A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cigarette Styles Analyzed
2.2. Correlating Filter-Stain Patterns with Mainstream Smoke Deliveries
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. Smoking Cessation: A Report of the Surgeon General. In The Chemical Components of Tobacco and Tobacco Smoke, 2nd ed.; Rodgman, A., Perfetti, T.A., Eds.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781466515482. [Google Scholar]
- Fisher, R. Cigarettes, Cancer, and Stastics; The Centennial Review of Arts & Science; Michigan State University Press: East Lansing, MI, USA, 1958; Volume 2, pp. 151–166. Available online: https://www.jstor.org/stable/23737529 (accessed on 25 June 2021).
- Mitacek, E.J.; Brunnemann, K.D.; Hoffmann, D.; Limsila, T.; Suttajit, M.; Martin, N.; Caplan, L.S. Volatile nitrosamines and tobacco-specific nitrosamines in the smoke of Thai cigarettes: A risk factor for lung cancer and a suspected risk factor for liver cancer in Thailand. Carcinogenesis 1999, 20, 133–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, R.N. The history of the discovery of the cigarette—lung cancer link: Evidentiary traditions, corporate denial, global toll. Tob. Control. 2012, 21, 87–91. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. List of Classifications by Cancer Sites with Sufficient or Limited Evidence in Humans; Iarc Monographs; World Health Organization: Lyon, France, 2020; Volume 1–128. [Google Scholar]
- Jarvis, M.J.; Boreham, R.; Primatesta, P.; Feyerabend, C.; Bryant, A. Nicotine Yield From Machine-Smoked Cigarettes and Nicotine Intakes in Smokers: Evidence From a Representative Population Survey. JNCI J. Natl. Cancer Inst. 2001, 93, 134–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, M.; Tunstall-Pedoe, H. Self-titration of nicotine: Evidence from the Scottish Heart Health Study. Addiction 1993, 88, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Gori, G.B.; Lynch, C.J. Analytical cigarette yields as predictors of smoke bioavailability. Regul. Toxicol. Pharmacol. 1985, 5, 314–326. [Google Scholar] [CrossRef]
- Parish, S.; Collins, R.; Peto, R.; Youngman, L.; Barton, J.; Jayne, K.; Clarke, R.; Appleby, P.; Lyon, V.; Cederholm-Williams, S.; et al. Cigarette smoking, tar yields, and non-fatal myocardial infarction: 14,000 cases and 32,000 controls in the United Kingdom. BMJ 1995, 311, 471. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, L.T.; O’Connor, R.J. Cigarette filter ventilation is a defective design because of misleading taste, bigger puffs, and blocked vents. Tob. Control. 2002, 11, i40–i50. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, C.T.; Kozlowski, L.T.; Parsa, P. Effect of Filter Vent Blocking on Carbon Monoxide Exposure From Selected Lower Tar Cigarette Brands. Pharmacol. Biochem. Behav. 1999, 63, 167–173. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Jacob, P.; Yu, L.; Talcott, R.; Hall, S.; Jones, R.T. Reduced Tar, Nicotine, and Carbon Monoxide Exposure While Smoking Ultralow- but Not Low-Yield Cigarettes. JAMA 1986, 256, 241–246. [Google Scholar] [CrossRef]
- Petitti, D.B.; Friedman, G.D.; Kahn, W. Accuracy of information on smoking habits provided on self-administered research questionnaires. Am. J. Public Health 1981, 71, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Strasser, A.A.; Ashare, R.L.; Kozlowski, L.T.; Pickworth, W.B. The effect of filter vent blocking and smoking topography on carbon monoxide levels in smokers. Pharmacol. Biochem. Behav. 2005, 82, 320–329. [Google Scholar] [CrossRef]
- Xia, B.; Blount, B.C.; Guillot, T.; Brosius, C.; Li, Y.; Van Bemmel, D.M.; Kimmel, H.L.; Chang, C.M.; Borek, N.; Edwards, K.C.; et al. Tobacco-Specific Nitrosamines (NNAL, NNN, NAT, and NAB) Exposures in the US Population Assessment of Tobacco and Health (PATH) Study Wave 1 (2013–2014). Nicotine Tob. Res. 2021, 23, 573–583. [Google Scholar] [CrossRef]
- StHelen, G.; Novalen, M.; Heitjan, D.F.; Dempsey, D.; Jacob, I.I.I.P.; Aziziyeh, A.; Wing, V.C.; George, T.P.; Tyndale, R.F.; Benowitz, N.L. Reproducibility of the Nicotine Metabolite Ratio in Cigarette Smokers. Cancer Epidemiol. Prev. Biomark. 2012, 21, 1105–1114. [Google Scholar] [CrossRef] [Green Version]
