Leptospirosis and Coinfection: Should We Be Concerned?
Abstract
:1. Introduction
2. Leptospira—An Overview of Epidemiology, Transmission and Persistence in the Environment
2.1. Epidemiology of Leptospira
2.2. Leptospira Persistence in the Environment
3. Leptospira Coinfection, Is It Possible?
4. Leptospira Coinfection in Humans
4.1. Dengue
Location | Year | Study Type | No. Enrolled | No. Co-Infections | Co-Infection Prevalence (%) | Age | Diagnostic Test | References |
---|---|---|---|---|---|---|---|---|
Dengue | ||||||||
Malaysia | 2008 | Case report | 1 | 1 | 100 | 41 | ELISA IgM | [99] |
Malaysia | 2012 | Cross sectional study | 84 | 32 | 38.1 | Mean: 39.4 | ELISA IgM, MAT | [35] |
Puerto Rico | 2012 | Case report | 1 | 1 | 100 | 42 | ELISA IgM, PCR | [100] |
Peru | 2015 | Case report | 1 | 1 | 100 | 10 | ELISA IgM, MAT | [101] |
Sri Lanka | 2015 | Case report | 1 | 1 | 100 | 52 | ELISA IgM, IgG | [102] |
Malaysia | 2017 | Retrospective study | 268 | 11 | 4.1 | 30–32 | ELISA IgM, MAT, PCR | [37] |
Colombia | 2018 | Case study | 1 | 1 | 100 | 87 | ELISA IGM, PCR | [103] |
South India | 2018 | Retrospective study | 974 | 33 | 3.4 | Mean: 37.4 | ELISA IgM | [36] |
Kelambakan | 2018 | Cross sectional study | 100 | 4 | 4 | 21–30 | ELISA IgM, PCR | [104] |
Sri Lanka | 2018 | Retrospective study | 6 | 1 | 16.7 | 17–73 | ELISA IGM, PCR | [105] |
India | NM | Case report | 1 | 1 | 100 | 39 | ELISA IgM, MAT, DFM | [106] |
Malaria | ||||||||
Thailand | 1999–2002 | Cross sectional study | 18 | 7 | 39 | 20–38 | ELISA IgM, MAT | [107] |
India | 2010 | Case report | 2 | 2 | 100 | 38 & 34 | ELISA IgM, MAT | [108] |
India | 2011 | Case report | 18 | 18 | 100 | 28–40 | ELISA IgM, SAT | [109] |
Tamil Nadu | 2012 | Case report | 220 | 48 | 22 | Mean: 29 | MSAT, MAT | [110] |
India | 2014 | Case report | 1 | 1 | 100 | 24 | RMAT, MAT | [111] |
Malaysia | 2011–2014 | Retrospective study | 111 | 26 | 23.4 | Mean: 33 | MAT, BFMP | [112] |
Melioidosis | ||||||||
Malaysia | 2010 | Case report | 20 | 4 | 20 | 29–60 | PCR, Blood C & S | [113] |
Malaysia | 2010 | Retrospective study | 153 | 4 | 2.6 | 20–59 | ELISA IgM, PCR | [114] |
Malaysia | 2016 | Case report | 1 | 1 | 100 | 40 | PCR, ELISA IgM, MAT | [86] |
Typhus | ||||||||
Taiwan | 1997 | Retropective study | 86 | 9 | 10.5 | Mean: 38 | ELISA IgM, MAT, IFA | [115] |
China | 2011 | Case report | 1 | 1 | 100 | 53 | ELISA IgM, MAT | [116] |
India | NM | Case report | 1 | 1 | 100 | 40 | ELISA IgM, MAT | [117] |
India | NM | Case report | 1 | 1 | 100 | 9 | ELISA IgM, ICT | [118] |
India | 2015 | Cross sectional study | 258 | 10 | 3.88 | NM | ELISA IgM, PCR | [119] |
Tamil Nadu | 2014–2015 | Retrospective study | 354 | 23 | 6.5 | Mean: 31.48 | ELISA IgM, MAT | [120] |
Typhus | ||||||||
India | 2018 | Retrospective study | 22 | 9 | 41 | Mean: 38 | ELISA IgM, PCR | [121] |
India | 2017 | Retrospective study | 7 | 2 | 18 | 2–90 | ELISA IgM | [122] |
India | 2018–2019 | Retropective study | 608 | 11 | 42.31 | NA | ELISA IGM | [123] |
4.2. Malaria
4.3. Melioidosis
4.4. Typhus
5. High Potential for Coinfection with Environmental Bacteria
6. Future Direction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stimson, A.M. Note of an organism found in yellow-fever tissue. Public Health Rep. 1907, 22, 541. [Google Scholar] [CrossRef]
- Picardeau, M. Diagnosis and epidemiology of leptospirosis. Med. Mal. Infect. 2013, 43, 1–9. [Google Scholar] [CrossRef]
- Costa, F.; Wunder, E.A., Jr.; De Oliveira, D.; Bisht, V.; Rodrigues, G.; Reis, M.G.; Ko, A.I.; Begon, M.; Childs, J.E. Patterns in Leptopsira shedding in Norway rats (rattus norveigicus) from Brazilian slum communities at high risk of disease transmission. PLoS Negl. Trop. Dis. 2015, 9, e0003819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotez, P.J.; Alvarado, M.; Basáñez, M.-G.; Bolliger, I.; Bourne, R.; Boussinesq, M.; Brooker, S.J.; Brown, A.S.; Buckle, G.; Budke, C.M.; et al. The global burden of disease study 2010: Interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 2014, 8, e2865. [Google Scholar] [CrossRef] [Green Version]
- Jittimanee, J.; Wongbutdee, J. Prevention and control of leptospirosis in people and surveillance of the pathogenic Leptospira in rats and in surface water found at villages. J. Infect. Public Health 2019, 12, 705–711. [Google Scholar] [CrossRef] [PubMed]
- James, S.; Sathian, B.; Van Teijlingen, E.; Asim, M. Outbreak of leptospirosis in Kerala. Nepal J. Epidemiol. 2018, 8, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Togami, E.; Kama, M.; Goarant, C.; Craig, S.B.; Lau, C.; Ritter, J.M.; Imrie, A.; Ko, A.I.; Nilles, E.J. A large leptospirosis outbreak following successive severe floods in Fiji, 2012. Am. J. Trop Med. Hyg. 2018, 99, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Soo, Z.M.P.; Khan, N.A.; Siddiqul, R. Leptospirosis: Increasing importance in developing countries. Acta Trop. 2019, 201, 105183. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.W.; Mok, P.L.; Subbiah, S.K. Misunderstanding in leptospirosis. Acta Trop. 2019, 197, 105046. [Google Scholar] [CrossRef]
