
within 28 days of index

ED presentation

Very low

Chou [55] **;
2021; United

States
580

AUC; AP; accuracy;
F1-Score; kappa; recall

(sensitivity);
specificity; PPV

(precision); NPV; ROC.
All these measures for
confirmed diagnosis of

COVID-19

No intervention

The three methods, Random
Forest outperformed the

others with an AUC of 0.86,
followed by Gradient

Boosting with 0.83, and
Extra Trees with 0.82.

Low

Diep [56] **;
2021; Belgium 745 Area under curve

(AUC) No intervention

The AUC for the predictive
model was calculated to be
0.931 (95% CI: 0.910–0.953)

with a standard error
of 0.010

Low

De Moraes
[57] *; 2020;

Brazil,
235

Area under curve
(AUC); sensitivity;

specificity; Brier score
No intervention

Support Vector Machine
was found to produce the
best performance (AUC:

0.85; sensitivity: 0.68;
specificity: 0.85; Brier

score: 0.16)

Moderate

De Nardo
[58] **; 2020;

Italy
10 Patient priority No intervention

The maximum observed
score (critical condition) was

69% while the minimum
(well health condition)

was 15%

Low

Esposito [59] *;
2021; Italy 77 Area under curve

(AUC) No intervention

Moderate AUC of 0.76, 0.75,
and 0.77 for well-aerated
lung, semi-consolidation,

and consolidation predicted
worst hypoxemia during

hospitalization
correspondingly.

Moderate
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Table 1. Cont.

First Author;
Year; Country Sample Primary Measure

of Outcome Comparator Key Findings/Conclusion Quality of
the Evidence

Feng [60] **;
2021; China 132

AUC; F1-Score;
specificity; recall;

precision (for early
identification of

COVID-19 in
ED admission)

No intervention

The LASSO model
performance in the testing

set and the validation cohort
resulted in AUC (0.841 and
0.938), the F−1 score (0.571
and 0.667), the recall (1.000
and 1.000), the specificity
(0.727 and 0.778), and the
precision (0.400 and 0.500)

Moderate

Freund [61] **;
2020; Italy,

Spain, France,
Chile, Belgium,

and Quebec.

3358 AUC; sensitivity No intervention

Whole population:
AUC = 0.79, 95% CI = 0.76
to 0.81. COVID-19 patients:
AUC = 0.81, 95% CI = 0.77 to

0.85.

Low

Garbey [62] **;
2020; French 50 per day Death rate due to

COVID-19 No intervention

After calibrating the Markov
model, the death rate was

found to be 25%
approximately.

Moderate

García de
Guadiana-
Romualdo

[63] **; 2021;
Spain

99

AUC; accuracy;
sensitivity; specificity

(For predicting
28-day mortality)

No intervention

MR-proDAM showed the
highest AUC for predicting
mortality and progression to
severe disease. 25.3% of the
cases developed into serious

diseases, and the 28-day
mortality rate was 14.1%.

Low

Gavelli [64] **;
2021; Italy 480 Death adjusted hazard

ratio

Multivariable logistic
regression; Cox

regression hazard
model

When in-hospital mortality
was assessed, a meaningful
gap was evident between

scores of 0–1 and 2 vs. 3 and
4–5. Specifically, the death
adjusted Hazard Ratio for
Novara-COVID scores of 3
and 4–5 were 2.6 (1.4–4.8)

and 8.4 (4.7–15.2),
correspondingly.

Moderate

Goodacre
[65] **; 2021;

United
Kingdom

11,773 AUC; ROC; C-Statistic;
sensitivity; specificity NEWS2 Score

C-statistic of 0.80 (95%
confidence interval

0.79–0.81), sensitivity 0.98
(0.97–0.98), and specificity

0.34 (0.34–0.35)

Moderate

Gordon [66] **;
2020; United

States
295

Percentage of patients
triggering a symptom

alert
No intervention

Of the 210 who completed
at least one questionnaire,

only 72/210 (34%) triggered
a symptom alert to the

central nursing pool during
their monitoring enrollment

period, and only 15%
(315/2161) of questionnaires
across all patients triggered

an alert to the central
nursing pool

Moderate
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Table 1. Cont.

First Author;
Year; Country Sample Primary Measure

of Outcome Comparator Key Findings/Conclusion Quality of
the Evidence

Haddad
[67] ***; 2021;

England
29 hospitals Mean number of

shortages No intervention
The optimization model led

to a 55% reduction in the
number of shortages

Moderate

Heldt [68] *;
2021; England 1235

AUC; sensitivity;
specificity; Brier score;

precision-recall
No intervention

Logistic regression reaches
an AUC of 0.70, the random

forest 0.77 and XGBoost
reach 0.76. However, all

models showed improved
accuracy with F1 scores

of 0.56–0.61

High

Joshi [69] **;
2020; United

States
390 C-statistic; sensitivity No intervention

The C-statistic was found to
be 78% with an optimized

sensitivity of 93%. By
constraining PCR testing to
predict COVID-19 patients,

it would be possible to
achieve a 33% increase in

the allocation of
testing resources.

Moderate

Kim [70] **;
2020; Korea 184

Percentage of
COVID-19 patients
with fever before

OHCA; percentage of
COVID-19 patients

with pneumonic
infiltration

No intervention

55.6% of patients in the
COVID-19-positive group

had a fever before
out-of-hospital cardiac

arrest (OHCA) and 16.9% of
the COVID-19-negative
group had a fever before

OHCA (p = 0.018). A total of
88.9% patients in the

COVID-19-positive group
had a chest X-ray indicating

pneumonic infiltration.

Low

Kirby [71] *;
2021; United

States
90,549

C-statistics for
in-hospital all-cause
mortality; hospital

admissions

Charlson Comorbidity
Index (CCI) and

Elixhauser
Comorbidity
Index (ECI)

C-statistics of
COVID-related high risk

chronic condition predicting
in-hospital all-cause
mortality was 0.73

(0.69–0.76)

Moderate

Kline [72] *;
2021; United

States
19,850

Prevalence of
SARS-CoV−2

infection; area under
curve (AUC)

No intervention

In the validation sample (n
= 9975), the probability from

logistic regression score
produced an area under the

receiver operating
characteristic curve of 0.80

(CI: 0.79–0.81). On the other
hand, the pooled prevalence

of infection among those
tested was 34%.

Moderate
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Table 1. Cont.

First Author;
Year; Country Sample Primary Measure

of Outcome Comparator Key Findings/Conclusion Quality of
the Evidence

Lancet [73] **;
2021, United

States
1673

LOS; in-hospital
mortality; likelihood of
survival to discharge

No intervention

The median hospital LOS
was 6 days (IQR: 2–11 days)
while 34.5% of the patients
died. In younger patients,

the likelihood of survival to
discharge was 1.68 (95% CI,

1.49–1.88;
p <0.001).

