Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Measures
2.3.1. Substance Use
2.3.2. Anxiety
2.3.3. Depression
2.3.4. Covariates
2.4. Analyses
3. Results
3.1. Repeated Measures Latent Class Analysis
3.2. Regression Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Volkow, N.D.; Baler, R.D.; Compton, W.M.; Weiss, S.R.B. Adverse Health Effects of Marijuana Use. N. Engl. J. Med. 2014, 370, 2219–2227. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, T.; Zhao, J.; Panwar, S.; Roemer, A.; Naimi, T.; Chikritzhs, T. Do “Moderate” Drinkers Have Reduced Mortality Risk? A Systematic Review and Meta-Analysis of Alcohol. Consumption and All-Cause Mortality. Stud. Alcohol Drugs 2016, 77, 185–198. [Google Scholar] [CrossRef] [Green Version]
- US Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. 2014. Available online: https://www.surgeongeneral.gov/library/reports/50-years-of-progress/exec-summary.pdf (accessed on 1 August 2021).
- Connor, J.P.; Gullo, M.J.; White, A.; Kelly, A.B. Polysubstance use: Diagnostic challenges, patterns of use and health. Curr. Opin. Psychiatry 2014, 27, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Halladay, J.; Woock, R.; Munn, C.; Mackillop, J.; Amlung, M.; Ogrodnik, M.; Favotto, L.; Aryal, K.; Noori, A.; Kiflen, M.; et al. Patterns of substance use among adolescents : A systematic review. Drug Alcohol Depend. 2020, 216, 10822. [Google Scholar] [CrossRef]
- Merrin, G.J.; Thompson, K.; Leadbeater, B.J. Transitions in the use of multiple substances from adolescence to young adulthood. Drug Alcohol Depend. 2018, 189, 147–153. [Google Scholar] [CrossRef]
- Choi, H.J.; Lu, Y.; Schulte, M.; Temple, J.R. Adolescent substance use: Latent class and transition analysis. Addict. Behav. 2018, 77, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, S.; Pedersen, A.; Hanewinkel, R.; Isensee, B.; Morgenstern, M. Polysubstance use patterns and trajectories in vocational students—A latent transition analysis. Addict. Behav. 2016, 58, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Brooks-Russell, A.; Conway, K.P.; Liu, D.; Xie, Y.; Vullo, G.C.; Li, K.; Iannotti, R.J.; Compton, W.; Simons-Morton, B. Dynamic Patterns of Adolescent Substance Use: Results From a Nationally Representative Sample of High School Students. J. Stud. Alcohol Drugs 2015, 76, 962–970. [Google Scholar] [CrossRef] [Green Version]
- Cole, A.G.; Aleyan, S.; Battista, K.; Leatherdale, S.T. Trends in youth e-cigarette and cigarette use between 2013 and 2019 : Insights from repeat cross-sectional data from the COMPASS study. Can. J. Public Health 2020, 112, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Fallu, J.S.; Brière, F.N.; Janosz, M. Latent classes of substance use in adolescent cannabis users: Predictors and subsequent substance-related harm. Front. Psychiatry 2014, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bohnert, K.M.; Walton, M.A.; Resko, S.; Barry, K.T.; Chermack, S.T.; Zucker, R.A.; Zimmerman, M.A.; Booth, B.M.; Blow, F.C. Latent Class Analysis of Substance Use among Adolescents Presenting to Urban Primary Care Clinics. Am. J. Drug Alcohol Abuse 2014, 40, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felton, J.W.; Kolfer, M.J.; Lopez, C.M.; Saunders, B.E.; Kilpatrick, D.G. The emergence of co-occurring adolescent polysubstance use and depressive symptoms: A latent growth modeling approach. Dev. Psychopathol. 2015, 27, 1367–1383. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.B.; Chan, G.C.K.; Mason, W.A.; Williams, J.W. The relationship between psychological distress and adolescent polydrug use. Psychol. Addict. Behav. 2015, 29, 787–793. [Google Scholar] [CrossRef] [Green Version]
