Chronic Effects of a Training Program Using a Nasal Inspiratory Restriction Device on Elite Cyclists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Training Program
2.3. Measurements
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- HajGhanbari, B.; Yamabayashi, C.; Buna, T.R.; Coelho, J.D.; Freedman, K.D.; Morton, T.A.; Palmer, S.A.; Toy, M.A.; Walsh, C.; Sheel, A.W.; et al. Effects of respiratory muscle training on performance in athletes: A systematic review with meta-analyses. J. Strength Cond. Res. 2013, 27, 1643–1663. [Google Scholar] [CrossRef]
- Illi, S.K.; Held, U.; Frank, I.; Spengler, C.M. Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and meta-analysis. Sports Med. 2012, 42, 707–724. [Google Scholar] [CrossRef]
- Shei, R.J. Recent advancements in our understanding of the ergogenic effect of respiratory muscle training in healthy humans: A systematic review. J. Strength Cond. Res. 2018, 32, 2665–2676. [Google Scholar] [CrossRef] [PubMed]
- Jurić, I.; Labor, S.; Plavec, D.; Labor, M. Inspiratory muscle strength affects anaerobic endurance in professional athletes. Arh. Hig. Rada Toksikol. 2019, 70, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Sales, A.T.; Fregonezi, G.A.; Ramsook, A.H.; Guenette, J.A.; Lima, I.N.; Reid, W.D. Respiratory muscle endurance after training in athletes and non-athletes: A systematic review and meta-analysis. Phys. Ther. Sport 2016, 17, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Hellyer, N.J.; Folsom, I.A.; Gaz, D.V.; Kakuk, A.C.; Mack, J.L.; Ver Mulm, J.A. Respiratory muscle activity during simultaneous stationary cycling and inspiratory muscle training. J. Strength Cond. Res. 2015, 29, 3517–3522. [Google Scholar] [CrossRef]
- Holm, P.; Sattler, A.; Fregosi, R.F. Endurance training of respiratory muscles improves cycling performance in fit young cyclists. BMC Physiol. 2004, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.A.; Sharpe, G.R.; Brown, P.I. Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur. J. Appl. Physiol. 2007, 101, 761–770. [Google Scholar] [CrossRef]
- McMahon, M.E.; Boutellier, U.; Smith, R.M.; Spengler, C.M. Hyperpnea training attenuates peripheral chemosensitivity and improves cycling endurance. J. Exp. Biol. 2002, 205, 3937–3943. [Google Scholar]
- Romer, L.M.; McConnell, A.K.; Jones, D.A. Effects of inspiratory muscle training upon recovery time during high intensity, repetitive sprint activity. Int. J. Sports Med. 2002, 23, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Caine, M.P.; McConnell, A.K. Development and evaluation of a pressure threshold inspiratory muscle trainer for use in the context of sports performance. Sports Eng. 2000, 3, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Porcari, J.P.; Probst, L.; Forrester, K.; Doberstein, S.; Foster, C.; Cress, M.L.; Schmidt, K. Effect of wearing the elevation training mask on aerobic capacity, lung function, and hematological variables. J. Sports Sci. Med. 2016, 15, 379–386. [Google Scholar] [PubMed]