Low

Levine [74] *;
2021; United

States
1014

C-statistic; sensitivity;
specificity (for
predicting a

14-day period

No intervention

It obtained a sensitivity of
83% and specificity of 82%,
counting with C-statistics
for derivation 0.8939 (95%
CI, 0.8687 to 0.9192) and

validation 0.8685 (95% CI,
0.8095 to 0.9275).

High

Liu [75] **;
2020; China 643

AUC; sensitivity;
specificity; accuracy;
median survey time

Conventional ED track

AUC of 0.99, sensitivity of
94.1%, specificity of 95.1%,

and accuracy of 94.6% using
the training data set. The

median survey time without
the model in the quarantine
station was 100.5 min (95%
CI 40.3–152.5), vs. 34 min

with the model in the
quarantine station (95% CI

24–53; p <.001).

Moderate

McDonald
[76] **; 2020;

United States
1026

Prevalence of
SARS-CoV−2

infection; area under
curve (AUC)

No intervention
The COVID-19 prevalence
was 9.6% whereas AUC of
0.89 (95% CI = 0.84–0.94)

Moderate

Mehrotra
[77] **; 2020:

United States

Not
specified

Number of ventilators
in stock No intervention

If more than 40% of the
existing ventilator inventory

is available for COVID-19
patients, the national

stockpile is approximately
enough to satisfy the

demand in mild cases.
Nevertheless, if less than

25% of the current ventilator
inventory is available for
COVID-19 patients, the

national stockpile and the
projected production could

not address the peak
demands caused by the

pandemic.

Moderate

Mitchell
[78] ***; 2020;
Papua New

Guinea

210 per day

Satisfaction level on
the new triage and

flow system as a way
of identifying the most

urgent patients

No intervention

A total of 100% of the
respondents agreed on the
fact that the new triage and
flow system has helped in

the identification and
prioritization of new

patients.

Very low
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Table 1. Cont.

First Author;
Year; Country Sample Primary Measure

of Outcome Comparator Key Findings/Conclusion Quality of
the Evidence

Möckel [79] **;
2021; Germany 1255

Area under curve
(AUC) representing

the need for
mechanical ventilation

during index stay or
after readmission;

median LOS

No intervention

A sufficient discriminatory
power (C-index 0.75) was

achieved for predicting the
need for artificial ventilation

or death within 14-day
period after ED admission

Moderate

Moss [80] **;
2020; Australia

Not
specified Mean bed time No intervention The mean bed time was

found to be 8 days Low

Nepomuceno
[81] ***; 2020;

Brazil

Not
specified

Number of beds
feasible to be

evacuated and
reallocated to

COVID-19 patients

No intervention

In summary, 3772 beds are
feasible to be evacuated and

reassigned for new
COVID-19 cases in one year

considering different
interventions on surgery

and patient LOS.

Low

Nguyen [82] *;
2020; France 334

C-statistics (need for
artificial ventilation or
death within 14-day

period after ED
admission)

No intervention

A sufficient discriminatory
power (C-index 0.75) was

achieved for predicting the
need for artificial ventilation

or death within 14-day
period after ED admission

High

O’Reilly
[83] ***; 2020;

Australia

Not
specified

Number of
ventilator-free days,

hospital length of stay
and death during

hospital admission.

No intervention

The COVED protocol for
addressing the operational

consequences of the
COVID-19 pandemic

Very low

Parker [84] *;
2020; United

States
75 hospitals Surge capacity No intervention

An 85% reduction in
required surge capacity was

achieved considering
uncertainties inherent to the

COVID-19 pandemic.

High

Peng [85] **;
2020; Canada 39,525 WT; LOS No intervention

After simulating the
proposed alternatives, the

maximum reduction
percentage in WT and LOS
were 76.33% and 31.16%.

High

Plante [86] *;
2020; United

States
192,779 Area under curve

(AUC) No intervention AUC was found to be 0.91
(95% CI 0.90–0.92). Moderate

Retzlaff [35] ***;
2020; United

States

Not
specified

Number of COVID-19
tests processed per

day
No intervention

The laboratory was
calculated to process 30 tests

per day.
Very low

Romero-
Gameros

[87] ***; 2021;
Mexico

2173

Prevalence of
SARS-CoV−2

infection; sensitivity;
specificity

No intervention

A prevalence of 53.72% of
SARS-CoV−2 infection was

detected. The symptom
with the highest sensitivity

was cough 71%, and a
specificity of 52.68%

Low

Saegerman
[88] **; 2021;

Belgium
2152 Area under curve

(AUC) No intervention
The resulting area under
curve was 0.71 (95% CI:

0.68–0.73)
Low



Int. J. Environ. Res. Public Health 2021, 18, 8814 15 of 34

Table 1. Cont.

First Author;
Year; Country Sample Primary Measure

of Outcome Comparator Key Findings/Conclusion Quality of
the Evidence

Sangal [36] ***;
2020; United

States
190,000

Number of provider
shifts; contact time

between physician and
COVID-19 patients

No intervention

The provider shifts
decreased by 42% whereas
the contact time between
physician and COVID-19

patient was reduced by 66%

Low

Shamout [89] *;
2020; United

States
19,957

AUC; sensitivity;
specificity; PPV; NPV;

F1-score (for
predicting

deterioration within 96
h)

Imaging reading via
two experienced chest

radiologists

AUC of 0.786 (95% CI:
0.745–0.830) for prediction
of deterioration within 96 h

High

Sherren [90] ***;
2020; United

Kingdom
316

Percentage of patients
survived to critical

care discharge
No intervention

Of the 201 patients received
in the ED with a completed

critical care status, 71.1%
survived to critical

care discharge.

Low

Suh [91] ***;
2020; United

States
1832

Number of patients
discharged with

oxygen concentrators
for use at home

(period: 2 months);
number of patients

discharged with
pulse oximeters

No intervention

In this case, 1040 patients
were discharged with pulse
oximeters and 792 patients
were discharged at home

with portable
oxygen concentrators.

Low

Sung [92] **;
2020; United

States
656 AUC; sensitivity;

specificity; PPV; NPV No intervention

Risk score of ≥3 in the
development cohort
(sensitivity = 85.1%;
specificity of 75.0%;
PPV = 71.8% and

NPV = 87.0%); in the
validation cohort (sensitivity
= 79.6%; specificity = 70.9%).
AUC = 0.87 (95% confidence

interval (CI) 0.82–0.92) in
the development cohort and

0.85 (95% CI 0.78–0.92) in
the validation cohort.

