Multidrug-Resistant Listeria Species Shows Abundance in Environmental Waters of a Key District Municipality in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area and Sample Collection
2.2. Processing of Samples
2.3. Isolation of Listeria spp. by Enrichment
2.4. DNA Extraction
2.5. Molecular Identification of Presumptive Listeria Isolates
2.6. Antimicrobial Susceptibility Test (AST) of the Molecularly Identified Listeria Species
2.7. Multiple Antibiotic-Resistance Phenotypes (MARPs) and Multiple Antibiotic-Resistance Index (MARI)
2.8. Molecular Characterization of the Relevant Antimicrobial-Resistant Genes
3. Results
3.1. Enumeration and Distribution of Presumptive Listeria spp. in Water Samples
3.2. Molecular Confirmation and Characterization of the Recovered Listeria Isolates
3.3. Antimicrobial Susceptibility Patterns (ASP) of the Confirmed Listeria spp.
3.4. MAR patterns and MAR Indices
3.5. PCR Profiling of Antimicrobial Resistance Determinants in Listeria spp.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orsi, R.H.; Wiedmann, M. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl. Microbial. Biotechnol. 2016, 100, 5273–5287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayode, A.J.; Igbinosa, E.O.; Okoh, A.I. Overview of listeriosis in the Southern African Hemisphere. J. Food Saf. 2020, 40, e12732. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, A.; Moura, A.; Vales, G.; Tessaud-Rita, N.; Aguilhon, C.; Lecuit, M. Listeria thailandensis sp. nov. Int. J. Syst. Evol. Microbiol. 2019, 69, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Sauders, B.D.; Overdevest, J.; Fortes, E.; Windham, K.; Schukken, Y.; Lembo, A.; Wiedmann, M. Diversity of Listeria species in urban and natural environments. Appl. Environ. Microbiol. 2012, 78, 4420–4433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivant, A.L.; Garmyn, D.; Piveteau, P. Listeria monocytogenes, a down-to-earth pathogen. Front. Cell. Infect. Microbiol. 2013, 3, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linke, K.; Rückerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of Listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014, 80, 5583–5592. [Google Scholar] [CrossRef] [Green Version]
- Bilung, L.; Sin Chai, L.; Tahar, A.S.; Ted, C.K.; Apun, K. Prevalence, genetic heterogeneity, and antibiotic resistance profile of Listeria spp. and Listeria monocytogenes at farm level: A highlight of ERIC-and BOX-PCR to reveal genetic diversity. Biomed Res. Int. 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Moreno, L.Z.; Paixão, R.; Gobbi, D.D.; Raimundo, D.C.; Ferreira, T.P.; Moreno, A.M.; Hofer, E.; Reis, C.M.; Matté, G.R.; Matté, M.H. Characterization of antibiotic resistance in Listeria spp. isolated from slaughterhouse environments, pork and human infections. Infect. Dev. Ctries. 2014, 8, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Aras, Z.; Ardıç, M. Occurrence and antibiotic susceptibility of Listeria species in turkey meats. Food Sci. Anim. Resour. 2015, 35, 669. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Lu, L.; Pan, Y.; Sun, X.; Hwang, C.A.; Zhao, Y.; Wu, V.C. Rapid detection and differentiation of Listeria monocytogenes and Listeria species in deli meats by a new multiplex PCR method. Food Control 2015, 52, 78–84. [Google Scholar] [CrossRef]
- Şanlıbaba, P.; Tezel, B.U.; Çakmak, G.A. Prevalence and antibiotic resistance of Listeria monocytogenes isolated from ready-to-eat foods in Turkey. J. Food Qual. 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Odjadjare, E.E.; Obi, L.C.; Okoh, A.I. Municipal wastewater effluents as a source of listerial pathogens in the aquatic milieu of the Eastern Cape Province of South Africa: A concern of public health importance. IJERPH 2010, 7, 2376–2394. [Google Scholar] [CrossRef] [PubMed]