- Mohamad-Hassan, S.N.; Bahaman, A.R.; Mutalib, A.R.; Khairani-Bejo, S. Serological prevalence of leptospiral infection in wild rats at the National Service Training Centres in Kelantan and Terengganu. Trop. Biomed. 2010, 27, 30–32. [Google Scholar]
- Neela, V.K.; Azhari, N.N.; Joseph, N.; Mimie, N.P.; Ramli, S.N.A.; Mustapha, N.F.; Ishak, S.N.; Mohd-Taib, F.S.; Yusof, M.A.; Desa, M.N.M.; et al. An outbreak of leptospirosis among reserve military recruits, Hulu Perdik, Malaysia. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Yupiana, Y.; Wilson, P.R.; Weston, J.F.; Vallee, E.; Collins-Emerson, J.M.; Benschop, J.; Scotland, T.; Heuer, C. Epidemiology investigation of Leptospira spp. in a dairy farming enterprise after the occurrence of three human leptospirosis cases. Zoonoses Public Health 2019, 66, 470–479. [Google Scholar] [CrossRef]
- Brinker, A.J.; Blazed, D.L. An outbreak of leptospirosis among united states military personnel in Guam. Trop. Dis. 2017, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Parveen, S.M.A.; Suganyaa, B.; Sathya, M.S.; Margreat, A.A.P.; Sivasankari, K.S.; Shanmughapriya, S.; Hoffman, N.E. Leptospirosis seroprevalence among blue metal mine workers of Tamil Nadu, India. Am. J. Trop. Med. Health 2016, 95, 38–42. [Google Scholar] [CrossRef]
- Ambekar, A.N.; Bharadwaj, R.S.; Joshi, S.A.; Kagal, A.S.; Bal, A.M. Sero surveillance of leptospirosis among sewer workers in Pune. Indian J. Public Health 2004, 48, 27–29. [Google Scholar]
- Barragan, V.; Olivas, S.; Keim, P.; Pearson, T. Critical knowledge gaps in our understanding of environmental cycling and transmission of leptospira spp. Appl. Environ. Microbiol. 2017, 83, e01190-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasdell, K.R.; Morand, S.; Perera, D.; Firth, C. Association of rodent-borne leptospira spp. with urban environments in Malaysia Borneo. PLoS Negl. Trop. Dis. 2019, 13, e0007141. [Google Scholar] [CrossRef]
- Saito, M.; Villanueva, S.Y.A.M.; Chakraborty, A.; Miyahara, S.; Segawa, T.; Asoh, T.; Ozuru, R.; Gloriani, N.G.; Yanagihara, Y.; Yoshida, S.-I. Comparative analysis of Leptospira strains isolated from environmental soil and water in the Philippines and Japan. Appl. Environ. Microbiol. 2013, 79, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.G.; Casanovas-Massana, A.; Hacker, K.; Wunder, E.A., Jr.; Begon, M.; Reis, M.G.; Childs, J.E.; Costa, F.; Lindow, J.; Ko, A.I. Quantification of pathogenic Leptospira in the soils of Brazilian urban slum. PLoS Negl. Trop. Dis. 2018, 12, e0006415. [Google Scholar] [CrossRef] [Green Version]
- Thibeaux, R.; Soupé-Gilbert, M.-E.; Kainiu, M.; Girault, D.; Bierque, E.; Fernandes, J.; Bähre, H.; Douyère, A.; Eskenazi, N.; Vinh, J.; et al. The zoonotic pathogen Leptospira interrogans mitigates environmental stress through cyclic-di-GMP-controlled biofilm production. NPJ Biofilms Microbiomes 2020, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Higa, N.; Okura, N.; Matusmoto, A.; Hermawan, I.; Yamashiro, T.; Suzuki, T.; Toma, C. Characterizing interaction of Leptospira interrogans with proximal renal tubule epithelial cell. BMC Microbiol. 2018, 18, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinod Kumar, K.; Lall, C.; Raj, R.V.; Vedhagiri, K.; Vijayachari, P. Molecular detection of pathogenic leptospiral protein encoding gene (lipL32) in environmental aquatic biofilms. Lett. Appl. Microbiol. 2016, 62, 311–315. [Google Scholar] [CrossRef]
- Barragan, V.A.; Mejia, M.E.; Travez, A.; Zapata, S.; Hartskeerl, R.A. Interaction of Leptospira with environmental bacteria from surface water. Curr. Microbiol. 2011, 62, 1802–1806. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Lata, K.S.; Sharma, P.; Bhairappanavar, S.B.; Soni, S.; Das, J. inferring pathogen-host interactions between Leptospira interrogans and homo sapiens using network theory. Sci. Rep. 2019, 9, 1434. [Google Scholar] [CrossRef] [Green Version]
- Thomas, V.; Anguita, J.; Barthold, S.W.; Fikrig, E. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lime arthiritis. Infect. Immun. 2001, 69, 3359–3371. [Google Scholar] [CrossRef] [Green Version]
- Martcheva, M.; Pilyugin, S.S.; Holt, R.D. Subthreshold and superthreshold coexistence of pathogen variants: The impact of host age-structure. Math. Biosci. 2007, 207, 58–77. [Google Scholar] [CrossRef] [PubMed]
- Rigaud, T.; Perrot-Minnot, M.J.; Brown, M.J.F. Parasite and host assemblages: Embracing the reality will improve our knowledge of parasite transmission and virulence. Proc. R. Soc. B 2010, 277, 3693–3702. [Google Scholar] [CrossRef] [Green Version]
- May, R.M.; Nowak, M.A. Coinfection and the evolution of parasite virulence. Proc. R. Soc. Lon. B 1995, 261, 209–215. [Google Scholar]
