Can Exercise Help Regulate Blood Pressure and Improve Functional Capacity of Older Women with Hypertension against the Deleterious Effects of Physical Inactivity?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedures
2.2.1. Multicomponent Exercise Training Program (METP)
- (1)
- 5–8 min of global warm-up activity, including slow walking, calisthenics, and stretching exercises.
- (2)
- 15–25 min of cardiorespiratory workout (aerobic choreography with moderate intensity), with intensity maintained at 2–3 of the adapted Borg Rating of Perceived Exertion scale (RPE) in the first month, and gradually increased to 4–5 in the adapted Borg RPE.
- (3)
- 15–20 min of resistance training with exercises performed in a circuit, involving exercises for the upper and lower body, agility, mobility, coordination, and social interaction, with a 20 to 30 s rest period between sets. Participants performed the weight resistance training using their own body weight (open and closed kinetic chain exercises) and elastic bands. Training intensity was progressive, particularly in the first month of training, to allow proper familiarization with the exercises and the correct and safe techniques of execution and breathing. The series and repetitions were increased each month, from 2 to 4 series and from 16 to 30 repetitions.
- (4)
- 5–10 min of relaxation techniques and stretching for the upper and lower body. Static and dynamic stretching techniques were included in flexibility training.
2.2.2. Detraining Period (DP)
2.2.3. Hemodynamic Profile
2.2.4. Functional Capacity Battery Test
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance training for older adults: Position statement from the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef] [PubMed]
- Chodzko-Zajko, W.J.; Proctor, D.N.; Fiatarone Singh, M.A.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; MacDonald, H.V.; Lamberti, L.; Johnson, B.T. Exercise for hypertension: A prescription update integrating existing recommendations with emerging research. Curr. Hypertens. Rep. 2015, 17, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2018 Update: A Report from the American Heart Association. Circulation 2018, 137, e67–e492, Erratum in Circulation 2018, 137, e493. [Google Scholar] [CrossRef]
- Costa, I.B.B.; Schwade, D.; Macêdo, G.A.D.; Browne, R.A.V.; Farias-Junior, L.F.; Freire, Y.A.; Costa, E.C. Acute antihypertensive effect of self-selected exercise intensity in older women with hypertension: A crossover trial. Clin. Interv. Aging 2019, 14, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Naci, H.; Salcher-Konrad, M.; Dias, S.; Blum, M.R.; Sahoo, S.A.; Nunan, D.; Ioannidis, J.P.A. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br. J. Sports Med. 2018, 53, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, V.A.; Smart, N.A. Exercise training for blood pressure: A systematic review and meta-analysis. J. Am. Heart Assoc. 2013, 2, e004473. [Google Scholar] [CrossRef] [Green Version]