Moderate

Tang [93] **;
2020; United

States

28,454
standard
patients
and 1693

COVID-19-
like

illness

Left-without-being-
seen rates (LWBSR);

LOS
No intervention

After adopting a
one-floating provider

configuration, the average
LOS was reduced by 24.34%
for discharged patients and

13.91% for hospitalized
patients while LWBSR was

slackened by 84.57%

High

Teklewold
[94] ***; 2020;

Ethiopia

Not
specified

Number of failure
modes associated with
no transmission-based

precautions

No intervention

A total of 12 out of 22 failure
modes were found to be

related to non-adherence to
transmission-based

precautions.

Low
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Table 1. Cont.

First Author;
Year; Country Sample Primary Measure

of Outcome Comparator Key Findings/Conclusion Quality of
the Evidence

Van Klaveren
[95] *; 2020;

Netherlands
5912

AUC; sensitivity;
specificity; accuracy;
PPV; NPV (for the

COVID-19 outcome
prediction in the ED)

No intervention

AUC in 4 hospitals: 0.82
(0.78; 0.86); 0.82 (0.74; 0.90);

0.79 (0.70;
0.88); 0.83 (0.79; 0.86)

Moderate

Van Singer
[96] **; 2021;
Switzerland

76

30-day
intubation/mortality,

and oxygen
requirement via AUC

No intervention

The highest accuracy for
30-day oxygen requirement

(AUC 0.84; 95% CI,
0.74–0.94).

Low

Wang [97] **;
2021; United

States
542

Percentage and AUC
of COVID-19 patients
with need for transfer
to ICU within 24 h of

ED admission

No intervention

A total of 10% of COVID-19
patients required transfer to

ICU within 24 h of ED
admission. On the other

hand, the AUC was found
to be 0.54 (standard error

0.02, CI 0.50–0.59)

Low

Zeinalnezhad
[98] **; 2020;

Iran

Not
specified WT No intervention

The second simulated
scenario (hiring more
reception staff while

assigning free human
resources in other wards)

led to a 62.3% reduction in
patient waiting time.

Moderate

Zhang [99] **;
2021; China 500 Median time; average

LOS; transfer density No intervention

The median time for each
state were the following:

state 1 (pre-infection
period): 0.26 days, state 2
(acute infection period):

6.13 days, state 3 (pre new
coronary pneumonia):

1.05 days. On the other
hand, the average LOS for
each state were as follows:
state 1: 2.14 days, state 2:

5.22 days, and state 3:
6.64 days. Finally, the

transfer densities were: state
1: 5.54, state 2: 0.13, and

state 3: 0.57.

Moderate

Zhang &
Cheng [100] ***;

2020; United
States

42,309
Weekly infection rate
in healthcare workers

and patients
No intervention

The weekly infection rate in
healthcare workers and

patients was reduced from
3–5.9%, to 1–2.1%.

Moderate

Zhou [101] **;
2021; China 174 Time from illness onset

to hospital admission No intervention

In non-survivors, the time
from illness onset to

hospital admission was
10.0 (7.0–14.0) days whereas

in survivors was 10.0
(7.0–13.0) days

Low

Low risk (*), Unclear risk (**), High risk (***).

On a different note, the GRADE approach was utilized to appraise the quality of the
related evidence detected through this review. In this case, most of the studies ranged from
“low” (n = 23 studies; 35.38%) to “moderate” (25 studies; 38.46%). Therefore, researchers
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leading future related studies should adhere to the quality criteria described by EPOC
(2021) [28], stressing upon, for instance, the use of sample sizes with high statistical
significance so that reliable outcomes can be properly derived. Indeed, very few studies
demonstrated how the sample size supporting the conclusions was estimated.

Arguably, evaluating the risk of bias is another important aspect to be addressed
in this review. In response to this important task, we used the approach illustrated in
Section 2.3 whose results were included in the first column of Table 1. Specifically, one
asterisk (*) denotes “low risk”, two asterisks (**) represents “unclear risk”, while three
asterisks (***) symbolizes “high risk”. In this review, most of the studies (n = 38 studies;
56.46%) were categorized as “unclear risk” whereas 21.53% (n = 14 studies) were found to
have “low risk). A deeper view of this evaluation can be noted in Figure 3 where results on
the eight domains are widely reported. Based on the graph, it can be seen that more than
50% of the studies were found to have a low risk of bias in all the domains. Special attention
should be paid to the “other risk of bias” whose “high risk” participation corresponds
to 46.2% of the total evidence inasmuch as limitations regarding the use of small sample
sizes, no proper handling of missing data, and no inclusion of critical variables were
frequently reported in the “limitations” sections of these papers. An important portion of
papers (49.2%) was also informed to have a “high risk” of bias given the no employment of
random sequences in their study designs. These methodological aspects need to be tackled
by future practitioners and decision makers to ramp up the validity and effectiveness of
the interventions.

Figure 3. Risk of bias graph—an analysis of the 8 evaluation criteria.

3.2. Classification Schemes

We then categorized the selected papers based upon the classification schemes con-
sidered in the review: (i) contributing research domain, (ii) primary aim, (iii) publication
period, and (iv) contributing journal. The findings will guide researchers, ED administra-
tors, health authorities, and practitioners in the design of strategies increasing the response
of emergency care processes against the inherent operational demands of the COVID-19
outbreak as well as the definition of future research lines.
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3.2.1. Classification Based on the Contributing Research Domain

The complexity and multi-causality nature of EDs and the devastating spread of
COVID-19 demand for solutions integrating different research themes from the industrial
engineering domain. Thereby, it will be possible to support the decision-making process
within these units and hence increase their response against the current pandemic. In this
review, the four research domains outlined in Section 2.2.1. were considered.

Techniques from the Operational Research Domain

Table 2 shows the classification of research papers from the operational research
domain evidencing increased responses in the emergency department. COVID-19, as
a threat to worldwide public health, has generated an overflow of emergency units, which
can be effectively addressed through OR methods. On the other hand, Table 2 depicts the
techniques used in each study while specifying whether a single or hybrid (combination
of two or more techniques) approach was employed. As a result, a total of 16 articles
(24.61%) were found to apply OR techniques. From these, half (n = 8) evidenced the use of
approaches combining two techniques with no trend in a particular integration.

Table 2. Papers demonstrating the use of operational research techniques for augmenting the emergency department
response to the COVID-19 pandemic.