- Odjadjare, E.E.; Okoh, A.I. Prevalence and distribution of Listeria pathogens in the final effluents of a rural wastewater treatment facility in the Eastern Cape Province of South Africa. World J. Microbiol. Biotechnol. 2010, 26, 297–307. [Google Scholar] [CrossRef]
- Taherkhani, A.; Attar, H.M.; Moazzam, M.M.; Mirzaee, S.A.; Jalali, M. Prevalence of Listeria monocytogenes in the river receiving the effluent of municipal wastewater treatment plant. J. Environ. Health Sci. 2013, 2, 49. [Google Scholar]
- Olaniran, A.O.; Nzimande, S.B.; Mkize, N.G. Antimicrobial resistance and virulence signatures of Listeria and Aeromonas species recovered from treated wastewater effluent and receiving surface water in Durban, South Africa. BMC Microbiol. 2015, 5, 234. [Google Scholar] [CrossRef]
- Luque-Sastre, L.; Arroyo, C.; Fox, E.M.; McMahon, B.J.; Bai, L.; Li, F.; Fanning, S. Antimicrobial resistance in listeria species. In Antimicrobial Resistance in Bacteria from Livestock and Companion Animals; ASM: Washington, DC, USA, 2018; pp. 237–259. [Google Scholar]
- Olaimat, A.N.; Al-Holy, M.A.; Shahbaz, H.M.; Al-Nabulsi, A.A.; Abu Ghoush, M.H.; Osaili, T.M.; Ayyash, M.M.; Holley, R.A. Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1277–1292. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Listeriosis. Available online: https://www.who.int/news-room/fact-sheets/detail/listeriosis (accessed on 30 July 2020).
- Bhunia, A.K. Foodborne Microbial Pathogens: Mechanisms and Pathogenesis. Food Sci. Texts 2008, Ł42, 50. [Google Scholar]
- Buchanan, R.L.; Gorris, L.G.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 1–3. [Google Scholar] [CrossRef]
- Jemmi, T.; Stephan, R. Listeria monocytogenes: Food-borne pathogen and hygiene indicator. Rev. Sci. Tech. 2006, 25, 571–580. [Google Scholar] [CrossRef]
- Wilson, A.; Gray, J.; Chandry, P.S.; Fox, E.M. Phenotypic and genotypic analysis of antimicrobial resistance among Listeria monocytogenes isolated from Australian food production chains. Genes 2018, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.A.; Jackson, C.R. Comparative antimicrobial susceptibility of Listeria monocytogenes, L. innocua, and L. welshimeri. Microb. Drug Resist. 2009, 15, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, Y.; Wu, Q.; Zhang, J.; Cheng, J.; Li, F.; Zeng, H.; Lei, T.; Pang, R.; Ye, Q.; et al. Genetic characteristics and virulence of Listeria monocytogenes isolated from fresh vegetables in China. BMC Microbiol. 2019, 19, 119. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Nam, H.M.; Nguyen, L.T.; Tamilselvam, B.; Murinda, S.E.; Oliver, S.P. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog. Dis. 2005, 2, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Sherwood, J.S.; Logue, C.M. Antimicrobial resistance of Listeria spp. recovered from processed bison. Lett. Appl. Microbiol. 2007, 44, 86–91. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Antibiotic Resistant Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 28 December 2020).
- Centers for Disease Control and Prevention (CDC). Multistate Outbreak of Listeriosis Linked to Whole Cantaloupes from Jensen Farms, Colorado. Centers for Disease Control and Prevention, Atlanta, 2012. Available online: http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/index.html (accessed on 26 March 2020).
- Centers for Disease Control and Prevention (CDC). Outbreak of Listeria Infections Linked to Enoki Mushrooms, Republic of Korea. 2020. Available online: https://www.cdc.gov/listeria/outbreaks/enoki-mushrooms-03-20/index.html (accessed on 18 June 2020).
- National Institute of Communicable Diseases (NCID). Situation Update Listeriosis Outbreak, South Africa. Available online: http://www.nicd.ac.za/wp-content/uploads/2018/04/NICD-Situation-update-on-listeriosis-outbreak-South-Africa_13-April-2018.pdf (accessed on 28 November 2019).