- González-Montesinos, J.L.; Ponce-González, J.G.; Vicente-Campos, D.; López-Chicharro, J.; Fernández-Santos, J.D.R.; Vaz-Pardal, C.; Costa-Sepúlveda, J.L.; Conde-Caveda, J.; Castro-Piñero, J. Efectos de un dispositivo de restricción ventilatoria nasal sobre la ventilación pulmonar e intercambio gaseoso durante el ejercicio en personas sanas. Nutr. Hosp. 2016, 33, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granados, J.; Gillum, T.L.; Castillo, W.; Christmas, K.M.; Kuennen, M.R. “Functional” respiratory muscle training during endurance exercise causes modest hypoxemia but overall is well tolerated. J. Strength Cond. Res. 2016, 30, 755–762. [Google Scholar] [CrossRef]
- Gonzalez-Montesinos, J.L.; Arnedillo-Muñoz, A.; Vaz-Pardal, C.; Fernandez-Santos, J. Dispositivo Para El Entrenamiento de La Musculatura Respiratoria. Utility Model U201930922, 6 August 2019. [Google Scholar]
- Arnedillo, A.; Gonzalez-Montesinos, J.L.; Fernandez-Santos, J.R.; Vaz-Pardal, C.; España-Domínguez, C.; Ponce-González, J.G.; Cuenca-García, M. Effects of a rehabilitation programme with a nasal inspiratory restriction device on exercise capacity and quality of life in COPD. Int. J. Environ. Res. Public Health 2020, 17, 3669. [Google Scholar] [CrossRef]
- Gonzalez-Montesinos, J.L.; Arnedillo, A.; Fernandez-Santos, J.R.; Vaz-Pardal, C.; García, P.A.; Castro-Piñero, J.; Ponce-González, J.G. A new nasal restriction device called feelbreathe (®) improves breathing patterns in chronic obstructive pulmonary disease patients during exercise. Int. J. Environ. Res. Public Health 2020, 17, 4876. [Google Scholar] [CrossRef]
- American Thoracic Society; European Respiratory Society. ATS/ERS statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [Google Scholar] [CrossRef]
- Ponce-González, J.G.; Rodríguez-Garcia, L.; Losa-Reyna, J.; Guadalupe-Grau, A.; Rodriguez-Gonzalez, F.G.; Díaz-Chico, B.N.; Dorado, C.; Serrano-Sanchez, J.A.; Calbet, J.A.L. Androgen receptor gene polymorphism influence fat accumulation: A longitudinal study from adolescence to adult age. Scand. J. Med. Sci. Sports 2016, 26, 1313–1320. [Google Scholar] [CrossRef] [Green Version]
- Ponce-González, J.G.; Guadalupe-Grau, A.; Rodríguez-González, F.G.; Torres-Peralta, R.; Morales-Alamo, D.; Rodríguez-García, L.; Díaz-Chico, B.N.; López Calbet, J.A.; Dorado, C. Androgen receptor gene polymorphisms and maximal fat oxidation in healthy men. A longitudinal study. Nutr. Hosp. 2017, 34, 1089–1098. [Google Scholar] [CrossRef] [Green Version]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Gelman, A.; Simpson, D.; Betancourt, M. The prior can generally only be understood in the context of the likelihood. Entropy 2017, 19, 555. [Google Scholar] [CrossRef] [Green Version]
- Kruschke, J.K. Rejecting or accepting parameter values in bayesian estimation. Adv. Methods Pract. Psychol. Sci. 2018, 1, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Bürkner, P.-C. Brms: An R package for bayesian multilevel models using stan. J. Stat. Softw. 2017, 80. [Google Scholar] [CrossRef] [Green Version]