- Sosner, P.; Guiraud, T.; Gremeaux, V.; Arvisais, D.; Herpin, D.; Bosquet, L. The ambulatory hypotensive effect of aerobic training: A reappraisal through a meta-analysis of selected moderators. Scand. J. Med. Sci. Sports 2016, 27, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Leitão, L.F.; Brito, J.; Leitão, A.; Pereira, A.; Conceição, A.; Silva, A.; Louro, H.J.M. Retenção da capacidade funcional em mulheres idosas após a cessação de um programa de treino multicomponente: Estudo longitudinal de 3 anos. Motricidade 2015, 11, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Leitão, L.; Pereira, A.; Mazini, M.; Venturini, G.; Campos, Y.; Vieira, J.; Novaes, J.; Vianna, J.; Silva, S.; Louro, H. Effects of Three Months of Detraining on the Health Profile of Older Women after a Multicomponent Exercise Program. Int. J. Environ. Res. Public Health 2019, 16, 3881. [Google Scholar] [CrossRef] [Green Version]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 2005, 111, 697–716. [Google Scholar] [PubMed] [Green Version]
- Rikli, R.E.; Jones, C.J. Development and validation of a functional fitness test for community residing older adults. J. Aging Phys. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Buys, R.; Smart, N.A. Endurance exercise beneficially affects ambulatory blood pressure: A systematic review and meta-analysis. J. Hypertens. 2013, 31, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Molmen-Hansen, H.E.; Stolen, T.; Tjonna, A.E.; Aamot, I.L.; Ekeberg, I.S.; Tyldum, G.A.; Stoylen, A. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur. J. Prev. Cardiol. 2011, 19, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S. Progressive resistance exercise and resting blood pressure: A meta-analysis of randomized controlled trials. Hypertension 2000, 35, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Ben-Sira, D.; Oliveira, J. Hypertension in aging: Pysical activity as primary prevention. Eur. Rev. Aging Phys. Act. 2007, 4, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A. American College of Sports Medicine Position Stand: Exercise and hypertension. Med. Sci. Sports Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef]
- Maeda, S.; Tanabe, T.; Miyauchi, T.; Otsuki, T.; Sugawara, J.; Lemitsu, M. Aerobic exercise training reduces plasma endothelin-1 concentration in older women. J. Appl. Physiol. 2003, 95, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Rosamond, W.; Flegal, K.; Friday, G.; Furie, K.; Go, A.; Greenlund, K. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2007 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007, 115, e69–e171. [Google Scholar] [CrossRef]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Bohm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. ESH/ESC guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar] [PubMed] [Green Version]
- Delgado-Floody, P.; Izquierdo, M.; Ramírez-Vélez, R.; Caamaño-Navarrete, F.; Moris, R.; Jerez-Mayorga, D.; Álvarez, C. Effect of High-Intensity Interval Training on Body Composition, Cardiorespiratory Fitness, Blood Pressure, and Substrate Utilization During Exercise Among Prehypertensive and Hypertensive Patients with Excessive Adiposity. Front. Physiol. 2020, 11, 558910. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Deák, D.; Farkas, D.; Blényesi, E.; Török, K.; Granacher, U.; Tollár, J. Effects of Exercise Dose and Detraining Duration on Mobility at Late Midlife: A Randomized Clinical Trial. Gerontology 2021. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Pardo, P.J.; González-Gálvez, N.; Gea-García, G.M.; López-Vivancos, A.; Espeso-García, A.; Gomes de Souza Vale, R. Sarcopenia as a Mediator of the Effect of a Gerontogymnastics Program on Cardiorespiratory Fitness of Overweight and Obese Older Women: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 7064. [Google Scholar] [CrossRef]