Authors Technique Type

Single

Tang et al. [93] Discrete event simulation
Nepomuceno et al. [81] Data envelopment analysis (DEA)

Mehrotra et al. [77] Stochastic optimization
AbdelAziz et al. [40] Multi-objective pareto optimization

Peng et al. [85]; Moss et al. [80] Simulation
Aggarwal et al. [41] Additive utility assumption

Araz et al. [45] System dynamics

Hybrid

Garbey et al. [62] Markov chains, stochastic optimization
Albahri et al. [42] Entropy, TOPSIS

De Nardo et al. [58] Potentially all pairwise ranking of all possible alternatives (PAPRIKA), multi-criteria
decision making (MCDM)

Parker et al. [84] Linear programming, mixed-integer programming
Zeinalnezhad et al. [98] Colored petri nets, discrete event simulation
Zhang & Cheng. [100] Logistic regression, Markov chains

Abadi et al. [39] Hybrid salp swarm algorithm and genetic algorithm (HSSAGA)
Haddad et al. [67] Simulation, optimization

The techniques used in studies with single approaches are varied and respond to the
complex nature of emergency care processes and their interactions. An example can be
found in Tang et al. [93] where the authors employed stochastic simulation to appraise
the performance of five different staffing options in terms of LOS and LWBS rates. The
results revealed that incorporating an extra ED provider between standard ED rooms
would lead to the most significant decrease in LOS for both admitted and discharged
patients. Similarly, Peng et al. [85] built a simulation model of a local ED to improve
the patient flow efficiency. Bottlenecks in the emergency care process were detected
and alternative strategies were devised to reduce the patient waiting time and LOS. The
proposed method can be further replicated from a sectorial perspective to improve the
operational efficiency of emergency care systems during the current COVID-19 pandemic.
In turn, Moss et al. [80] simulated clinical presentations and patient flows through the
Australian health care system, including expansion of available acute care capacity and
alternative clinical assessment pathways. Other interesting related studies are illustrated
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in Nepomuceno et al. [81], Mehrotra et al. [77], AbdelAziz et al. [40], Aggarwal et al. [41],
and Araz et al. [45].

On a different tack, different interventions employed OR techniques in a paired
way. For instance, Zeinalnezhad et al. [98] implemented colored petri nets and discrete
event simulation to prepare hospitals for a virus outbreak. The initial simulation of
current cardiac clinic processes first identified the ED bottlenecks. Their analysis confirmed
that the current workflow was not optimal for COVID-19 patients; three optimization
scenarios were therefore proposed to reduce the waiting time problem. In a different study,
Haddad et al. [67] crafted a decision-making approach for the creation of local emergency
response manufacturing networks reducing shortages of medical supplies in times of
COVID-19 crisis. In this work, interrelated simulation and stochastic models are applied to
optimize the ventilator allocation in USA emergency departments considering uncertainty.
In another study, Abadi et al. [39] presented a novel integration between the hybrid swarm
salp and genetic algorithm (HSSAGA) to define nurse scheduling and designation during
the COVID-19 period. Their findings revealed that this approach outperformed other
techniques frequently employed in the literature for the nurse scheduling problem. The
proposed framework provides ED managers with an intelligent automated framework
capable of eliminating exposed shifts while mitigating low nursing staff commitment and
stress. Other highlighted interventions are reported in Garbey et al. [62], Albahri et al. [42],
De Nardo et al. [58], Parker et al. [84], and Zhang & Cheng [100].

Techniques from the Quality Management Domain

Quality management contributions have become a cornerstone for the design and
deployment of operational solutions in different healthcare services due to their capability
of reducing flow times and cost overruns while satisfying patients’ expectations [37].
Table 3 shows the compiled efforts of distinct authors who have used methods from this
domain to upgrade the performance of EDs during the COVID-19 period. Several studies
have presented the implementation of these approaches in the real context of ED with
particular attention to optimizing processes, reducing failures, and efficiently managing
resources. The evidence base (n = 6 articles; 9.23%), however, is still scant and less popular
compared with those from OR and MLDA. 66.6% (n = 4 articles) of the total related body of
knowledge utilized a single technique for dealing with different ED performance challenges
during the current pandemic.

Table 3. Papers demonstrating the use of quality management techniques for augmenting the emergency department
response to the COVID-19 pandemic.

Authors Technique Type

Single

Chen et al. [53] Lean Manufacturing
Casiraghi et al. [52]; Teklewold et al. [94]; Balmaks et al. [48] FMEA

Hybrid

Retzlaff [35] Critical pathways, lean manufacturing

O’Reilly et al. [83] Logistic regression, survival regression, linear regression,
continuous quality improvement

An interesting QM-based work is reported in Balmaks et al. [48] who analyzed the
performance gaps and failures generated in their system through a multicenter and cross-
sectional study based on the simulation of COVID-19 demands and their effects upon the
normal ED operation. On a different tack, Teklewold et al. [94] implemented the failure
mode and effect analysis (FMEA) tool to improve the pandemic management in EDs. In
this document, impacts on the identification of faults in a showcased hospital ED, as well as
possible advanced solutions propelling the reduction of COVID-19 transmission within the
health personnel and patients are devised. Additionally, we identified a research authored
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by Chen et al. [53] using lean manufacturing to upgrade the adjusted workflow and value
flow of an ED. Similarly, Casiraghi et al. [52] used FMEA for early evaluation and rapid risk
prediction, which contributed to more successful diagnosis and consequently increased the
likelihood of complete recovery.

In light of Table 3 results, it is evident that only two articles reported the combination
of QM methods with other approaches for tackling poor ED performance against the
operational COVID-19 implications. On one hand, Retzalff [21] applied lean manufac-
turing and protocol design for supporting the creation of critical units and the strategies
implemented for dynamic protocol change within the hospital; thereby facilitating visibility
and training for health workers. For O’Reilly et al. [83], the improvement of care and
emergency processes lie in the restructuring of system design, resource allocation, and
clinical management during the pandemic, based on the premise of machine learning and
continuous quality improvement techniques for data analysis and decision making.

Techniques from the Machine Learning and Data Analytics Domain

The application of MLDA techniques has been widespread to solve a wide range of
inefficiencies in healthcare services [43]. Prevention is always better than correction and the
use of predictive models can foster the implementation of this policy within the emergency
wards. The increasing trend in the use of these techniques is supported by the availability
of large complex health records that facilitate the design of targeted interventions based on
data patterns. Accordingly, we have enlisted the contributions using MLDA methods for
upgrading the reaction of EDs against this disastrous event (Table 4). We seek to provide
a groundwork for reducing the knowledge gap that exists regarding the identification
of patient COVID-19 risk while ensuring the fastest diagnosis. The evidence indicates
that MLDA domain is the most used when dealing with the ED improvement objective
(n = 41 articles; 63.07%).

Table 4. Papers demonstrating the use of machine learning and data analytics techniques for augmenting the emergency
department response to the COVID-19 pandemic.