- Peters, E.N.; Budney, A.J.; Carroll, K.M. Clinical correlates of co-occurring cannabis and tobacco use: A systematic review. Addiction 2012, 107, 1404–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuckermann, A.M.E.; Williams, G.C.; Battista, K.; Jiang, Y.; de Groh, M.; Leatherdale, S.T. Prevalence and Correlates of Youth Poly-Substance Use in the COMPASS Study. Addict. Behav. 2020, 107, 106400. [Google Scholar] [CrossRef]
- Connell, C.M.; Gilreath, T.D.; Hansen, N.B. A Multiprocess Latent Class Analysis of the Co- Occurrence of Substance Use and Sexual Risk Behavior Among Adolescents. J. Stud. Alcohol Drugs 2009, 70, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Wanner, B.; Vitaro, F.; Carbonneau, R.; Tremblay, R.E. Cross-Lagged Links Among Gambling, Substance Use, and Delinquency From Midadolescence to Young Adulthood: Additive and Moderating Effects of Common Risk Factors. Psychol. Addict. Behav. 2009, 23, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Dornbusch, S.M.; Lin, I.; Munroe, P.T. Adolescent polydrug use and violence in the United States. Int. J. Adolesc. Med. Health 1999, 11, 197–220. [Google Scholar] [CrossRef]
- McNaughton, H.L.; Foshee, V.A.; Bauer, D.J.; Ennett, S.T. Proximal and time-varying effects of cigarette, alcohol, marijuana and other hard drug use on adolescent dating aggression. J. Adolesc. 2014, 37, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Maslowsky, J.; Schulenberg, J.E.; O’Malley, P.M.; Kloska, D.D. Depressive symptoms, conduct problems, and risk for polysubstance use among adolescents: Results from US national surveys. Ment. Health Subst. Use 2014, 7, 157–169. [Google Scholar] [CrossRef]
- Williams, G.C.; Patte, K.A.; Ferro, M.A.; Leatherdale, S.T. Substance use classes and symptoms of anxiety and depression among Canadian secondary school students. Health Promot. Chronic Dis. Prev. Can. Res. Policy Pract. 2021, 41, 14–25. [Google Scholar] [CrossRef]
- Jongenelis, M.; Pettigrew, S.; Lawrence, D.; Rikkers, W. Factors Associated with Poly Drug Use in Adolescents. Prev. Sci. 2019, 20, 695–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodzlan Hasani, W.S.; Saminathan, T.A.; Ab Majid, N.L.; Miaw Yn, J.L.; Rifin, H.M.; Abd Hamid, H.A.; Robert Lourdes, T.G.; Ahmad, A.; Lsmail, H.; Rashid, R.A.; et al. Polysubstance use among adolescents in Malaysia : Findings from the National Health and Morbidity Survey 2017. PLoS ONE 2021, 16, e0245593. [Google Scholar] [CrossRef]
- Williams, G.C.; Patte, K.A.; Ferro, M.A.; Leatherdale, S.T. Exploring the bi-directional associations between poly-substance use and anxiety and depression among a large sample of Canadian adolescents. Addict. Behav. 2021. under review. [Google Scholar]
- The Human Face of Mental Health and Mental Illness in Canada; Government of Canada: Ottawa, ON, Canada, 2006.
- Lim, K.-L.; Jacobs, P.; Ohinmaa, A.; Schopflocher, D.; Dewa, C. A new population-based measure of the economic burden of mental illness in Canada. Chronic Dis. Can. 2008, 28, 92–98. [Google Scholar] [CrossRef]
- Smetanin, P.; Stiff, D.; Briante, C.; Adair, C.; Ahmad, S.; Khan, M. The Life and Economic Impact of Major Mental Illnesses in Canada: 2011 to 2041. 2011. Available online: https://www.mentalhealthcommission.ca/wp-content/uploads/drupal/MHCC_Report_Base_Case_FINAL_ENG_0_0.pdf (accessed on 1 August 2021).