- Marian, C.; O’Connor, R.J.; Djordjevic, M.V.; Rees, V.W.; Hatsukami, D.K.; Shields, P.G. Reconciling Human Smoking Behavior and Machine Smoking Patterns: Implications for Understanding Smoking Behavior and the Impact on Laboratory Studies. Cancer Epidemiol. Prev. Biomark. 2009, 18, 3305–3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caraballo, R.S.; Giovino, G.A.; Pechacek, T.F.; Mowery, P.D. Factors Associated with Discrepancies between Self-Reports on Cigarette Smoking and Measured Serum Cotinine Levels among Persons Aged 17 Years or Older: Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Epidemiol. 2001, 153, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E.M.; Trefz, P.; Amann, A.; Schubert, J.K. Breath biomarkers for lung cancer detection and assessment of smoking related effects—Confounding variables, influence of normalization and statistical algorithms. Clin. Chim. Acta 2010, 411, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.H.; McCraw, J.; Polzin, G.M.; Ashley, D.L. Development of a Method to Assess Cigarette Smoke Intake. Env. Sci. Tech. 2004, 38, 248–253. [Google Scholar] [CrossRef]
- Polzin, G.M.; Wu, W.; Yan, X.; McCraw, J.M.; Abdul-Salaam, S.; Tavakoli, A.D.; Zhang, L.; Ashley, D.L.; Watson, C.H. Estimating smokers’ mouth level exposure to select mainstream smoke constituents from discarded cigarette filter butts. Nicotine Tob. Res. 2009, 11, 868–874. [Google Scholar] [CrossRef]
- Bravo-Cardenas, R.; Ngac, P.; Watson, C.H.; Valentin-Blasini, L. Determination of Free Solanesol Levels in Cigarette Filters by Liquid Chromatography—Mass Spectrometry. J. Anal. Toxicol. 2021. [Google Scholar] [CrossRef]
- O’Connor, R.J.; Stitt, J.P.; Kozlowski, L.T. A Digital Image Analysis System for Identifying Filter Vent Blocking on Ultralight Cigarettes. Canr. Epidemiol. Biomark. Prev. 2005, 14, 533–537. [Google Scholar] [CrossRef] [Green Version]
- Shepperd, C.J.; St Charles, F.K.; Lien, M.; Dixon, M. Validation of methods for determining consumer smoked cigarette yields from cigarette filter analysis. Beitr. Tabforsch. Int. 2006, 22, 176–184. [Google Scholar] [CrossRef] [Green Version]
- St Charles, F.K.; Krautter, G.R.; Dixon, M.; Mariner, D.C. A comparison of nicotine dose estimates in smokers between filter analysis, salivary cotinine, and urinary excretion of nicotine metabolites. Psychopharmacology 2006, 189, 345–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strasser, A.A.; O’Connor, R.J.; Mooney, M.E.; Wileyto, E.P. Digital Image Analysis of Cigarette Filter Stains as an Indicator of Compensatory Smoking. Cancer Epidemiol. Prev. Biomark. 2006, 15, 2565–2569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, R.J.; Vance, T.T.; Cummings, K.M.; Kozlowski, L.T.; Hammond, D.; Stitt, J.P. (2—7_ Digital Image Analysis of Cigarette Filter Staining to Estimate Smoke Exposure. Nicotine Tob. Res. 2007, 9, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Pauly, J.L.; O’Connor, R.J.; Paszkiewicz, G.M.; Cummings, K.M.; Djordjevic, M.V.; Shields, P.G. Cigarette Filter–based Assays as Proxies for Toxicant Exposure and Smoking Behavior—A Literature Review. Cancer Epidemiol. Biomark. Prev 2009, 18, 3321–3333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.S.; Chou, T.; Abdul-Salaam, S.; Hearn, B.; Watson, C.H. Development of a Method to Estimate Mouth-Level Benzo[a]pyrene Intake by Filter Analysis. Cancer Epidemiol. Prev. Biomark. 2012, 21, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.; Zhang, Z.; Hearn, B.A.; Valentin-Blasini, L.; Polzin, G.M.; Watson, C.H. A High Throughput Method for Estimating Mouth-Level Intake of Mainstream Cigarette Smoke Nicotine. Tob. Res. 2015, 17, 1324–1330. [Google Scholar] [CrossRef] [Green Version]