- Hoarau, A.O.G.; Mavingui, P.; Labarbenchon, C. Coinfections in wildlife: Focus on a neglected aspect of infectious diseases epidemiology. PLoS Pathog. 2020, 16, e1008790. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.R.M.; Safiee, A.W.M.; Thangarajah, P.; Fauzi, M.H.; Besari, A.M. Molecular detection of leptospirosis and meliodosis co-infection: A case report. J. Infect. Public Health 2017, 10, 894–896. [Google Scholar]
- Turnier, P.L.; Bonifay, T.; Mosnier, E.; Schaub, R.; Jolivet, A. Usefulness of C-reactive protein in differentiating acute leptospirosis and dengue fever Guiana. Open Forum Infect. Dis. 2019, 6, ofz323. [Google Scholar] [CrossRef] [PubMed]
- Yong, L.S.; Koh, K.C. A case of mixed infections in patient presenting with acute febrile illness in the tropics. Case Rep. Infect. Dis. 2013, 2013, 562175. [Google Scholar] [CrossRef] [Green Version]
- Dev, N.; Kumar, R.; Kumar, D. Guillain-Barre syndrome: A rare complication of leptospirosis and scrub typhus co-infection. Trop. Dr. 2019, 49, 248–249. [Google Scholar] [CrossRef] [PubMed]
- McArdle, A.J.; Turkova, A.; Cunnington, A.J. When do co-infection matter? Curr. Opin. Infect. Dis. 2018, 31, 209–215. [Google Scholar] [CrossRef]
- Rafizah, A.A.N.; Aziah, B.D.; Azwany, Y.N.; Imran, M.K.; Rusli, A.M.; Nazri, S.M.; Nabilah, I.; Asma, H.S.; Zahiruddin, W.M.; Zaliha, I. Leptospirosis in Northeastern Malaysia: Misdiagnosed or coinfection? Int. J. Collab. Res. Intern. Med. Public Health 2012, 4, 1419–1427. [Google Scholar]
- Sachu, A.; Madhavan, A.; Vasudevan, A.; Vasudevapanicker, J. Prevalence of dengue and leptospirosis co-infection in a tertiary care hospital in South India. Iran. J. Microbiol. 2018, 10, 227–232. [Google Scholar] [PubMed]
- Suppiah, J.; Chan, S.-Y.; Ng, M.-W.; Khaw, Y.-S.; Ching, S.-M.; Mat-Nor, L.A.; Ahmad-Najimudin, N.A.; Chee, H.-Y. Clinical predictors of dengue fever co-infected with leptospirosis among patients admitted for dengue fever—A pilot study. J. Biomed. Sci. 2017, 24, 40. [Google Scholar] [CrossRef]
- Mohamed, H.; Nozha, C.; Hakim, K.; Abdelaziz, F.; Belahsen, R. Leptospira: Morphology, classification and pathogenesis. J. Bacteriol. Parasitol. 2011, 2, 6. [Google Scholar] [CrossRef]
- Berg, H.C.; Bromley, D.B.; Charon, N.W. Leptospiral motility. In Relations between Structure and Function in the Prokaryotic Cell: 28th Symposium of the Society for General Microbiology; Stanier, R.Y., Rogers, H.J., Ward, J.B., Eds.; Cambridge University Press: Cambridge, UK, 1978; pp. 285–294. [Google Scholar]
- Ellis, W.A.; Hovind-Hougen, K.; Moller, S.; Birch-Andresen, A. Morphological changes upon subculturing of freshly isolated strains of leptospira interrogans serovar hardjo. Zent. Bacteriol. Mikrobiol. Hyg. 1983, 255, 323–335. [Google Scholar] [CrossRef]
- Kadis, S.; Pugh, W.L. Urea utilisation by Leptospira. Infect. Immun. 1974, 10, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Herman, H.S.; Mehta, S.; Cárdenas, W.; Stewart-Ibarra, A.; Finkelstein, J.L. Micronutrients and leptospirosis: A review of the current evidence. PLoS Negl. Trop. Dis. 2016, 10, e0004652. [Google Scholar] [CrossRef]
- Stern, N.; Shenberg, E.; Tietz, A. Studies on the metabolism of fatty acids in Leptospira: The biosynthesis of Δ9- and Δ11- monounsaturated acids. Eur. J. Biochem. 1969, 8, 101–108. [Google Scholar] [CrossRef]
- Carqueira, G.M.; Picardeau, M. A century of Leptospira strain typing. Infect. Gener. Evol. 2009, 9, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Levett, P.N. Systematics of leptospiraceae. Curr. Top. Microbiol. Immunol. 2015, 387, 11–20. [Google Scholar]
- Sun, A.-H.; Liu, X.-X.; Yan, J. Leptospirosis is an invasive infectious and systemic inflammatory disease. Biomed. J. 2020, 43, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Picardeau, M. Virulence of the zoonotic agent of leptospirosis: Still terra incognita? Nat. Rev. Micobiol. 2017, 15, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Thibeaux, R.; Girault, D.; Bierque, E.; Soupé-Gilbert, M.-E.; Rettinger, A.; Douyère, A.; Meyer, M.; Iraola, G.; Picardeau, M.; Goarant, C. Biodiversity of environmental Leptospira: Improving identification and revisiting the diagnosis. Front. Microbiol. 2018, 9, 816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casanovas-Massana, A.; Hamond, C.; Santos, L.A.; Oliveira, D.D.; Hacker, K.P.; Balassiano, I. Leptospira yasudae sp. nov. and Leptospira stimsonii sp. nov., two new species of the pathogenic group isolated from environmental sources. Int. J. Syst. Evol. Microbiol. 2020, 70, 1450–1456. [Google Scholar] [CrossRef] [PubMed]
- Hartskeerl, R.A.; Collares-Pereira, M.; Ellis, W.A. Emergence, control and re-emerging leptospirosis: Dynamics of infection in the changing world. Clin. Microbiol. Infect. 2011, 17, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Garba, B.; Bahaman, A.R.; Bejo, S.K.; Zakaria, Z.; Mutalib, A.R.; Bande, F. Major epidemiological factors associated with leptospirosis in Malaysia. Acta Trop. 2018, 178, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Levett, P.N. Leptospirosis. Clin. Microbiol. Rev. 2001, 14, 296–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordonin, C.; Turpin, M.; Bringart, M.; Bascands, J.L.; Flores, O.; Dellagi, K. Pathogenetic Leptospira and their animal reserviors: Testing host specificity through experimental infection. Sci. Rep. 2020, 10, 7239. [Google Scholar] [CrossRef]