Authors Technique Type

Single

Chopra et al. [54]; Sung et al. [92]; Alfaro-Martinez et al. [43];
Kirby et al. [71]; Lancet et al. [73] Multivariate logistic regression

Nguyen et al. [82] Multivariate cox proportional hazard model
Joshi et al. [69]; Kim et al. [70]; Levine et al. [74];

Wang et al. [97]; Angeli et al. [44]; Zhou et al. [101] Logistic regression

Liu et al. [75] Artificial intelligence
Freund et al. [61] Multivariate binary logistic regression

Brendish et al. [49]; Esposito et al. [59] Cox proportional hazards regression
Gordon et al. [66] Mixed-effect logistic regression

García de Guadiana-Romualdo et al. [63] Multivariate regression
Kline et al. [72] Stepwise forward logistic regression

Carlile et al. [51] Deep learning
Plante et al. [86] Gradient boosting

Hybrid

Shamout et al. [89] Deep neural network, gradient boosting
Balbi et al. [47] Poisson regression, logistic regression

Van Klaveren et al. [95] Logistic regression with post hoc uniform shrinkage

De Moraes et al. [57] Neural networks, random forest, gradient boosting, logistic
regression, support vector machine (SVM)

McDonald et al. [76]; Heldt et al. [68] Logistic regression, random forest, and gradient-boosted
decision tree

Zhang & Cheng [100]; Zhang et al. [99] Logistic regression, Markov

O’Reilly et al. [83] Logistic regression, survival regression, Linear regression,
continuous quality improvement
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Table 4. Cont.

Authors Technique Type

Assaf et al. [46]; Chou et al. [55] Neural network, random forest, classification and regression
decision tree (CRT)

Van Singer et al. [96]; Möckel et al. [79] Logistic regression and CRT
Diep et al. [56] Logistic regression, Mann–Whitey, chi-cuadrado

Saegerman et al. [88] Binary logistic regression and bootstrapped quantile regression,
classification and regression tree analysis.

Romero-Gameros et al. [87] Logistic regression, Mantel–Haenszel

Bolourani et al. [50]
Artificial intelligence, logistic regression, XGBoost combines a
recursive gradient-boosting method called Newton boosting,

with a decision-tree model, decision making

Goodacre et al. [65]; Feng et al. [46] Multivariable regression with least absolute shrinkage and
selection operator (LASSO)

Gavelli et al. [64] logistic regression and cox regression

In particular, 53.65% (n = 22 articles) employed a single MLDA technique to address
the operational problems of EDs during the current COVID-19 pandemic. For instance,
Chopra et al. [54] studied the incidence of clinical and demographic risk factors for COVID-
19 patients visiting emergency rooms, using multivariate logistic regression models. The
results achieved in this work highlighted the importance of using the serum biomarker data
to stratify COVID-19 patients into different levels of severity. Another related study was
reported by Plante et al. [86] who developed a machine learning model to rule out COVID-
19. In a similar vein, Sung et al. [92] confirmed that early and appropriate identification
and isolation of patients with suspected COVID-19 is essential to enable timely treatment,
optimize resources, protect patients and healthcare workers, and prevent the spread of
COVID-19 in healthcare facilities. In this respect, univariate and multivariate logistic
regression were used for patient prediction and risk scoring as a complementary tool to
help clinicians in triage, quarantine, and testing of suspected COVID-19 patients. Likewise,
Nguyen et al. [82] employed a nomogram to identify prognostic factors to predict patient
risk and subsequently support the early detection of patients at risk of worsening, improve
clinical care, and set out focused therapies. Furthermore, COVID-19 brought about a change
in the practices performed in the ED, increasing the workload in such a way that a new
distribution is generated; in this regard, Liu et al. [75] proposed an intelligent quarantine
station reducing the processing times experienced along with the ED patient journey. Other
works presenting solutions from the MLDA domain can be consulted in Kirby et al. [71],
Joshi et al. [69], and Van Klaveren et al. [95] who performed a logistic regression model to
identify variables associated with discharge appropriateness and optimization of healthcare
ED resources during the pandemic. Other useful single-approached proposals can be found
in Alfaro-Martinez et al. [43], Freund et al. [61], Brendish et al. [49], Esposito et al. [59],
Gordon et al. [66], Levine et al. [74], Carlile et al. [51], and García de Guadiana-Romualdo et al. [63].

On a different note, other interventions considered the need for implementing
a hybrid framework for dealing with the COVID-19 problem in the ED context (48.8%;
n = 21 articles). Indeed 47.6% (n = 10 articles) of the hybrid-approached studies were
based on two techniques, 33.3% (n = 7 articles) employed a mix of three techniques, 9.5%
(n = 2 articles) used four methods, whereas five and six techniques were used in only
one publication each. An example can be observed in Shamout et al. [89] who proposed
an automatic risk prediction based on a deep neural network deeming X-ray images.
The outcomes are promising in view of assisting the frontline physicians when triaging
COVID-19 patients. Furthermore, Balbi et al. [47] used Poisson and logistic regressions
with the horizon of assessing inter-rater agreement of initial radiographic findings in
COVID-19 patients brought to ED presentation. These results can help to identify patients
at risk of death and determine ventilatory support requirements which are even more
useful in those ED settings with a high prevalence of the disease. On the other hand,
the need for immediate clinical decision making and efficient use of healthcare resources
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prompted De Moraes et al. [57] to predict the risk of a positive COVID-19 diagnosis by a
multiple machine learning approach using only ED admission test results as predictors.
Meanwhile, Heldt et al. [68] combined logistic regression, random forest, and gradient-
boosting decision tree to underpin early risk evaluation from COVID-19 patients attending
the EDs. A novel aspect here is the inclusion of data recently collected during the ad-
mission period. A different perspective is noted in Zhang et al. [99] who provided an
epidemiological bi-domain integration between the Markov model and logistic regression
intending to determine the duration and trend of COVID-19, analyze the general clin-
ical characteristics, and define prevention methods. Other studies combining different
MLDA methods are presented in Zhang & Cheng [100], O’Reilly et al. [83], Assaf et al. [32],
Chou et al. [55], Van Singer et al. [96], McDonald et al. [76], Möckel et al. [79], Diep et al. [56],
Saegerman et al. [88], Romero-Gameros et al. [87], Bolourani et al. [50], Goodacre et al. [65],
Feng et al. [46], and Gavelli et al. [64].

Techniques Related to Protocol Design and Implementation

Healthcare protocols play a pivotal role in the battle against the current COVID-19
pandemic in view of the need for reducing the virus transmissibility and the inherent
mortality risk of both health workers and the community. Well implemented, these guide-
lines properly endorse the correct administration of factors potentially causing adverse
events, an aspect of extreme importance when addressing a pandemic situation. This
of course facilitates fruitful teamwork as well as the rapid acquisition of competencies
required by the clinicians and administrative staff within the framework of an integrated
emergency care response. In this review, the studies using PDI techniques represent 7.69%
(n = 5 articles) of the total related research (Table 5). Most of the applications (n = 4 articles;
80%) addressed the low ED response by a single technique while only the study reported
by Retzlaff [35] used two methods for solving this problem.