- Hoffman, D.L.; Dukes, E.M.; Wittchen, H.-U. Human and economic burden of generalized anxiety disorder. Depress. Anxiety 2008, 90, 72–90. [Google Scholar] [CrossRef]
- Gladstone, T.R.; Beardslee, W.R.; O’Connor, E.E. The Prevention of Adolescent Depression. Psychiatry Clin. N. Am. 2010, 34, 35–52. [Google Scholar] [CrossRef] [Green Version]
- van Zoonen, K.; Buntrock, C.; Ebert, D.D.; Smit, F.; Reynolds, C.F., 3rd; Beekman, A.T.; Cuijpers, P. Preventing the onset of major depressive disorder: A meta-analytic review of psychological interventions. Int. J. Epidmiol. 2014, 43, 318–329. [Google Scholar] [CrossRef]
- O’Connell, M.E.; Boat, T.; Warner, K.E. Committee on the Prevention of Mental Disorders and Substance Abuse Among Children, Youth, and Young Adults: Research Advances and Promising Interventions. Using a Developmental Framework to Guide Prevention and Promotion; National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- McKelvey, K.L.; Ramo, D.E.; Delucchi, K.; Rubinstein, M.L. Polydrug use among urban adolescent cigarette smokers. Addict. Behav. 2017, 66, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Boak, A.; Hamilton, H.; Adlaf, E.; Henderson, J.; Mann, R. The Mental Health and Well-Being of Ontario Students, 1991–2015: Detailed OSDUHS Findings (CAMH Research Document Series No. 43); Centre for Addiction and Mental Health: Toronto, ON, Canada, 2016. [Google Scholar]
- Van Droogenbroeck, F.; Spruyt, B.; Keppens, G. Gender differences in mental health problems among adolescents and the role of social support : Results from the Belgian health interview surveys 2008 and 2013. BMC Psychiatry 2018, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fink, E.; Patalay, P.; Sharpe, H.; Holley, S.; Deighton, J.; Wolpert, M. Mental health difficulties in early adolescence: A comparison of two cross-sectional studies in England from 2009 to 2014. J. Adolesc. Health 2015, 56, 502–507. [Google Scholar] [CrossRef] [PubMed]
- West, P.; Sweeting, H. Fifteen, female and stressed: Changing patterns of psychological distress over time. J. Child. Psychol. Psychiatry Allied Discip. 2003, 44, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Beesdo, K.; Knappe, S.; Pine, D.S. Anxiety and Anxiety Disorders in Children and Adolescents: Developmental Issues and Implications for DSM-V. Psychiatry Clin. N. Am. 2009, 32, 483–524. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.J.; Sae-Koew, J.H.; Toumbourou, J.W.; Rowland, B. Gender differences in trajectories of depressive symptoms across childhood and adolescence: A multi-group growth mixture model. J. Affect. Disord. 2020, 260, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Strunin, L.; Díaz-martínez, A.; Díaz-martínez, L.R.; Heeren, T.; Chen, C.; Winter, M.; Kuranz, S.; Hernández-Ávila, C.A.; Fernández-Varela, H.; Solís-Torres, C. Age of Onset, Current Use of Alcohol, Tobacco or Marijuana and Current Polysubstance Use Among Male and Female Mexican Students. Alcohol Alcohol. 2017, 52, 564–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur, J.; Tabak, I.; Dzielska, A.; Wąż, K.; Oblacińska, A. The relationship between multiple substance use, perceived academic achievements, and selected socio-demographic factors in a polish adolescent sample. Int. J. Environ. Res. Public Health 2016, 13, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odden, H.L. Alcohol, tobacco, marijuana and hallucinogen use in Samoan adolescents. Drug Alcohol Rev. 2012, 31, 47–55. [Google Scholar] [CrossRef]