- Desai, A.N.; Anyoha, A.; Madoff, L.C.; Lassmann, B. Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of ProMED reports from 1996 to 2018. IJID 2019, 84, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Centre for Disease Control and Prevention (CDC). Listeriosis. Available online: https://www.cdc.gov/onehealth/index.html#:~:text=One%20Health%20is%20a%20collaborative,plants%2C%20and%20their%20shared%20environment (accessed on 31 December 2020).
- International Organization for Standardization (ISO 11290-1). Microbiology of Food and Animal Feeding Stuffs: Horizontal Method for the Detection of Listeria Monocytogenes. Part 1: Detection Methods. Available online: https://www.iso.org (accessed on 5 January 2021).
- Du Plessis, E.M.; Duvenage, F.; Korsten, L. Determining the potential link between irrigation water quality and the microbiological quality of onions by phenotypic and genotypic characterization of Escherichia coli isolates. J. Food Prot. 2015, 78, 643–651. [Google Scholar] [CrossRef]
- Maugeri, T.L.; Carbone, M.; Fera, M.T.; Irrera, G.P.; Gugliandolo, C. Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J. Appl. Microbiol. 2004, 97, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [Green Version]
- Jami, S.; Jamshidi, A.; Khanzadi, S. The presence of Listeria monocytogenes in raw milk samples in Mashhad, Iran. Iran. J. Vet. Res. 2010, 11, 363–367. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Fifteenth Informational Supplement, M100-S15; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Obaidat, M.M.; Bani Salman, A.E.; Lafi, S.Q.; Al-Abboodi, A.R. Characterization of Listeria monocytogenes from three countries and antibiotic resistance differences among countries and Listeria monocytogenes serogroups. Lett. Appl. Microbiol. 2015, 60, 609–614. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maynard, C.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. J. Clin. Microbiol. 2004, 42, 5444–5452. [Google Scholar] [CrossRef] [Green Version]
- Falbo, V.; Carattoli, A.; Tosini, F.; Pezzella, C.; Dionisi, A.M.; Luzzi, I. Antibiotic resistance conferred by a conjugative plasmid and a class I integron in Vibrio cholerae O1 El Tor strains isolated in Albania and Italy. Antimicrob. Agents Chemother. 1999, 43, 693–696. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, V.; Gillespie, B.E.; Lewis, M.J.; Nguyen, L.T.; Headrick, S.I.; Schukken, Y.H.; Oliver, S.P. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Vet. Microbiol. 2007, 124, 319–328. [Google Scholar] [CrossRef]
- Bailey, J.K.; Pinyon, J.L.; Anantham, S.; Hall, R.M. Commensal Escherichia coli of healthy humans: A reservoir for antibiotic-resistance determinants. J. Med. Microbiol. 2010, 59, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Iwu, C.D.; Okoh, A.I. Characterization of antibiogram fingerprints in Listeria monocytogenes recovered from irrigation water and agricultural soil samples. PLoS ONE 2020, 15, e0228956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO (World Health Organisation). Health guidelines for the use of wastewater in agriculture and aquaculture. In Technical Report Series 778; World Health Organisation: Geneva, Switzerland, 1989. [Google Scholar]
- DWAF (Department of Water Affairs and Forestry). South African Water Quality Guidelines, 2nd ed.; Agricultural Use: Irrigation. Produced by the CSIR Environmental Services: Pretoria; The Government Printer: Pretoria, South Africa, 1996; Volume 4.
- South African National Standard (SANS 241). Drinking Water Part 1: Microbiological, Physical, Aesthetic and Chemical Determinants; SABS Standards Division Publications: Pretoria, South Africa, 2015. [Google Scholar]
- Cooley, M.B.; Quiñones, B.; Oryang, D.; Mandrell, R.E.; Gorski, L. Prevalence of Shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region. Front. Cell. Infect. Microbiol. 2014, 4, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Handy, E.T.; East, C.L.; Kim, S.; Jiang, C.; Callahan, M.T.; Allard, S.M.; Micallef, S.; Craighead, S.; Anderson-Coughlin, B.; et al. Prevalence of Salmonella and Listeria monocytogenes in non-traditional irrigation waters in the Mid-Atlantic United States is affected by water type, season, and recovery method. PLoS ONE 2020, 15, e0229365. [Google Scholar] [CrossRef] [PubMed]
- Czeszejko, K.; Boguslawska-Was, E.; Dabrowski, W.; Kaban, S.; Umanski, R. Prevalence of Listeria monocytogenes in municipal and industrial sewage. Electron. J. Pol. Agric. Univ. Environ. Dev. 2003, 6. Available online: https://www.ejpau.media.pI (accessed on 5 January 2021).