- Ashley, D.L.; O’Connor, R.J.; Bernert, J.T.; Watson, C.H.; Polzin, G.M.; Jain, R.B.; Hammond, D.; Hatsukami, D.K.; Giovino, G.A.; Cummings, K.M.; et al. Effect of differing levels of tobacco-specific nitrosamines in cigarette smoke on the levels of biomarkers in smokers. Cancer Epidemiol. Prev. Biomark. 2010, 19, 1389–1398. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.V.; Richter, P.; de Castro, R.; Sosnoff, C.; Potts, J.; Clark, P.; McCraw, J.; Yan, X.; Chambers, D.; Watson, C.H. Smoking Behavior and Exposure: Results of a Menthol Cigarette Cross-over Study. Am. J. Health Behav. 2017, 41, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.V.; Patricia, P.; Li, Y.; Phillips, T.; Pickworth, W.B.; de Castro, R.B.; Potts, J.; Watson, C.H. Mouth Level Nicotine in a Clinical Setting versus Non-clinical Setting. Tob. Reg. Sci. 2019, 5, 229–241. [Google Scholar] [CrossRef]
- Smith, T.T.; Koopmeiners, J.S.; Hatsukami, D.K.; Tessier, K.N.; Benowitz, N.L.; Murphy, S.E.; Strasser, A.A.; Tidey, J.W.; Blount, B.C.; Valentin, L.; et al. Mouth-Level Nicotine Intake Estimates from Discarded Filter Butts to Examine Compensatory Smoking in Low Nicotine Cigarettes. Cancer Epidemiol. Prev. Biomark. 2020, 29, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.T.; Koopmeiners, J.S.; White, C.M.; Denlinger-Apte, R.L.; Pacek, L.R.; De Jesús, V.R.; Wang, L.; Watson, C.H.; Blount, B.C.; Hatsukami, D.K.; et al. The Impact of Exclusive Use of Very Low Nicotine Cigarettes on Compensatory Smoking: An Inpatient Crossover Clinical Trial. Cancer Epidemiol. Prev. Biomark. 2020, 29, 880–886. [Google Scholar] [CrossRef] [Green Version]
- Calafat, A.M.; Polzin, G.; Saylor, J.; Richter, P.; Ashley, D.L.; Watson, C.H. Determination of tar, nicotine, and carbon monoxide yields in the mainstream smoke of selected international cigarettes. Tob. Control. 2004, 13, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Zhang, L.; Ashley, D.L.; Watson, C.H. Determination of Tobacco-specific nitrosamines in mainstream smoke from U.S. brand and non-U.S. brand cigarettes. Nicotine Tob. Res. 2005, 7, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Mansournia, M.A.; Waters, R.; Nazemipour, M.; Bland, M.; Altman, D.G. Bland-Altman methods for comparing methods of measurement and response to criticisms. Glob. Epidemiol. 2020, 3, 100045. [Google Scholar] [CrossRef]
- Morton, M.J.; Williams, D.L.; Hjorth, H.B.; Smith, J.M. Machine-smoking studies of cigarette filter color to estimate tar yield by visual assessment and through the use of a colorimeter. Regul. Toxicol. Pharmacol. 2009, 56, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Shiffman, S.; Mao, J.M.; Kurland, B.F.; School, S.M. Do non-daily smokers compensate for reduced cigarette consumption when smoking very-low-nicotine-content cigarettes? Psychopharmacology 2018, 235, 3435–3441. [Google Scholar] [CrossRef]
- Jain, R. Trends in serum cotinine concentrations among daily cigarette smokers: Data from NHANES 1999–2010. Sci. Total Environ. 2014, 472, 72–77. [Google Scholar] [CrossRef]
Nicotine | NNK 1 | |||
---|---|---|---|---|
Luminosity | Solanesol | Luminosity | Solanesol | |
R2 | 0.905 | 0.893 | 0.831 | 0.842 |
Stdev | 0.050 | 0.079 | 0.169 | 0.100 |
RSD (%) | 5.6 | 8.9 | 20.4 | 11.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, C.H.; Yan, J.; Stanfill, S.; Valentin-Blasini, L.; Bravo Cardenas, R.; Blount, B.C. A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure. Int. J. Environ. Res. Public Health 2021, 18, 10546. https://doi.org/10.3390/ijerph181910546
Watson CH, Yan J, Stanfill S, Valentin-Blasini L, Bravo Cardenas R, Blount BC. A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure. International Journal of Environmental Research and Public Health. 2021; 18(19):10546. https://doi.org/10.3390/ijerph181910546
Chicago/Turabian StyleWatson, Clifford H., Jane Yan, Stephen Stanfill, Liza Valentin-Blasini, Roberto Bravo Cardenas, and Benjamin C. Blount. 2021. "A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure" International Journal of Environmental Research and Public Health 18, no. 19: 10546. https://doi.org/10.3390/ijerph181910546
APA StyleWatson, C. H., Yan, J., Stanfill, S., Valentin-Blasini, L., Bravo Cardenas, R., & Blount, B. C. (2021). A Low-Cost, High-Throughput Digital Image Analysis of Stain Patterns on Smoked Cigarette Filter Butts to Estimate Mainstream Smoke Exposure. International Journal of Environmental Research and Public Health, 18(19), 10546. https://doi.org/10.3390/ijerph181910546