- Leatherdale, S.T.; Brown, K.S.; Carson, V.; Childs, R.A.; Dubin, J.A.; Elliott, S.J.; Faulkner, G.; Hammond, D.; Manske, S.; Sabiston, C.M.; et al. The COMPASS study: A longitudinal hierarchical research platform for evaluating natural experiments related to changes in school-level programs, policies and built environment resources. BMC Public Health 2014, 14, 331. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.; Battista, K.; Bredin, C.; Brown, K.S.; Leatherdale, S.T. Assessing longitudinal data linkage results in the COMPASS study. Compass Tech. Rep. Ser. 2015, 3, 4. [Google Scholar]
- Elton-Marshall, T.; Leatherdale, S.T.; Manske, S.R.; Wong, K.; Ahmed, R.; Burkhalter, R. Research methods of the youth smoking survey (YSS). Chronic Dis. Inj. Can. 2011, 32, 47–54. [Google Scholar]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Lowe, B. A Brief Measure for Assessing Generalized Anxiety Disorder. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [Green Version]
- Bradley, K.L.; Bagnell, A.L.; Brannen, C.L. Factorial validity of the center for epidemiological studies depression 10 in adolescents. Issues Ment Health Nurs. 2010, 31, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Haroz, E.E.; Ybarra, M.L.; Eaton, W.W. Psychometric evaluation of a self-report scale to measure adolescent depression: The CESDR-10 in two national adolescent samples in the United States. J. Affect. Disord. 2014, 158, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, M.J.; Patte, K.A.; Leatherdale, S.T. Mental Health Associations with Academic Performance and Education Behaviors in Canadian Secondary School Students. Can. J. Sch. Psychol. 2021, 2021. [Google Scholar] [CrossRef]
- Kaur, J.; Cheong, S.M.; Mahadir Naidu, B.; Kaur, G.; Manickam, M.A.; Mat Noor, M.; Ibrahim, N.; Rosman, A. Prevalence and correlates of depression among adolescents in Malaysia. Asia Pac. J. Public Health 2014, 26, 53S–62S. [Google Scholar] [CrossRef]
- Schraedley, P.K.; Gotlib, I.H.; Hayward, C. Gender differences in correlates of depressive symptoms in adolescents. J. Adolesc. Health 1999, 25, 98–108. [Google Scholar] [CrossRef]
- Biswas, T.; Scott, J.G.; Munir, K.; Renzaho, A.M.N.; Rawal, L.B.; Baxter, J.; Mamun, A.A. Global variation in the prevalence of suicidal ideation, anxiety and their correlates among adolescents: A population based study of 82 countries. EClinicalMedicine 2020, 24, 100395. [Google Scholar] [CrossRef]
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transition Analysis with Applications in the Social, Behavioral, and Health Sciences; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Lo, Y.; Mendell, N.R.; Rubin, D.B. Testing the number of components in a normal mixture. Biometrika 2001, 88, 767–778. [Google Scholar] [CrossRef]
- Celeux, G.; Soromenho, G. An Entropy Criterion for Assessing the Number of Clusters in a Mixture Model. J. Classif. 1996, 13, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.; Muthén, B.O. Relating Latent Class Analysis Results to Variables not Included in the Analysis. 2009. Available online: http://www.statmodel.com/download/relatinglca.pdf (accessed on 1 August 2021).
- McCarthy, D.E.; Curtin, J.J.; Piper, M.E.; Baker, T.B. Negative reinforcement: Possible clinical implications of an integrative model. In Substance Abuse and Emotion; Kassel, J.D., Ed.; American Psychological Association: Washington, DC, USA, 2010; pp. 15–42. [Google Scholar]
- Thompson-Haile, A.; Bredin, C.; Leatherdale, S.T. Rationale for Using Active-Information Passive-Consent Permission Protocol in COMPASS. 2013. Available online: https://uwaterloo.ca/compass-system/publications/rationale-using-active-information-passive-consent (accessed on 1 August 2021).