- Manjur, M.S.E.; Siddique, S.; Ahmed, S. Multi-drug resistant pathogenic Listeria monocytogenes in surface water and soil samples of Dhaka city. Bangladesh J. Microbiol. 2016, 33, 39–42. [Google Scholar] [CrossRef]
- Lyautey, E.; Lapen, D.R.; Wilkes, G.; McCleary, K.; Pagotto, F.; Tyler, K.; Hartmann, A.; Piveteau, P.; Rieu, A.; Robertson, W.J.; et al. Distribution and characteristics of Listeria monocytogenes isolates from surface waters of the South Nation River watershed, Ontario, Canada. Appl. Environ. Microbiol. 2007, 73, 5401–5410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Wu, Q.; Zhang, J.; Chen, M.; Hu, H. Listeria monocytogenes prevalence and characteristics in retail raw foods in China. PLoS ONE 2015, 10, e0136682. [Google Scholar] [CrossRef] [PubMed]
- Lungu, B.; O’Bryan, C.A.; Muthaiyan, A.; Milillo, S.R.; Johnson, M.G.; Crandall, P.G.; Ricke, S.C. Listeria monocytogenes: Antibiotic resistance in food production. Foodborne Pathog. Dis. 2011, 8, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Arslan, S.; Özdemir, F. Prevalence and antimicrobial resistance of Listeria spp. in homemade white cheese. Food Control 2008, 19, 360–363. [Google Scholar] [CrossRef]
- Conter, M.; Paludi, D.; Zanardi, E.; Ghidini, S.; Vergara, A.; Ianieri, A. Characterization of antimicrobial resistance of foodborne Listeria monocytogenes. Int. J. Food Microbiol. 2009, 128, 497–500. [Google Scholar] [CrossRef]
- Iwu, C.D.; Okoh, A.I. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. IJERPH 2019, 16, 4407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morvan, A.; Moubareck, C.; Leclercq, A.; Hervé-Bazin, M.; Bremont, S.; Lecuit, M.; Courvalin, P.; Le Monnier, A. Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrob. Agents Chemother. 2010, 54, 2728–2731. [Google Scholar] [CrossRef] [Green Version]
Species | Gene Target | Primer Sequence (5′ → 3′) | Cycling Conditions | Amplicon Size (bp) | Reference |
---|---|---|---|---|---|
Listeria spp. | prs | F-GCT GAA GAG ATT GCG AAA GAAG R-CAA AGA AAC CTT GGA TTT GCGG | 94 °C, 94 °C, 60 °C, 72 °C, 72 °C 3′, 1′, 2′, 1′, 15′ | 370 | [36] |
L. monocytogenes | prf A | F-GATACAGAAACATCGGTTGGC R-GTGTAATCTTGATGCCATCAG | 94 °C, 94 °C, 56 °C, 72 °C, 72 °C 5′, 45″, 30″, 1′, 5′ | 274 | [37] |
L. welshimeri | iap-F LW-R | F-ATGAATATGAAAAAAGCAAC R-GTGCAGGCGCTGGAGCC | 94 °C, 94 °C, 52 °C, 72 °C, 72 °C 4′, 20″, 30″, 1′, 5′ | 919 | [10] |
Multiplex Name | Primer | Amplicon Size (Base Pair (bp)) | Primer Sequence (5′–3′) | Cycling Conditions | Reference |
---|---|---|---|---|---|