- Andre-Fontaine, G.; Aviat, F.; Thorin, C. Waterborne leptospirosis: Survival and preservation of the virulence of pathogenic Leptospira sp. in fresh water. Curr. Microbiol. 2015, 71, 136–142. [Google Scholar] [CrossRef]
- Bierque, M.; Thibeaux, R.; Girault, D.; Soupe-Gilbert, M.E. A systematic of Leptospira in water and soils. PLoS ONE 2020, 15, e0227055. [Google Scholar]
- Monahan, A.M.; Callanan, J.J.; Nally, J.E. Proteomic analysis of Leptospira interrogans shed in urine of chronically infected hosts. Infect. Immun. 2008, 76, 4952–4958. [Google Scholar] [CrossRef] [Green Version]
- Benacer, D.; Thong, K.L.; Verasahib, K.B.; Galloway, R.L.; Hartskeerl, R.A.; Lewis, J.W.; Mohd Zain, S.N. Human leptospirosis in Malaysia: Reviewing the challenges after 8 decades (1925–2012). Asia Pac. J. Public Health 2016, 28, 290–302. [Google Scholar] [CrossRef]
- Cucchi, K.; Liu, R.; Collender, P.A.; Cheng, Q.; Li, C.; Hoover, C.M.; Chang, H.H.; Liang, S.; Yang, C.; Remais, J.V. Hydroclimatic drivers of highly seasonal leptospirosis incidence suggest prominent soil reservoir of pathogenic Leptospira spp. in rural western China. PLoS Negl. Trop. Dis. 2019, 13, e0007968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goarant, C. Leptospirosis: Risk factors and management challenges in developing countries. Res. Rep. Trop. Med. 2016, 7, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Mohd-Taib, F.S.; Ishak, S.N.; Yusof, M.A.; Md-Lasim, A.; Md Nor, S.; Mohd-Sah, S.A.; Neela, V.K. Leptospirosis: An insight into community structure of small mammals host in urban environment. Trop. Biomed. 2020, 37, 142–154. [Google Scholar]
- Ehelepola, N.D.B.; Ariyaratne, K.; Dissanayake, W.P. The correlation between local weather and leptospirosis incidence in Kandy district, Sri Lanka from 2006 to 2015. Glob. Health Action 2019, 12, 1553283. [Google Scholar] [CrossRef] [PubMed]
- Rahmat, F.; Ishak, A.J.; Zulkafli, Z.; Yahaya, H.; Masrani, A. Prediction model of leptospirosis occurrence for Seremban (Malaysia) using meteorological data. Int. J. Integr. Eng. 2019, 11, 61–69. [Google Scholar] [CrossRef]
- Matsushita, N.; Ng, C.F.S.; Kim, Y.; Suzuki, M.; Saito, N.; Ariyoshi, K.; Salva, E.P.; Dimaano, E.M.; Villarama, J.B.; Go, W.S.; et al. The non-linear and lagged short-term relationship between rainfall and leptospirosis and the intermediate role of floods in the Philippines. PLoS Negl. Trop. Dis. 2018, 12, e0006331. [Google Scholar] [CrossRef] [PubMed]
- Chadsuthi, S.; Modchang, C.; Lenbury, Y.; Iamsirithaworn, S.; Triampo, W. Modelling seasonal leptospirosis transmission and its association with rainfall and temperature in Thailand using time-series and ARIMAX analysis. Asian Pac. J. Trop. Med. 2012, 5, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.L.; Townell, N.; Stephenson, E.; Berg, D.V. Leptospirosis: An important zoonosis acquired through work, play and travel. Aust. J. Gen. Pract. 2018, 47, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okaka, F.O.; Odhiambo, B.D.O. Relationship between flooding and outbreak of infectious disease in Kenya: A review of the literature. J. Environ. Public Health 2018, 2018, 5452938. [Google Scholar] [CrossRef] [Green Version]
- Dobigny, G.; Gauthier, P.; Houemenou, G.; Choplin, A.; Dossou, H.J.; Badou, S.; Etougbétché, J.; Bourhy, P.; Koffi, S.; Durski, K.N.; et al. Leptospirosis and extensive urbanization in West Africa: A neglected and underestimated threat? Urban Sci. 2018, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Ferriman, A. UK considers logging adverse incidents. BMJ 1999, 319, 212. [Google Scholar] [CrossRef] [Green Version]
- Yatbandtoong, N.; Chaiyarat, R. Factors associated with leptospirosis in domestic cattle in Salakphra Wildlife Sanctuary, Thailand. Int. J. Environ. Res. Public Health 2019, 16, 1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atil, A.; Jeffree, M.S.; Rahim, S.S.S.A.; Hassan, M.R.; Lukman, K.A.; Ahmed, K. Occupational determinants of leptospirosis urban services workers. Int. J. Environ. Res. Public Health 2020, 17, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusof, M.A.; Mohd-Taib, F.S.; Ishak, S.N.; Md-Nor, S.; Md-Sah, S.A.; Mohamed, N.Z.; Azhari, N.N.; Neela, V.; Sekawi, Z. Microhabitat factors influenced the prevalence of pathogenic leptopsira spp. in small mammal host. Ecohealth 2019, 16, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.A.A.; Hairon, S.M.; Hamat, R.A.; Jamaluddin, T.Z.M.T.; Shafei, M.N.; Idris, N. Seroprevalene and distribution of leptospirosis serovars among wet market workers in northeastern, Malaysia: A cross sectional study. BMC Infect. Dis. 2018, 18, 569. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Eo, K.Y.; Lee, W.S.; Kimura, J.; Yamamoto, N. DNA-based detection of Leptopsira wolffii, giardia intestinalis and Toxoplasma gondii in environmental feces of wild animals in Korea. J. Vet. Med. Sci. 2021, 83, 850–854. [Google Scholar] [CrossRef]