Table 5. Papers demonstrating the design and implementation of healthcare protocols for augmenting the emergency
department response to the COVID-19 pandemic.

Authors Technique Type

Single

Suh et al. [91]; Sangal et al. [36]; Sherren et al. [90] Critical pathways
Mitchell et al. [78] Intelligent integrated triage tool

Hybrid

Retzlaff [35] Critical pathways, lean manufacturing

Most single-approached studies evidenced the use of critical pathways for tackling
the unsuitable reaction of EDs against the pandemic. For instance, Suh et al. [91] de-
signed a clinical crisis pathway for risk stratification of COVID-19 patients considering
symptomatology, resource allocation, and operational capacity of the emergency system.
Furthermore, the study carried out by Sangal et al. [36] denotes the implementation of
a new triage system responding to the pandemic demands in a timely manner. This re-
design contributed to the optimization of patient flow and ED infrastructure which is
highly required in times where physical expansions are not feasible due to the emerging
financial constraints. Likewise, Sherren et al. [90] developed a pathway-focused on air
failure management during the COVID-19 period with particular attention towards the
installed capacity of critical care units. A distinct proposal is presented by Mitchel et al. [85]
whose strategies are centered on moving shifts, lessening non-essential personnel, and iso-
lating the COVID-19 patient areas. The primary results revealed the benefits in the matter
of bed allocation and reduced overcrowding in the ED corridors. Finally, a hybrid approach
combining two domains (QM and PDI) is fostered by Retzlaff [35]. Specifically, this paper
compiles the strategies crafted by different USA hospitals to halt the knock-on effects of
COVID-19 on the normal ED operation. As this is a rapidly evolving situation, authors
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recommend using lean manufacturing and healthcare protocols due to their easiness of
implementation in the real world in addition to bolstering the internal communication,
teamwork, and leadership mainly required in this context.

3.2.2. Classification Based on the Primary Aim

Different specific objectives have been targeted by decision makers when searching for
process improvement methods upgrading the performance of EDs against the COVID-19
pandemic. In summary, 12 primary aims were identified from the related reported litera-
ture. Figure 4 depicts the most popular primary aims pursued during the implementation
of the methodological frameworks (single or hybrid) outlined in Section 3.1. From Figure 4,
it can be inferred that approximately half of the studies (n = 32 articles; 49.23%) aimed
at predicting the health outcomes in COVID-19 patients, whereas 24.61% (n = 16 articles)
focused on improving resource allocation and improving the patient flow through the
EDs (n = 14 articles; 21.53%), and were ranked second and third, respectively. On the
other hand, very few studies have been published regarding the following aims: (i) reduce
the left-without-being-seen rates (n = 1 article; 1.53%), (ii) improve the quality of care
(n = 1 article; 1.53%), (iii) optimize nurse scheduling (n = 1 article; 1.53%), (iv) reduce
the ED revisits (n = 2 articles; 3.07%), (v) minimize the patient waiting time (n = 4 arti-
cles; 6.15%), (vi) tackle the ED overcrowding (n = 4 articles; 6.15%), (vii) reduce the LOS
(n = 4 articles; 6.15%), (viii) predict the SARS-CoV−2 confirmation (n = 6 articles; 9.23%),
and (ix) mitigate occupational hazards and nosocomial spread of SARS-CoV−2
(n = 6; articles; 9.23%).

Figure 4. The most popular primary objectives pursued by EDs during the COVID-19 pandemic.

Interestingly, logistic regression (Figure 5) has been the most popular technique
for predicting the health outcomes in COVID-19 patients (n = 20 articles; 62.5%) while
variations of this method (multivariate binary logistic regression and logistic regression
with post-hoc uniform shrinkage) represent 18.8% (n = 6 articles) of the interventions
targeting this aim. Similarly, logistic regression has been the most used methodology for
improving the resource allocation within the EDs (n = 9 articles; 56.25%). On the other hand,
logistic regression and simulation (n = 3 articles; 21.4%) were the most popular methods
when improving the patient flow throughout the ED journey. It is evident that multiple
methodological options have been adopted for dealing with the latter objective. This is also
noted, albeit to a lesser extent, in the rest of the aims which confirms the complex nature of
ED operations, especially in the ongoing pandemic scenario.
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Figure 5. The techniques used to address the most popular objectives pursued by ED decision makers during the pandemic.

3.2.3. Classification Based on the Publication Period and the Contributing Journal

Figure 6 evidences the evolution of interventions focusing on augmenting the ED
performance in response to the pandemic. As expected, the number of papers dealing with
this objective was very low at the beginning of this disastrous event (January 2020–July 2020)
which evidences the early-stage nature of this research field. In fact, the maximum number
of publications was three (April 2020, June 2020). Nevertheless, there is an increasing
trend in the number of papers from August 2020 to April 2021 which denotes a growing
interest in searching for methodological solutions tackling the above-mentioned challenge.
In this period, the publication peaks are observed in December 2020 (n = 10 articles) and
March 2021 (n = 9 articles).

On a different tack, Figure 7 enlists the ten most contributing journals involved in
the research field together with the number of selected articles that have published until
April 2021. In this case, the evidence base is widespread in 51 journals from different
areas of knowledge (i.e., Health Sciences, Industrial Engineering, Software Engineering) which
is supported by the low absolute frequencies denoted in the graph. In fact, the most
contributing journal is Plos One with barely 5.97% (n = 4 articles). Additionally, the results
revealed that journals from the medical sciences are the main sources in this research area
with 86.15% of the total knowledge base (n = 56 articles).
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Figure 6. Number of papers evidencing the use of process improvement approaches for ramping up
the response of EDs against COVID-19 (Period: January 2020–April 2021).

Figure 7. The journals most contributing to the evidence base.

4. Discussion

The COVID-19 pandemic has forced EDs to elucidate new ways of providing care
in a scenario plagued by uncertainty, constant pressure, and restrictions. Not responding
effectively to this scenario has resulted in a rising risk of serious health complications in
affected patients, the spread of nosocomial infections within the ED wards, and a concern-
ing mortality rate which evidence a lack of concerted intervention where the stakeholders
can converge in the search for real efficacious and efficient process improvement programs.
A representation of these shortcomings can be noted in the collapse of EDs which has
accentuated the need for promoting the design and implementation of emergency care
networks or “big hospitals” as an alternative strategy that may address the demand peaks
caused by the ongoing outbreak and population dynamics [102–104]. This situation is
mainly reported in emerging countries where some hospitals have been urged to transfer
patients to institutions from other regions [105]. Meanwhile, although The United States
and European countries have reported a decline in the total ED visits [106–108], the volume
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of infectious-disease related admissions has substantially risen which entails patient safety
challenges and the accentuation of the well-known operational problems identified in [6].