Multiplex I TEM, SHV, and OXA-1-like | blaTEM, | 800 | F: ATTTCCGTGTCGCCCTTATTC R: CGTTCATCCATAGTTGCCTGAC F: AGCCGCTTGAGCAAATTAAAC R: ATCCCGCAGATAAATCACCAC F: GGCACCAGATTCAACTTTCAAG R: GACCCCAAGTTTCCTGTAAGTG | 94 °C, 94 °C, 60 °C, 72 °C, 72 °C 10′, 40″, 40″, 60″, 7′ | [41] |
blaSHV, | 713 | ||||
blaOXA-1 | 564 | ||||
Multiplex II FOX, CIT, and EBC | blaFOX | 162 | F: CTACAGTGCGGGTGGTTT R: CTATTTGCGGCCAGGTGA F: CGAAGAGGCAATGACCAGAC R: ACGGACAGGGTTAGGATAGY b F: CGGTAAAGCCGATGTTGCG R: AGCCTAACCCCTGATACA | 94 °C, 94 °C, 60 °C, 72 °C, 72 °C 10′, 40″, 40″, 60″, 7′ | [41] |
blaCIT | 538 | ||||
blaEBC | 683 | ||||
Singleplex CTX_M group 8/25 | blaCTX-M | 326 | F: AACRCRCAGACGCTCTAC b R: TCGAGCCGGAASGTGTYAT b | 94 °C, 94 °C, 60 °C, 72 °C, 72 °C 10′, 40″, 40″, 60″, 7′ | [41] |
Multiplex III IMP, VIM, and KPC | blaIMP | 139 | F: TTGACACTCCATTTACDG b R: GATYGAGAATTAAGCCACYCT b F: GATGGTGTTTGGTCGCATA R: CGAATGCGCAGCACCAG F: CATTCAAGGGCTTTCTTGCTGC R: ACGACGGCATAGTCATTTGC | 94 °C, 94 °C, 55 °C, 72 °C, 72 °C 10′, 40″, 40″, 60″, 7′ | [41] |
blaVIM | 390 | ||||
blaKPC | 538 |
Antimicrobial Class | Target Genes | Primer Sequence (5′–3′) | Amplicon Size (bp) | Amplification Conditions | References |
---|---|---|---|---|---|
Sulfonamides | sul1 | F: TTCGGCATTCTGAATCTCAC R:ATGATCTAACCCTCGGTCTC | 822 | 94 °C, 94 °C, 55 °C, 72 °C, 72 °C 5′, 1′, 1′, 5′, 5′ | [42] |
sulII | F: CGGCATCGTCAACATAACC R: GTGTGCGGATGAAGTCAG | 625 | 94 °C, 94 °C, 50 °C, 72 °C, 72 °C 5′, 30″, 30″, 1′, 5′ | [43] | |
Beta-lactams | ampC | F: TTCTATCAAMACTGGCARCC R:CCYTTTTATGTACCCAYGA | 550 | 94 °C, 94 °C, 60 °C, 72 °C, 72 °C 4′, 45″, 45″, 45″, 7′ | [44] |
BlaTEM | F: TTTCGTGTCGCCCTTATTCC R: CCGGCTCCAGATTTATCAGC | 690 | 94 °C, 94 °C, 60 °C, 72 °C, 72 °C 5′, 30″, 30″, 1.5′, 5′ | [45] | |
Tetracyclines | tetA | F: GCTACATCCTGCTTGCCTTC R:CATAGATCGCCGTGAAGAGG | 201 | 94 °C, 94 °C, 55 °C, 72 °C, 72 °C 5′, 1′, 1′, 1′, 5′ | [46] |
tetB | F: TTGGTTAGGGGCAAGTTTTG R: GTAATGGGCCAATAACACCG | 359 | [46] | ||
tetC | F: CTTGAGAGCCTTCAACCCAG R: ATGGTCGTCATCTACCTGCC | 418 | [46] | ||
tetM | F: AGT GGA GCG ATT ACA GAA R:CAT ATG TCC TGG CGT GTC TA | 158 | [46] | ||
Phenicols | catII | F: ACACTTTGCCCTTTATCGTC R:TGAAAGCCATCACATACTGC | 543 | 94 °C, 94 °C, 55 °C, 72 °C, 72 °C 5′, 30″, 30″, 90″, 5′ | [44] |
Aminoglycosides | strA | F: CTTGGTGATAACGGCAATTC R:CCAATCGCAGATAGAAGGC | 348 | 94 °C, 94 °C, 55 °C, 72 °C, 72 °C 4′, 45″, 45″, 45″, 7′ | [44] |
aadA | F: GTGGATGGCGGCCTGAAGCC R: AATGCCCAGTCGGCAGCG | 525 | [44] | ||