- Blasco-Lafarga, C.; Cordellat, A.; Forte, A.; Roldán, A.; Monteagudo, P. Short and Long-Term Trainability in Older Adults: Training and Detraining Following Two Years of Multicomponent Cognitive—Physical Exercise Training. Int. J. Environ. Res. Public Health 2020, 17, 5984. [Google Scholar] [CrossRef]
- Elliott, K.; Sale, C.; Cable, N. Effects of resistance training and detraining on muscle strength and blood lipid profiles in postmenopausal women. Br. J. Sports Med. 2002, 36, 340–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakugawa, R.L.; Moura, B.M.; Orssatto, L.; Bezerra, E.S.; Cadore, E.L.; Diefenthaeler, F. Effects of resistance training, detraining, and retraining on strength and functional capacity in elderly. Aging Clin. Exp. Res. 2019, 31, 31–39. [Google Scholar] [CrossRef]
- Pereira, A.; Izquierdo, M.; Silva, A.J.; Costa, A.M.; González-Badillo, J.J.; Marques, M.C. Muscle performance and functional capacity retention in older women after high-speed power training cessation. Exp. Gerontol. 2012, 47, 620–624. [Google Scholar] [CrossRef]
- Martínez-Aldao, D.; Diz, J.C.; Varela, S.; Sánchez-Lastra, M.A.; Ayán, C. Impact of a five-month detraining period on the functional fitness and physical activity levels on active older people. Arch. Gerontol. Geriatr. 2020, 91, 104191. [Google Scholar] [CrossRef]
- Esain, I.; Gil, S.M.; Bidaurrazaga-Letona, I.; Rodriguez-Larrad, A. Effects of 3 months of detraining on functional fitness and quality of life in older adults who regularly exercise. Aging Clin. Exp. Res. 2019, 31, 503–510. [Google Scholar] [CrossRef]
- Nolan, P.; Keeling, S.; Robitaille, C.; Buchanan, C.; Dalleck, L. The effect of detraining after a period of training on cardiometabolic health in previously sedentary individuals. Int. J. Environ. Res. Public Health 2018, 15, 2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, J.; Marques, E.; Ascensão, A.; Magalhães, J.; Marques, F.; Mota, J. Multicomponent exercise program improves blood lipid profile and antioxidant capacity in older women. Arch. Gerontol. Geriatr. 2010, 51, 1–5. [Google Scholar] [CrossRef] [PubMed]
Variable | Group | Baseline (BL) | Post Exercise (PE) | Post Detraining (PD) |
---|---|---|---|---|
Body weight (kg) | EG | 72.60 ± 9.12 | 71.49 ± 9.19 | 71.95 ± 9.22 |
CG | 71.58 ± 10.29 | 71.44 ± 10.55 | 71.97 ± 10.50 | |
BMI (kg·m−2) | EG | 30.67 ± 3.18 | 30.20 ± 4.19 | 30.39 ± 5.50 |
CG | 29,76 ± 5.00 | 29,70 ± 5.13 | 29.91 ± 5.10 | |
BF (%) | EG | 39.12 ± 2.42 | 37.69 ± 2.17 | 38.29 ± 2.14 |
CG | 39.01 ± 2.14 | 38.95 ± 2.04 | 39.26 ± 1.99 |
Group | SBP (%) | DBP (%) | HRrest (%) | UBS (%) | LBS (%) | UBF (%) | LBF (%) | 2TUG (%) | 6MWT (%) | |
---|---|---|---|---|---|---|---|---|---|---|
BL vs. PE | EG | −5.4 * | −5.6 * | −7.7 * | 10 * | 27.8 * | 53.9 * | 100 * | −9.8 * | 8.6 * |
CG | −0.4 | −0.1 | 0.3 | 1.1 | −5.9 | 7 | 17.1 | −0.7 | −0.7 | |
PE vs. PD | EG | 1.1 * | 0.1 * | 7 * | −4.5 * | −13 * | −33.3 * | −37.5 * | 3.5 * | −4.8 * |
CG | 0.4 | 0.2 | 0.6 | 0.4 | 1.1 | −6.4 | −14.2 | −0.5 | −0.3 |