- Gamage, C.D.; Sato, Y.; Kimura, R.; Yamashiro, T.; Toma, C. Understanding leptospirosis eco-epidemiology by environmental DNA metabarcoding of irrigation water from two agro-ecological regions of Sri Lanka. PLoS Negl. Trop. Dis. 2020, 14, e0008437. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Mizuyama, M.; Sato, M.; Minamoto, T.; Kimura, R.; Toma, C. Environmental DNA metabarcoding to detect pathogenic Leptospira and associated organisms in leptospirosis-endemic areas of Japan. Sci. Rep. 2019, 9, 6575. [Google Scholar] [CrossRef]
- Casanovas-Massanan, A.; De Oliveira, D.; Schneider, A.G.; Begon, M.; Childs, J.E.; Costa, F.; Reis, M.G.; Ko, A.I.; Wunder, E.A. Genetic evidence for a potential environmental pathway to spillover infection of rat-borne leptospirosis. J. Infect. Dis. 2021, 17, jiab323. [Google Scholar] [CrossRef]
- Casanovas-Massana, A.; Pedra, G.G.; Wunder, E.A.; Diggle, P.J.; Begon, M.; Ko, A.I. Quantification of Leptospira interrogans survival in soil and water microcosms. Appl. Environ. Microbiol. 2018, 84, e00507–e00518. [Google Scholar] [CrossRef] [Green Version]
- Stoddard, R.A.; Buy, D.; Haberling, D.L.; Wuthiekanun, V.; Thaipadungpanit, J.; Hoffmaster, A.R. Viability of Leptospira isolates from a human outbreak in Thailand in various water types, pH and temperature conditions. Am. J. Trop. Med. Hyg. 2014, 91, 1020–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Li, P.; Zhang, L.; Hu, W.; Wang, M.; Liu, Y.; Tang, G.; Wang, D.; Zhou, B.; Yan, J. The role of reactive oxygen intermediates in the intracellular fate of Leptospira interrogans in the macrophages of different hosts. PLoS ONE 2017, 12, e0178618. [Google Scholar] [CrossRef] [PubMed]
- Zala, D.B.; Khan, V.; Sanghai, A.A.; Dalai, S.K.; Das, V.K. Leptospira in the different ecological niches of the tribal union territory of India. J. Infect. Dev. Ctries. 2018, 12, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.J.; Self, H.R. Observation on the survival of Leptospira australis A in soil and water. Epidemiol. Infect. 1995, 53, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Goarant, C.; Trueba, G.; Bierque, E.; Thibeaux, R.; Davis, B.; Moctezuma, D.P. Leptospira and Leptospirosis; Global Water Pathogen Project. Part 3 Bacteria; Rose, J.B., Jimenez-Cisneros, B., Pruden, A., Ashbolt, N., Miller, J., Eds.; Michigan State University: East Lansing, MI, USA, 2019; Available online: http://www.waterpathogens.org/book/leptospira-and-leptospriosis (accessed on 25 August 2021).
- Thibeaux, R.; Geroult, S.; Benezech, C.; Chabaud, S.; Soupé-Gilbert, M.-E.; Girault, D.; Bierque, E.; Goarant, C. Seeking the environmental source of leptospirosis reveals durable bacterial viability in river soils. PLoS Negl. Trop. Dis. 2017, 11, e0005414. [Google Scholar] [CrossRef] [Green Version]
- Bharti, A.R.; Nally, J.E.; Ricaldi, J.N.; Matthias, M.A.; Diaz, M.M.; Lovett, M.A.; Levett, P.N. Leptospirosis: A zoonotic disease of global importance. Lancet Infect. Dis. 2003, 3, 757–771. [Google Scholar] [CrossRef]
- Terpstra, W.J. Historical perspectives in leptospirosis. Indian J. Med. Microbiol. 2006, 23, 316–320. [Google Scholar] [CrossRef]
- Saito, M.; Miyahara, S.; Villanueva, S.Y.A.M.; Aramaki, N.; Ikejiri, M.; Kobayashi, Y. PCR and culture identification of pathogenic Leptospira spp. from coastal soil in Leyte, Philippines after a storm surge during super typhoon Haiyan (Yolanda). Appl. Environ. Microbiol. 2014, 80, 6926–6932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaumourin, R.; Vourc’h, G.P.; Vayssier-Taussat, M. The important of multiparasitism: Examining the consequences of co-infections for human and animal health. Parasit Vectors 2020, 8, 545. [Google Scholar] [CrossRef] [PubMed]
- Sembiring, E. Diagnostic approach in leptospirosis patients. IOP Conf. Ser. Earth Environ. Sci. 2018, 125, 012089. [Google Scholar] [CrossRef]
- Izurieta, R.; Galwanker, S.; Clem, A. Leptospirosis: The “mysterious” mimic. J. Emerg. Trauma Shock 2008, 1, 21–33. [Google Scholar]
- Smith, S.; Kennedy, B.J.; Dermedgoglou, A.; Poulgrain, S.S.; Paavola, M.P.; Minto, T.L. A simple score to predict severe leptospirosis. PLoS Negl. Trop. Dis. 2019, 13, e0007205. [Google Scholar] [CrossRef]
- Hishamshah, M.; Ahmad, N.; Ibrahim, H.M.; Halim, N.A.N.; Nawi, S.; Amran, F. Demographic, clinical and laboratory features of leptospirosis and dengue co-infection in Malaysia. J. Med. Microbiol. 2018, 67, 806–813. [Google Scholar] [CrossRef] [Green Version]
- Chacko, C.S.; Jayakumar, A.; Binu, S.L.; Pant, R.D.; Giri, A.; Chand, S.; Nandakumar, U.P. A short review on leptospirosis: Clinical manifestations, diagnosis and treatment. Clin. Epidemiol. Glob. Health 2021, 11, 100741. [Google Scholar] [CrossRef]