In view of the above, it is necessary to deploy a massive volume of contributions
tackling the operational disruptions experienced by the EDs in the overarching pandemic.
The review presented here has directed its attention towards the identification of process-
improvement strategies that can be leveraged by decision makers and researchers to halt
the COVID-19 impact on the emergency care system. In this regard, the ample use of
MLDA approaches as solutions to upgrade the response of EDs in this complex scenario
(n = 41 articles; 63.07%) is evident. This is possible considering the significant fast-growing
advance in the implementation of software collecting and storing the sociodemographic
and clinical records of patients especially in developed countries [109]. Another motivation
related to MLDA popularity is the need for confirming the presence of SARS-CoV−2
based on the symptomatology as well as predicting the health outcomes and resource
requirements with sufficient anticipation. In parallel, operational research was found to be
the second most contributing domain with n = 16 articles (24.61%) which is pertinent with
the multifaceted nature of the pandemic and the ED operations. Indeed, Silal and Modelling
and Simulation Hub [29] pointed out that OR can help decision makers effectively manage
infectious diseases while ensuring efficient resource allocation. Albeit often this discipline
is widely applied in healthcare [110], its use has been limited in some way considering
the difficulty to extract process data during the current outbreak. Unsurprisingly, the
implementation of techniques from the QM area is scant which may be explained by the
time that QM projects usually take for their development. More QM contributions are
then expected in the coming months and years for increasing the related evidence base.
In this regard, the application of Lean Six Sigma can be a fruitful path for research due to
its ability for upgrading the supply chain resilience during the COVID-19 era as indicated
by Hundal et al. [11]. No less important is the poor involvement of PDI-related studies
in the knowledge body. In spite of the multiple protocols that have been crafted for the
COVID-19 management within the ED wards, only a few studies show data underpinning
their continuing application in the wild. This is a major aspect detected in PDI projects
where data-based validation is poorly addressed by healthcare managers.

Multi-objective interventions continue to often be pursued by health decision makers
to satisfy stakeholders’ expectations while optimizing constrained resources. The pandemic
scenario is not the exception. In light of the literature, 12 objectives have been mainly
pursued when increasing the ED performance during the ongoing infection. Moreover,
33.84% of the papers (n = 22) have targeted two or more objectives simultaneously. Given
the financial restrictions and the need for immediate improvement imposed by this bi-
ological disaster, the number of multi-aim projects is expected to rise in the near future.
Likewise, the outcomes included in this review are largely variable in view of the complex
multi-dimensional nature of ED operations and the new sanitary dynamics imposed by
the COVID-19 pandemic. In other words, the ED response has become challenging as new
and evolving stages of the COVID-19 have emerged. In this context, each phase has posed
different and novel process challenges entailing the creation of new outcomes evidencing
the effectiveness of the proposed interventions. Much of them are commonly encountered
in studies evidencing the improvement of ED processes during the pre-pandemic pe-
riod [6,15,23,27]. On a different note, our review revealed that the most targeted objectives
have so far been: predicting the health outcomes in COVID-19 patients (n = 32 articles;
49.23%), improving resource allocation (n = 16 articles; 24.61%), and improving the patient
flow through the EDs (n = 14 articles; 21.53%). The popularity of the first-ranked aim is
motivated by the urgent necessity for comprehending the COVID-19 progression which
supports decision making regarding in-time treatment and resource allocation considering
patient condition [111]. Thereby, medical and administrative staff can be properly alerted
and kept apprised of the potential health consequences if suitable interventions are not
shaped and implemented. Going forward, it is possible to anticipate acute worsening
of patients including the likelihood of multi-organ failure and death which gives clini-
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cians an effective basis for intervention in the wild. On a different tack, the shortages of
different ED resources since the sudden onset of the pandemic have forced these units
to correctly search for strategies ensuring their availability, especially in demand peaks.
Resource allocation has been therefore prioritized as a cornerstone underpinning the ED
response against the climbing volume of admissions. This is even more severe in emerging
economies where budget restrictions are commonly addressed when implementing differ-
ent healthcare improvement plans. When on the verge of the collapse, ED administrators
have been pushed towards establishing urgent supplying plans containing new ventilators,
beds, oxygen, and medical staff. This reaction, however, has been related to delayed
diagnosis and treatment which is widely deleterious when deeming a rapidly evolving
disease. These considerations have been also highlighted in [112,113] [8]. However, it is
evident that interactions of EDs with upstream and satellite services are poorly considered
in the literature which limits the effectiveness of the proposed approaches. There is also
a limited number of works focused on optimizing the oxygen allocation in presence of
constrained supply. These aspects are critical to avoid deciding which patients receive a
specific resource and which patients do not. In this respect, methodologies integrating
operations research methods, lean six sigma, and data analytics can give good support for
the implementation of rationing evidence-based policies while maximizing value through-
out the patient journey. Concerning the third most popular objective, it is important to
point out that proper administration of patient flows within the ED may mean the differ-
ence between recovery and death for COVID-19 patients. In this regard, [114] concluded
that a coordinated system-wide proposal considering telehealth, triage telephone lines,
and virtual care may grapple with this crisis. EDs are also called to mine process data
as they continuously gather patient health records so that optimization models can be
further applied seeking for minimizing flow failures and delays. Combining methods
from the MLDA, OR, and CQI domains can serve as a process improvement framework to
enhance ED-wide patient flow. It is furthermore essential to use proper demand forecasting
methods based on sociodemographic, clinical, and climate predictors to better estimate
the demands in future COVID-19 waves whereas vaccination programs advance towards
herd immunity. Likewise, it is suggested to develop initiatives targeting the less popular
objectives identified in Section 3.2.2.