aac(3)- IIa(aacC2) a | F: CGGAAGGCAATAACGGAG R: TCGAACAGGTAGCACTGAG | 428 | 94 °C, 94 °C, 55 °C, 72 °C, 72 °C 5′, 30″, 30″, 90″, 5′ | [42] | |
aph(3)- Ia(aphA1) a | F: ATGGGCTCGCGATAATGTC R: CTCACCGAGGCAGTTCCAT | 600 | [42] | ||
aph(3)- IIa (aphA2) a | F: GAACAAGATGGATTGCACGC R:GCTCTTCAGCAATATCACGG | 510 | [42] |
No. of Antibiotics | MARP Patterns | No. of Observed | MARI |
---|---|---|---|
L. monocytogenes n = 41 | |||
13 | AP-PG-KF-CIP-LEV-TS-NA-C-T-ERY-VA-CD-OXA | 17 | 0.87 |
14 | AK-AP-PG-KF-CIP-LEV -TS-NA-C-T-ERY-VA-CD-OXA | 11 | 0.93 |
14 | GM-AP-PG-KF-CIP-LEV-TS-NA-C-T-ERY-VA-CD-OXA | 8 | |
15 | AK-GM-AP-PG-KF-CIP-LEV-TS-NA-C-T-ER-VA-CD-OXA | 5 | 1 |
L. welshimeri n = 9 | |||
13 | AP-PG-KF-CIP-LEV-TS-NA-C-T-ERY-VA-CD-OXA | 6 | 0.87 |
14 | GM-AP-PG-KF-CIP-LEV-TS-NA-C-T-ERY-VA-CD-OXA | 3 | 0.93 |
Target Antimicrobials | Antimicrobial-Resistant Genes | L. monocytogenes | L. welshimeri |
---|---|---|---|
Sulfonamides | sulI | 71% (29) | 67% (6) |
Beta Lactams | ampC | 0 | 0 |
Tetracyclines | tetA | 63% (26) | 78% (7) |
tetB | 0 | 0 | |
tetC | 0 | 0 | |
tetM | 0 | 0 | |
Phenicols | catII | 7% (3) | 0 |
Aminoglycosides | strA | 0 | 0 |
aadA | 0 | 0 | |
Extended Spectrum Beta-Lactams | blaTEM | 66% (27) | 44% (4) |
blaSHV | 2% (1) | 11% (1) | |
blaOXA-1 | 17% (7) | 22% (2) | |
blaFOX | 0 | 0 | |
blaDHA | 0 | 0 | |
blaCIT | 2% (1) | 33% (3) | |
blaEBC | 0 | 0 | |
blaCTXM-8/25 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpondo, L.; Ebomah, K.E.; Okoh, A.I. Multidrug-Resistant Listeria Species Shows Abundance in Environmental Waters of a Key District Municipality in South Africa. Int. J. Environ. Res. Public Health 2021, 18, 481. https://doi.org/10.3390/ijerph18020481
Mpondo L, Ebomah KE, Okoh AI. Multidrug-Resistant Listeria Species Shows Abundance in Environmental Waters of a Key District Municipality in South Africa. International Journal of Environmental Research and Public Health. 2021; 18(2):481. https://doi.org/10.3390/ijerph18020481
Chicago/Turabian StyleMpondo, Liyabona, Kingsley Ehi Ebomah, and Anthony Ifeanyi Okoh. 2021. "Multidrug-Resistant Listeria Species Shows Abundance in Environmental Waters of a Key District Municipality in South Africa" International Journal of Environmental Research and Public Health 18, no. 2: 481. https://doi.org/10.3390/ijerph18020481
APA StyleMpondo, L., Ebomah, K. E., & Okoh, A. I. (2021). Multidrug-Resistant Listeria Species Shows Abundance in Environmental Waters of a Key District Municipality in South Africa. International Journal of Environmental Research and Public Health, 18(2), 481. https://doi.org/10.3390/ijerph18020481