- White, V.M.; Hill, D.J.; Effendi, Y. How does active parental consent influence the findings of drug-use surveys in schools. Eval. Rev. 2004, 28, 246–260. [Google Scholar] [CrossRef]
- Chartier, M.; Stoep, A.V.; Mccauley, E.; Jerald, R.; Tracy, M.; Lymp, J. Passive Versus Active Parental Consent: Implications for the Ability of School-based Depression Screening to Reach Youth at Risk. J. Sch. Health 2009, 78, 157–186. [Google Scholar] [CrossRef] [Green Version]
- Tiirikainen, K.; Haravuori, H.; Ranta, K.; Kaltiala-Heino, R.; Marttunen, M. Psychometric properties of the 7-item Generalized Anxiety Disorder Scale (GAD-7) in a large representative sample of Finnish adolescents. Psychiatry Res. 2019, 272, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Russell, B.S.; Trudeau, J.J.; Leland, A.J. Social Influence on Adolescent Polysubstance Use : The Escalation to Opioid Use. Subst. Use Misuse 2015, 50, 1325–1331. [Google Scholar] [CrossRef]
- Beardslee, W.R.; Versage, E.V.E.M.; Gladstone, T.R.G. Children of Affectively Ill Parents: A Review of the Past 10 Years. J. Am. Acad. Child. Adolesc. Psychiatry 1998, 3, 1134–1141. [Google Scholar] [CrossRef]
- Reinherz, H.R.; Giaconia, R.M.; Hauf, A.M.C.; Wasserman, M.S.; Paradis, A.D. General and Specific Childhood Risk Factors for Depression and Drug Disorders by Early Adulthood. J. Am. Acad. Child. Adolesc. Psychiatry 2000, 39, 223–231. [Google Scholar] [CrossRef]
- Siddiqui, O.; Flay, B.R.; Hu, F.B. Factors Affecting Attrition in a Longitudinal Smoking Prevention Study. Prev. Med. 1996, 25, 554–560. [Google Scholar] [CrossRef] [Green Version]
Number of Classes | Log-Likelihood | FP | AIC | BIC | LMRT p-Value | Entropy |
---|---|---|---|---|---|---|
Female (n = 388) | ||||||
1 | −5194.0 | 36 | 10,459.9 | 10,602.5 | - | 1.00 |
2 | −4665.3 | 73 | 9476.7 | 9765.8 | 0.00 | 0.90 |
3 | −4535.5 | 110 | 9291.0 | 9726.7 | 0.80 | 0.86 |
4 | −4432.2 | 147 | 9158.4 | 9740.7 | 0.77 | 0.88 |
5 | −4371.6 | 184 | 9111.3 | 9840.1 | 0.78 | 0.89 |
6 | −4317.8 | 221 | 9077.6 | 9953.0 | 0.78 | 0.90 |
Male (n = 350) | ||||||
1 | −4847.1 | 36 | 9766.3 | 9905.2 | - | 1.00 |
2 | −4400.3 | 73 | 8946.6 | 9228.2 | 0.07 | 0.87 |
3 | −4287.1 | 110 | 8794.3 | 9218.6 | 0.77 | 0.86 |
4 | −4187.2 | 147 | 8668.4 | 9235.6 | 0.60 | 0.88 |
5 | −4103.8 | 184 | 8575.7 | 9285.5 | 0.76 | 0.91 |
6 | −4055.1 | 221 | 8552.2 | 9404.8 | 0.77 | 0.93 |
Wave 1 Variables | Female (n = 388) | Male (n = 350) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Class 1 (n = 175) | Class 2 (n = 113) | Class 3 (n = 100) | Class 1 (n = 146) | Class 2 (n = 124) | Class 3 (n = 80) | |||||||
n | % | n | % | n | % | n | % | n | % | n | % | |
Grade | ||||||||||||
9 | 87 | 49.7 | 54 | 47.8 | 43 | 43.0 | 73 | 50.0 | 55 | 44.4 | 26 | 32.5 |
10 | 88 | 50.3 | 59 | 52.2 | 57 | 57.0 | 73 | 50.0 | 69 | 55.6 | 54 | 67.5 |
Ethnicity | ||||||||||||
White | 118 | 67.4 | 93 | 82.3 | 79 | 79.0 | 100 | 68.5 | 98 | 79.0 | 48 | 60.0 |
Non-White | 57 | 32.6 | 20 | 17.7 | 21 | 21.0 | 46 | 31.5 | 26 | 21.0 | 32 | 40.0 |
Weekly spending money | ||||||||||||
Zero | 32 | 18.3 | 14 | 12.4 | 15 | 15.0 | 32 | 21.9 | 17 | 13.7 | 11 | 13.8 |