- Begam, N.N.; Kumar, A.; Sahu, M.; Soneja, M.; Bhatt, M.; Vishwakarma, V.K. Managemement of dengue wit coinfection: An updated narrative review. Drug Discov. Ther. 2021, 15, 130–138. [Google Scholar] [CrossRef]
- Parminder, K.; Jain, R.; Guglani, V.; Randev, S.; Kumar, P. Tropcal coinfection—A diagnostic dilemma: Case series from Northern India. J. Public Health Dis. Prev. 2021, 4, 102. [Google Scholar]
- Mala, W.; Wilairatana, P.; Kotepui, K.U.; Kotepui, M. Prevalence of malaria and chikungunya coinfection in febrile patients: A systematic review and meta-analysis. Trop. Med. Infect. Dis. 2021, 6, 119. [Google Scholar] [CrossRef]
- Kamath, V.; Ganguly, S.; Avinash, B.L. A comparative study of concurrent infections of rickettsial infection, malaria, typhoid, and chikungunya with dengue. APIK J. Int. Med. 2019, 7, 120–126. [Google Scholar] [CrossRef]
- Del Valle-Mendoza, J.; Palomares-Reyes, C.; Carrillo-Ng, H.; Tarazona-Castro, Y.; Kym, S.; Aguilar-Luis, M.A.; Del Valle, L.J.; Aquino-Ortega, R.; Martins-Luna, J.; Peña-Tuesta, I.; et al. Leptospirosis in febrile pateints with suspected diagnosis of dengue fever. BMC Res. Notes 2021, 14, 209. [Google Scholar] [CrossRef] [PubMed]
- Hartskeerl, R.A.; Smythe, L.D. The role of leptospirosis reference laboratory. Curr. Top. Microbiol. Immunol. 2015, 387, 273–288. [Google Scholar]
- Mohammad, E.; Mohsin, N.; Al-Abri, S.; Al-Abaidani, I.; Jha, A.; Camble, P.; Budruddin, M.; Khalil, M.; Pakyarra, A.; Al Busaidy, S. Acute renal failure in patient with both leptospirosis and dengue fever. Oman Med. J. 2008, 23, 100–102. [Google Scholar]
- Sharp, T.M.; Bracero, J.; Rivera, A.; Shieh, W.J.; Bhatnagar, J.; Rivera-Diez, I.; Hunsperger, E.; Munoz-Jordan, J.; Zaki, S.R.; Tomashek, K.M. Fatal human co-infection with Leptospira spp. and dengue virus Puerto Rico, 2010. Emerg. Infect. Dis. 2012, 18, 878–880. [Google Scholar] [CrossRef] [PubMed]
- Garbin, A.N.; Espinoza-Figueroa, J.; Sihuincha-Maldonado, M.; Suarez-Ognio, L. Coinfection of dengue and leptospirosis in a girl from the Peruvian Amazon. Rev. Peru. Med. Exp. Salud Publica 2015, 32, 179–182. [Google Scholar]
- Wijesinghe, A.; Gnanapraggash, N.; Ranasinghe, G.; Ragunathan, M.K. Fatal co-infection with leptospirosis and dengue in a Sri Langkan male. BMC Res. Notes 2015, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Cardona-Ospina, J.A.; Jiménez-Canizales, C.E.; Vásquez-Serna, H.; Garzón-Ramírez, J.A.; Alarcón-Robayo, J.F.; Cerón-Pineda, J.A.; Rodríguez-Morales, A.J. Fatal Dengue, Chikungunya and Leptospirosis: The Importance of Assessing Co-infections in Febrile Patients in Tropical Areas. Trop. Med. Infect. Dis. 2018, 3, 123. [Google Scholar] [CrossRef] [Green Version]
- Ravindar, A.; Shanmugam, P. Co-infection of dengue and leptospirosis in patients presenting to a tertiary care hospital with acute febrile illness: A cross-sectional study. J. Clin. Diagn. Res. 2018, 12, DC05–DC09. [Google Scholar] [CrossRef]
- Jayathilaka, P.G.N.S.; Mendis, A.S.V.; Perera, M.H.M.T.S.; Damsiri, H.M.T.; Gunaratne, A.V.C.; Agampodi, S.B. An outbreak of leptospirosis with predominant cardiac involvement: A case series. BMC Infect. Dis. 2019, 19, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nithya, V.; Umadevi, R. Leptospirosis complicating dengue infection in a 39 year old female- a case report. Drug Invent. Today 2019, 12, 2407–2409. [Google Scholar]
- Wongsrichanalai, C.; Miller, R.S.; Gray, M.; Murray, C.K.; Magill, A.J.; Pickard, A.L.; Liao, W.J.; McDaniel, P. Co-infection with malaria and leptospirosis. Am. J. Trop. Med. Hyg. 2003, 68, 583–585. [Google Scholar] [CrossRef] [Green Version]
- Baliga, K.V.; Uday, Y.; Sood, V.; Nagpal, A. Acute febrile hepato-renal dysfunction in the tropics: Co-infection of malaria and leptospirosis. J. Infect. Chemother. 2011, 17, 694–697. [Google Scholar] [CrossRef]
- Gurjar, M.; Saigal, S.; Baronia, A.K.; Azim, A.; Poddar, B.; Singh, R.K. Clinical manifestations of co-infection with malaria and leptospirosis. Trop. Dr. 2011, 41, 175. [Google Scholar] [CrossRef]
- Loganathan, N.; Ramalingam, S.; Ravishankar, D.; Shivakumar, S. Co-infection of malaria and leptospirosis—A hospital based study from South India. Nat. J. Res. Com. Med. 2012, 1, 117–119. [Google Scholar]
- Samantha, S.; Samantha, S.; Haldar, R. Emergency caesarean delivery in a patient with cerebral malaria-Leptospira co infection: Anaesthetic and critical care considerations. Indian J. Anaesth. 2014, 58, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Atiqah, N.; Dasiman, M.; Amran, F. Demographic, clinical and laboratory features of leptospirosis-malaria co-infections in Peninsular Malaysia. J. Med. Microbiol. 2020, 69, 451–456. [Google Scholar] [CrossRef]
- Hin, H.S.; Ramalingam, R.; Chunn, K.Y.; Ahmad, N.; Rahman, J.A.; Mohamed, M.S. Case report: Fatal co-infection melioidosis and leptospirosis. Am. J. Trop. Med. Hyg. 2012, 87, 737–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapian, M.; Khair, M.T.; How, S.H.; Rajalingam, R.; Sahhir, K.; Norazah, A.; Khebir, V.; Jamalludin, A.R. Outbreak of melioidosis and leptospirosis co-infection following a rescue operation. Med. J. Malays. 2012, 67, 293–297. [Google Scholar]