CG | EG | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BL | PE | PD | BL vs. PD | BL | PE | PD | BL vs. PD | |||||||
Confidence Interval | ES | p | Confidence Interval | ES | p | |||||||||
Lower | Upper | Lower | Upper | |||||||||||
SBP (mmHg) | 144.47 ± 3.41 | 143.94 ± 2.36 | 144.12 ± 2.24 | −1.59 | 2.54 | 0.12 | 0.64 | 148.96 ± 7.18 | 141.36 ± 3.49 * | 151.86 ± 9.27 + | −4.97 | −0.82 | 0.35 | 0.01 |
DBP (mmHg) | 86.47 ± 2.47 | 86.32 ± 2.78 | 86.65 ± 2.32 | −0.91 | 0.56 | 0.08 | 0.62 | 88.36 ± 5.03 | 82.96 ± 5.00 * | 84.50 ± 9.81 + | 0.8 | 6.91 | 0.50 | 0.02 |
HRrest (bpm) | 81.47 ± 3.95 | 81.52 ± 4.7 | 81.11 ± 4.06 | −0.05 | 0.76 | 0.09 | 0.08 | 77.32 ± 7.38 | 70.96 ± 8.81 * | 75.61 ± 7.81 + | 0.54 | 2.89 | 0.23 | 0.01 |
LBS (repetitions) | 17.24 ± 2.73 | 16.35 ± 3.05 | 17.06 ± 2.35 | −0.46 | 0.81 | 0.07 | 0.57 | 18.11 ± 2.36 | 22.79 ± 3.01 * | 20.39 ± 2.61 + | −2.46 | −2.11 | 0.91 | 0.00 |
UBS (repetitions) | 19.36 ± 1.27 | 20.35 ± 1.22 | 20.12 ± 2.32 | −2.19 | 0.66 | 0.41 | 0.27 | 19.54 ± 1.88 | 21,54 ± 2.69 * | 20.71 ± 2.11 + | −1.97 | −0.39 | 0.59 | 0.01 |
2TUG (s) | 5.75 ± 0.20 | 5.71 ± 0.24 | 5.68 ± 0.21 | −0.06 | 0.19 | 0.34 | 0.28 | 5.70 ± 0.42 | 5.21 ± 0.53 * | 5.40 ± 0.56 + | 0.12 | 0.48 | 0.61 | 0.00 |
LBF (cm) | 1.76 ± 2.61 | 2.06 ± 2.72 | 2.01 ± 2.55 | −0.75 | 0.63 | 0.10 | 0.86 | 1.54 ± 2.17 | 3.64 ± 1.83 * | 2.46 ± 1.75 + | −2.33 | −0.31 | 0.47 | 0.01 |
UBF (cm) | −5.88 ± 3.71 | −5.47 ± 3.29 | −5.82 ± 3.53 | −1.17 | 0.70 | 0.02 | 0.60 | −4.96 ± 4.28 | −2.46 ± 4.74 * | −3.64 ± 3.88 + | −1.52 | −0.33 | 0.32 | 0.00 |
6MWT (m) | 576.64 ± 52.89 | 572.35 ± 41.31 | 570.59 ± 47.07 | −9.33 | 13.45 | 0.12 | 0.71 | 563.93 ± 56.69 | 623.93 ± 60.31 * | 586.96 ± 59.99 + | −30.26 | −15.81 | 0.39 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitão, L.; Marocolo, M.; Souza, H.L.R.d.; Arriel, R.A.; Vieira, J.G.; Mazini, M.; Louro, H.; Pereira, A. Can Exercise Help Regulate Blood Pressure and Improve Functional Capacity of Older Women with Hypertension against the Deleterious Effects of Physical Inactivity? Int. J. Environ. Res. Public Health 2021, 18, 9117. https://doi.org/10.3390/ijerph18179117
Leitão L, Marocolo M, Souza HLRd, Arriel RA, Vieira JG, Mazini M, Louro H, Pereira A. Can Exercise Help Regulate Blood Pressure and Improve Functional Capacity of Older Women with Hypertension against the Deleterious Effects of Physical Inactivity? International Journal of Environmental Research and Public Health. 2021; 18(17):9117. https://doi.org/10.3390/ijerph18179117
Chicago/Turabian StyleLeitão, Luis, Moacir Marocolo, Hiago L. R. de Souza, Rhai André Arriel, João Guilherme Vieira, Mauro Mazini, Hugo Louro, and Ana Pereira. 2021. "Can Exercise Help Regulate Blood Pressure and Improve Functional Capacity of Older Women with Hypertension against the Deleterious Effects of Physical Inactivity?" International Journal of Environmental Research and Public Health 18, no. 17: 9117. https://doi.org/10.3390/ijerph18179117
APA StyleLeitão, L., Marocolo, M., Souza, H. L. R. d., Arriel, R. A., Vieira, J. G., Mazini, M., Louro, H., & Pereira, A. (2021). Can Exercise Help Regulate Blood Pressure and Improve Functional Capacity of Older Women with Hypertension against the Deleterious Effects of Physical Inactivity? International Journal of Environmental Research and Public Health, 18(17), 9117. https://doi.org/10.3390/ijerph18179117