Some interesting findings arose when exploring the techniques with major use in the
reported related literature. For instance, logistic regression and its variations were proved to
be the most popular approach when predicting the health outcomes of COVID-19 positive
patients (n = 26 articles; 81.3%). The main advantage of this technique is the possibility of
relating a key probabilistic variable with its predictors so that decision makers can establish
the health outcome of a patient if certain variables are fully known with anticipation.
Besides, it is feasible to comprehend the effects of each predictor on the response so that
targeted interventions can be shaped to combat the COVID-19 course on any patient. The
popularity of this method was also noted in the next two most prioritized objectives but
to a lesser degree given the mathematical nature of resource allocation and patient flow
problems. In these aims, a wide range of approaches has been implemented for mitigating
the COVID-19 impact on ED operations. There are, however, some remaining challenging
tasks to be tackled in this research field. On the one hand, it is expected to increase the
number of studies using hybrid methods for upgrading ED performance. Such integration
will provide more valuable insights especially those facilitating the administration of
interactions with labs, imaging departments, and upstream healthcare services [115]. In
spite of the well-known popularity of simulation techniques in healthcare, its use is still
scant in the current COVID-19 crisis. Discrete-event simulation (DES) can be then explored
to model healthcare macro-levels, appraise interrelations among services, and pre-test
improvement scenarios which would be highly appreciated by local authorities and ED
administrators when analyzing future interventions [116] DES models and optimization
techniques can also serve as a decision-making platform for optimizing scarce resource
allocation, an area of major relevance for ED operational management.
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At present, the evolution in the number of contributions through the COVID-19 pe-
riod shows an increasing trend especially from August 2020 to April 2021. Such behavior
has been propelled by the lessons learned from the first waves as well as the dramatic
rise in infection and mortality rates, which in some EDs, have reached alarming levels.
More studies addressing the 12 objectives identified in this review are needed to create
a significant body of knowledge transferable to the EDs which, in light of the results, is
at the earlier stages. Despite the substantial efforts that have been made to increase the
performance of EDs, it is still necessary to advance the state-of-the-art solutions to be de-
ployed within the emergency care environment. This of course needs to be complemented
by external measures halting the COVID-19 progress while in-time and efficient emergency
care networks are implemented in the real scenario. Of course, the interventions here
exhibited may be adapted and transferred to support the ED operational response in the
post-pandemic period. For instance, MLDA techniques used to predict the health outcomes
in COVID-19 patients may be employed to foresee the potential health consequences in
people suffering from high-prevalent diseases such as cancer and those from the cardiac
domain. Meanwhile, the actions plotted to improve resource allocation and patient flow
can be adopted by EDs when coping with demand peaks as those forecasted in view of the
population growth and new epidemics/pandemics. On a different track, the approaches
here proposed may be extrapolated to other healthcare settings such as hospitalization,
surgery, and intensive care; for example, MLDA techniques may be implemented to predict
the mortality rate, LOS, and the likelihood of home discharge. OR methods could be
also used to model patient pathways and treatment options within these services so that
inherent resources can be better administered. Likewise, QM and PDI projects may be
further delineated to ensure high adherence to healthcare and safety protocols while laying
the basis for properly collecting and analyzing data representing the performance of these
units.

We acknowledge several limitations in this review. First, the process improvement
approaches outlined in this work are restricted to the industrial engineering domain; in
this regard, it would be useful to consider methodologies out of this area such as clinical
management unit (CMU) (Artiga-Sainz et al. [117], 2021), ABCDE of emergency care, and
clinical-related interventions. Secondly, this review did not take financial outcomes into
consideration which may fairly limit the application of the approaches described here
in EDs where budget is greatly constrained as those located in low-and-middle-income
countries. Third, despite using a review process that was carefully implemented and
monitored, we cannot discard the possibility that contributing studies may have been
excluded. Finally, important insights may have been omitted from the current evidence
base in no consideration of the grey literature search.

5. Concluding Remarks and Future Directions

The COVID-19 pandemic has challenged the preparedness of emergency departments
to deal with disasters in addition to overcoming the operational inefficiencies, predicting
the health outcomes in positive COVID-19 patients, improving resource allocation, and
expediting the patient flows through EDs. Although extreme and even unpredictable
situations can lead emergency departments to disorder, saturation, and even blockage, it
is true that similar pandemic situations to the current ones can be repeated in the future.
It is therefore necessary to analyze all the approaches used to manage the emergency
departments, which will give us a vision of the type of interventions used to set the
bases that help to improve them, change them, or seek new actions. The purpose is
to increase the response and efficiency of emergency departments under different and
exceptional situations.

This article provided a thorough review of the literature using the PRISMA procedure.
The resulting evidence base is integrated by 65 articles published in 51 journals from Decem-
ber 2019 to April 2021. The following classification criteria were deemed: (i) contributing
research domain, (ii) primary aim, (iii) publication period, and iv) contributing journal.
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From a holistic perspective, the results revealed a growing evolution of the research field
over time with specific publication peaks in December 2020 (10 papers) and March 2021
(8 papers). Despite these efforts, it is noticeable that this area is at the earlier stages and
more contributions are expected to emerge in response to the pending gaps.

On a different note, four main knowledge domains were considered due to the multi-
causal nature of EDs: operational research (OR), quality management (QM), machine
learning and data analytics (MLDA), and protocol design and implementation (PDI). The
high involvement of MLDA techniques was noticeable with a participation rate of 61.53%,
followed by OR with 24.61%, QM with 9.3%, and PDI with 7.69%. In summary, the logistic
regression technique (including multivariable binary regression and logistic regression
with post hoc uniform contraction) was proven to be the most contributing technique with
a particular focus on predicting the health outcomes in COVID-19 patients. The selected
works were also related to 12 different aims targeted when upgrading the ED response
during the ongoing pandemic. It was clearly seen that predicting the health outcomes in
COVID-19 patients, improving resource allocation, and improving the patient flow through
the EDs were found to be the most pursued objectives.

It would be also desirable to work on the following research lines in the future:
(i) contributions that integrate logistic regression or its variations with other MLDA, OR,
and PDI techniques; (ii) multi-objective considering resource restrictions; (iii) design of
strategies for improving patient flow in EDs; (iv) generation of scenarios under uncer-
tainty using metaheuristic techniques, multi-objective programming, and queuing theory;
(v) more projects are required for solving the left-without-being-seen problem during the
pandemic; (vi) healthcare decision makers are strongly recommended to integrate artificial
intelligence techniques with approaches from the operations research (OR) and quality
management domains to upgrade the ED performance under socioeconomic restrictions;
(vii) more interventions are needed for coping with the less popular objectives identified in
Section 3.2; (viii) more works focused on optimizing the oxygen allocation in the presence of
limited supply; (ix) it is expected to ramp up the number of studies using hybridization for
improving the ED performance against the ongoing COVID-19 and future similar scenarios
(x) design and implement simulation approaches for supporting efficacious operations
management within EDs during a pandemic; and (xi) review interventions and process
improvement approaches that are out of the industrial engineering domain and which
may complement those proposed within this paper (i.e., clinical management unit (CMU)
(Artiga-Sainz et al., 2021), ABCDE of emergency care, and clinical-related interventions).
The techniques cited in these prospect research lines have been widely used in other con-
texts with very good results and could provide new approaches. It is likely that in the
coming months, new papers will appear to delve into these techniques and provide more
tools to decision makers, policymakers, ED administrators, and practitioners.

Finally, it must be considered that the problem of EDs can be varied, depending
on the limitation of resources (health staff, equipment, infrastructure, etc.), the possibil-
ity of expanding resources and the versatility of these, the type of policies for prioritiz-
ing/classifying patients, and others. Thus, a certain solution using a specific approach can
be very useful in one scenario and little or not at all useful in another. This circumstance
forces us to have a wide range of approaches that cover most of the possible situations,
seeking concrete solutions to very complex problems.
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