- Watt, G.; Jongsakul, K.; Suttinot, C. Possible scrub typhus coinfections in thai agricultural workers hospitalised with leptospirosis. Am. J. Trop. Med. Hyg. 2003, 68, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.F.; Chiu, C.T.; Lai, Y.F.; Lai, C.H.; Lin, H.H. Successful treatment of septic shock and respiratory failure due to leptospirosis and scrub typhus coinfection with penicillin, levofloxacin and activated protein C. J. Microbiol. Immunol. Infect. 2012, 45, 251–254. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.K.; Babu, S.N.M.; Singh, D.; Kanga, A.; Kaushal, S.S. Scrub typhus and leptospirosis co-infection in Himalayan region. Trop. Dr. 2012, 42, 176–177. [Google Scholar] [CrossRef] [PubMed]
- Chandramohan, A.; Venkatesh, S.; Dhandapany, G.; Stephen, S. Scrub typhus co-infection in an adolescent girl with varicella. Indian Pediatr. 2015, 52, 891–892. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Chaudhry, R.; Mirdha, B.; Das, B.; Dar, L.; Kabra, S.; Lodha, R.; Dey, A.; Sood, R.; Sreenivas, N.W.A.V. Scrub typhus and leptospirosis: The fallacy of diagnosing with IgM and enzyme linked immunosorbant assays. J. Microb. Biochem. Technol. 2016, 8, 071–075. [Google Scholar] [CrossRef]
- Kanagasabai, S.; Thatchinamoorthy, G.; Ganesan, A.; Pachiyappan, G.; Gouthami, P.; Valarmathi, S.; Jacob, S.M. Seroprevalence of scrub typhus and coinfection with leptospirosis in Chennai, Tamil Nadu. Int. J. Infect. Dis. 2016, 45, 178. [Google Scholar] [CrossRef] [Green Version]
- Malakar, S.; Negi, B.D.; Dutt, K.; Bharat, K.; Shah, B.; Raina, S.; Sharma, R. Concurrent coinfections in tropics: A hospital-based observational study from Himachal Pradesh, India. Recent Adv. Biol. Med. 2019, 5, 871388. [Google Scholar] [CrossRef]
- Yaqoob, S.; Siddiqui, A.H.; Shukla, P. Scrub typhus: A neglected tropical disease and a potential threat in north india. J. Pure Appl. Microbiol. 2020, 14, 1589–1593. [Google Scholar] [CrossRef]
- Sengupta, M.; Tamasi, M.; Rajat, D.; Parthajit, B. Leptopsirosis and scrub typhus co-infection in febrile patients. World J. Adv. Res. Rev. 2020, 6, 233–236. [Google Scholar] [CrossRef]
- Lima, R.X.B.; Rolim, D.B. Melioidosis in children, Brazil 1989–2019. Emerg. Infect. Dis. 2021, 27, 1705–1708. [Google Scholar] [CrossRef] [PubMed]
- Hanson, J.; Smith, S.; Stewart, J.; Horne, P.; Ramsamy, N. Melioidosis—A disease of socioeconomic disadvantage. PLoS Negl. Trop. Dis. 2021, 15, e0009544. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Baby, P.; Kumar, A.; Surendran, S.; Pradeep, M.; Rejendran, A.; Suju, G.; Ashok, A. Risk factor for mortality in melioidosis: A single-centre, 10 year retrospective cohort study. Sci. World J. 2021, 2021, 8154810. [Google Scholar] [CrossRef]
- Chaichana, P.; Kronsteiner, B.; Rongkard, P.; Teparrukkul, P.; Limmathurotsakul, D.; Chantratia, N.; Day, N.P.; Fletcher, H.A.; Dunachie, S.J. Serum from melioidosis survivors diminished intracellular Burkholderia pseudomallei growth in macrophages: A brief research report. Front. Cell Infect. Microbiol. 2020, 10, 442. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Virk, H.S.; Torres, A.G.; Currie, B.J.; Peacock, S.J.; Dance, D.A.B.; Limmathurotsakul, D. Melioidosis. Nat. Rev. Dis. Primers 2018, 4, 17107. [Google Scholar] [CrossRef]
- Gasem, M.H.; Wagenaar, J.F.; Goris, M.G.; Adi, M.S.; Isbandrio, B.B.; Hartskeerl, R.A.; Rolain, J.-M.; Raoult, D.; Van Gorp, E.C. Murine Typhus and Leptospirosis as Causes of Acute Undifferentiated Fever, Indonesia. Emerg. Infect. Dis. 2009, 15, 975–977. [Google Scholar] [CrossRef]
- Ibrahim, I.N.; Okabayashi, T.; Lestari, E.W.; Yanase, T.; Muramatsu, Y.; Ueno, H.; Morita, C. Serosurvey of wild rodents for ricketsioses Ispotted fever, murine typhus and Q fever) in Java Island, Indonesia. Eur. J. Epidemol. 1999, 15, 89–93. [Google Scholar] [CrossRef]
- Jiang, J.; Soetmadji, D.W.; Henry, K.M.; Ratiwayanto, S.; Bangs, M.J.; Richards, A.L. Rickettsia felis in Xenopsylla cheopis, Java Indonesia. Emerg. Infect. Dis. 2006, 12, 1281–1283. [Google Scholar] [CrossRef]
- Tsay, R.W.; Chang, F.Y. Serious complications in scrub typhus. J. Microbiol. Immunol. Infect. 1998, 31, 240–244. [Google Scholar]
- Silpapojakul, K. Scrub typhus in the western pacific region. Ann. Acad. Med. Singap. 1997, 26, 794–800. [Google Scholar]
- Gilbert, J.A.; Quinn, R.A.; Debelius, J.; Xu, Z.Z.; Morton, J. Microbiome-wide association studies link dynamic mmicrobiol consortia to disease. Nature 2016, 535, 94–103. [Google Scholar] [CrossRef]
- Ingham, E.R. Soil biology primer, Chapter 4: Soil fungus. In Soil and Water Conservation; Soil & Water Conservation Society: Ankeny, IA, USA, 2009; pp. 22–23. Available online: http://soils.usda.gov/sqi/concepts/soil_biology (accessed on 12 April 2021).