CAD 1–20 | 69 | 39.4 | 38 | 33.6 | 25 | 25.0 | 45 | 30.8 | 39 | 31.5 | 19 | 23.8 |
CAD 21–100 | 32 | 18.3 | 26 | 23.0 | 24 | 24.0 | 40 | 27.4 | 34 | 27.4 | 22 | 27.5 |
CAD 100+ | 17 | 9.7 | 17 | 15.0 | 22 | 22.0 | 12 | 8.2 | 18 | 14.5 | 19 | 23.8 |
Don’t know/missing | 25 | 14.3 | 18 | 15.9 | 14 | 14.0 | 17 | 11.6 | 16 | 12.9 | 9 | 11.3 |
Anxiety score (GAD-7; mean, SD) | 8.3 | 5.9 | 7.2 | 5.2 | 10.5 | 6.3 | 4.3 | 4.5 | 5.0 | 5.0 | 6.2 | 5.4 |
Depression score (CESD; mean, SD) | 9.9 | 6.7 | 9.1 | 5.0 | 13.7 | 7.2 | 6.6 | 4.5 | 7.6 | 5.5 | 9.2 | 5.8 |
Variables | Anxiety Model 1 β (95% CI) | Anxiety Model 2 β (95% CI) | Depression Model 1 β (95% CI) | Depression Model 2 β (95% CI) |
---|---|---|---|---|
Female | ||||
Year | ||||
Wave 1 | 0.00 | 0.00 | 0.00 | 0.00 |
Wave 2 | 0.65 (0.11, 1.20) | 0.04 (−0.40, 0.48) | 0.98 (0.39, 1.57) | 0.50 (0.02, 0.97) |
Wave 3 | 0.98 (0.43, 1.53) | 0.41 (−0.03, 0.86) | 0.90 (0.31, 1.49) | 0.18 (−0.30, 0.65) |
Substance Use Class | ||||
Occasional alcohol and e-cigarette use | 0.00 | 0.00 | 0.00 | 0.00 |
Escalating poly-use | −0.45 (−1.53, 0.63) | −0.10 (−0.78, 0.59) | −0.56 (−1.72, 0.60) | −0.23 (−0.97, 0.51) |
Consistent poly-use | 2.07 (0.94, 3.20) | 0.33 (−0.39, 1.06) | 2.76 (1.54, 3.98) | 1.24 (0.46, 2.02) |
Depression score | - | 0.63 (0.59, 0.67) | - | - |
Anxiety Score | - | - | - | 0.74 (0.69, 0.78) |
Male | ||||
Year | ||||
Wave 1 | 0.00 | 0.00 | 0.00 | 0.00 |
Wave 2 | 0.15 (−0.39, 0.69) | −0.09 (−0.55, 0.37) | 0.38 (−0.19, 0.95) | 0.27 (−0.22, 0.76) |
Wave 3 | 0.57 (0.03, 1.11) | −0.09 (−0.56, 0.37) | 1.04 (0.47, 1.61) | 0.64 (0.15, 1.12) |
Substance Use Class | ||||
Occasional alcohol and e-cigarette use | 0.00 | 0.00 | 0.00 | 0.00 |
Escalating poly-use | 1.00 (0.02, 1.98) | 0.09 (−0.50, 0.69) | 1.42 (0.41, 2.43) | 0.72 (0.10, 1.33) |
Consistent poly-use | 1.28 (0.10, 2.47) | −0.02 (−0.74, 0.71) | 2.03 (0.80, 3.26) | 1.13 (0.38, 1.87) |
Depression score | - | 0.64 (0.60, 0.68) | - | - |
Anxiety Score | - | - | - | 0.70 (0.66, 0.74) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, G.C.; Patte, K.A.; Ferro, M.A.; Leatherdale, S.T. Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students. Int. J. Environ. Res. Public Health 2021, 18, 10468. https://doi.org/10.3390/ijerph181910468
Williams GC, Patte KA, Ferro MA, Leatherdale ST. Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students. International Journal of Environmental Research and Public Health. 2021; 18(19):10468. https://doi.org/10.3390/ijerph181910468
Chicago/Turabian StyleWilliams, Gillian C., Karen A. Patte, Mark A. Ferro, and Scott T. Leatherdale. 2021. "Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students" International Journal of Environmental Research and Public Health 18, no. 19: 10468. https://doi.org/10.3390/ijerph181910468
APA StyleWilliams, G. C., Patte, K. A., Ferro, M. A., & Leatherdale, S. T. (2021). Associations between Longitudinal Patterns of Substance Use and Anxiety and Depression Symptoms among a Sample of Canadian Secondary School Students. International Journal of Environmental Research and Public Health, 18(19), 10468. https://doi.org/10.3390/ijerph181910468