- Zhao, X.; Li, D.; Xu, S.; Guo, Z.; Zhang, Y.; Man, L.; Jiang, B.; Hu, X. Clostridium guangxiense spp. nov. Clostridium neunse sp. nov. two phylogenetically closely related hydrogen-producing species isolated from lake sediment. Int. J. Syst. Evol. Microbiol. 2017, 67, 710–715. [Google Scholar]
- Mathai, P.P.; Dunn, H.M.; Magnone, P.; Zhang, Q.; Ishii, S.; Chun, C.L.; Sadowsky, M.J. Association between submerged aquatic vegetation and elevated level of Escherichia coli and potential bacterial pathogens in freshwater lakes. Sci. Total. Environ. 2019, 657, 319–324. [Google Scholar] [CrossRef]
- Tan, T.L.; Lee, L.Y.; Lim, W.C. Fatal leptospirosis and Escherichia coli co-infection post-partum woman. Med. J. Malays. 2018, 73, 427–429. [Google Scholar]
- Dietrich, M.; Gomard, Y.; Lagadec, E.; Ramasindrazana, B.; Minter, G.L.; Guernier, V.; Benlali, A.; Rocamora, G.; Markotter, W.; Steven, M.; et al. Biogeography of Leptospira in wild animal communities inhabiting the insular ecosystem of the western Indian ocean island and neighboring Africa. Emerg. Microbes Infect. 2017, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Ibekwe, A.M.; Murinda, S.E.; Graves, A.K. Genetic diversity and antimicrobial resistance of Escherichia coli from human and animal sources uncovers multiple resistance from human sources. PLoS ONE 2011, 6, e20819. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wang, H.; Wu, L.; Lou, J.; Wu, J.; Brookes, P.C.; Xu, J. Survival of Escherichia coli 0157:H7 in soils from Jiangsu province, China. PLoS ONE 2013, 8, e81178. [Google Scholar]
- Cohen, M.B.; Giannella, R.A. Hemorrhagic colitis associated with Escherichia coli 0157:H7. Adv. Intern. Med. 1992, 37, 173–195. [Google Scholar]
- Ko, H.; Maymani, H.; Rojas-Hernandez, C. Hemolytic uremic syndrome associated with Escherichia coli 0157:H7 infection in older adults: A case report and review of the literature. J. Med. Case Rep. 2016, 10, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, C.P. The versatile strategies of Escherichia coli pathotypes: A mini review. J. Venom. Anim. Toxins Incl. Trop. Dis. 2006, 12, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Kiu, R.; Hall, L.J. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg. Microbes Infect. 2018, 7, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, L.Y.; Harrison, P.F.; Gould, J.; Powell, D.R.; Choo, J.M.; Forster, S.C.; Chapman, R. Concurrent host-pathogen transcriptional responses in clostridium perfringens murine myonecrosis infections. mBio 2018, 9, e00473-18. [Google Scholar] [CrossRef] [Green Version]
- Foysal, M.J.; Lisa, A.K. Isolation and characterisation of Bacillus sp. strain BC01 from soil displaying potent antagonistic activity against plant and fish pathogenic fungi and bacteria. J. Genet. Eng. Biotechnol. 2018, 16, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Dale, J.L.; Raynor, M.J.; Ty, M.C.; Hadjifrangiskou, M.; Koehler, T.M. A dual role for the Bacillus anthracis master virulence regulator AtxA: Control of sporulation and anthrax toxin production. Front. Microbiol. 2018, 9, 482. [Google Scholar] [CrossRef]
- Dizer, U.; Kenar, L.; Ortatath, M.; Karayilanoglu, T. How to weaponized anthrax? East. J. Med. 2004, 9, 13–16. [Google Scholar]
- Nhan, T.X.; Bonnieux, E.; Rovery, C.; De Pina, J.J.; Musso, D. Fatal leptospirosis and chikungunya co-infection: Do not forget leptospirosis during chikungunya outbreaks. IDCases 2016, 5, 12–14. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Mandal, A.; Vijayaachari, P. Investigation of malaria among patients of febrile illness and co-infection with leptospirosis in Andaman and Nicobar Islands. Res. J. Microbiol. 2014, 9, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Hodkinson, B.P.; Grice, E.A. Next-generation sequencing: A review of technologies and tools for wound microbiome research. Adv. Wound Care 2015, 4, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sessitsch, A.; Pfaffenbichler, N.; Mitter, B. Microbiome applications from lab to field: Facing complexity. Trends Plant Sci. 2019, 24, 194–198. [Google Scholar] [CrossRef]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
Genotypic Classification | Leptospira Species |
---|---|
Pathogenic Leptospira | L. alexanderi, L. alstonii, L. borgpetersenii, L. interrogans, L. kirschneri, L. kmetyi, L. mayottensis, L. noguchii, L. santarosai, L. weilii. |
Intermediate Leptospira | L. broomii, L. fainei, L. inadai, L. licerasiae, L. wolffii, L. venezelensis, L. broomii. |
Sapropytic Leptospira | L. biflexa, L. meyeri, L. terpstrae, L. vanthielii, L. wolbachii, L. yanagawae, L. idonii. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Md-Lasim, A.; Mohd-Taib, F.S.; Abdul-Halim, M.; Mohd-Ngesom, A.M.; Nathan, S.; Md-Nor, S. Leptospirosis and Coinfection: Should We Be Concerned? Int. J. Environ. Res. Public Health 2021, 18, 9411. https://doi.org/10.3390/ijerph18179411
Md-Lasim A, Mohd-Taib FS, Abdul-Halim M, Mohd-Ngesom AM, Nathan S, Md-Nor S. Leptospirosis and Coinfection: Should We Be Concerned? International Journal of Environmental Research and Public Health. 2021; 18(17):9411. https://doi.org/10.3390/ijerph18179411
Chicago/Turabian StyleMd-Lasim, Asmalia, Farah Shafawati Mohd-Taib, Mardani Abdul-Halim, Ahmad Mohiddin Mohd-Ngesom, Sheila Nathan, and Shukor Md-Nor. 2021. "Leptospirosis and Coinfection: Should We Be Concerned?" International Journal of Environmental Research and Public Health 18, no. 17: 9411. https://doi.org/10.3390/ijerph18179411
APA StyleMd-Lasim, A., Mohd-Taib, F. S., Abdul-Halim, M., Mohd-Ngesom, A. M., Nathan, S., & Md-Nor, S. (2021). Leptospirosis and Coinfection: Should We Be Concerned? International Journal of Environmental Research and Public Health, 18(17), 9411. https://doi.org/10.3390/ijerph18179411