- McEntire, S.J.; Smith, J.R.; Ferguson, C.S.; Brown, K.R.; Kurti, S.P.; Harms, C.A. The effect of exercise training with an additional inspiratory load on inspiratory muscle fatigue and time-trial performance. Respir. Physiol. Neurobiol. 2016, 230, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Lomax, M.; Massey, H.C.; House, J.R. Inspiratory muscle training effects on cycling during acute hypoxic exposure. Aerosp. Med. Hum. Perform. 2017, 88, 544–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C. Humidification in the upper respiratory tract: A physiological overview. Intensive. Crit. Care Nurs. 1996, 12, 27–32. [Google Scholar] [CrossRef]
- Enright, S.; Chatham, K.; Baldwin, J.; Griffiths, H. The effect of fixed load incremental inspiratory muscle training in the elite athlete: A pilot study. Phys. Ther. Sport 2000, 1, 1–5. [Google Scholar] [CrossRef]
- Gething, A.D.; Williams, M.; Davies, B. Inspiratory resistive loading improves cycling capacity: A placebo controlled trial. Br. J. Sports Med. 2004, 38, 730–736. [Google Scholar] [CrossRef]
- Archiza, B.; Andaku, D.K.; Caruso, F.C.R.; Bonjorno, J.C.; Oliveira, C.R.; Ricci, P.A.; Amaral, A.C.D.; Mattiello, S.M.; Libardi, C.A.; Phillips, S.A.; et al. Effects of inspiratory muscle training in professional women football players: A randomized sham-controlled trial. J. Sports Sci. 2018, 36, 771–780. [Google Scholar] [CrossRef]
- Shei, R.J.; Chapman, R.F.; Gruber, A.H.; Mickleborough, T.D. Respiratory effects of thoracic load carriage exercise and inspiratory muscle training as a strategy to optimize respiratory muscle performance with load carriage. Springer Sci. Rev. 2017, 5, 49–64. [Google Scholar] [CrossRef] [Green Version]
Variable | FB (n = 10) | CG (n = 8) | FB vs. CG |
---|---|---|---|
Age (years) | 35.3 ± 9.4 | 38.1 ± 11.7 | −1.4 (−6.2, 3.9) |
Weight (kg) | 71.2 ± 4.0 | 72.2 ± 9.4 | −0.5 (−3.7, 2.9) |
Height (cm) | 176.8 ± 7.1 | 172.5 ± 4.9 | 2.0 (−1.1, 5.0) |
BMI (kg/m2) | 22.7 ± 2.0 | 24.3 ± 2.9 | −0.7 (−1.8, 0.6) |
VO2max (mL/kg/min) | 55.8 ± 4.7 | 51.1 ± 5.4 | 2.3 (−0.2, 4.6) |
MIP (cmH2O) | 155.5 ± 36.2 | 167.6 ± 51.7 | −5.4 (−27.7, 14.8) |
FB (n = 10) | |||||||
---|---|---|---|---|---|---|---|
Pre | PostPRE | PostFINAL | |||||
Variable | Value | Value | %Change | Δ (95%CrI) | Value | %Change | Δ (95%CrI) |
Power (W/kg) | 4.9 ± 0.3 | 5.0 ± 0.4 | 3.3 | 0.2 (−0.1, 0.4) | 5.6 ± 0.4 | 14.3 | 0.7 (0.5, 0.9) |
VO2max (mL/min) | 3981.4 ± 475.8 | 3714.2 ± 425.2 | −6.7 | −205.0(−416.0, 16.7) | 3988.3 ± 479.6 | 0.2 | 11.1 (−217.0, 225.0) |
VO2max (mL/kg/min) | 55.8 ± 4.7 | 53.2 ± 5.8 | −4.7 | −2.5 (−6.1, 1.6) | 56.8 ± 6.6 | 1.8 | 0.8 (−3.3, 4.7) |
VT1 (W) | 159.0 ± 28.5 | 180.0 ± 33.9 | 13.2 | 21.0 (9.6, 32.4) | |||
VT1 (mL/kg/min) | 26.7 ± 3.9 | 29.6 ± 5.7 | 10.8 | 2.9 (0.5, 5.4) | |||
VT1 (L/min) | 1.9 ± 0.4 | 2.1 ± 0.5 | 10.5 | 0.2 (0.0, 0.4) | |||
VT2 (W) | 288.0 ± 28.1 | 306.0 ± 30.2 | 6.3 | 17.7 (0.6, 36.2) | |||
VT2 (mL/kg/min) | 47.1 ± 8.7 | 46.7 ± 8.0 | −0.8 | −0.4 (−0.4, 3.8) | |||
VT2 (L/min) | 3.4 ± 0.4 | 3.3 ± 0.6 | −0.9 | −0.0 (−0.3, 0.3) | |||
VE (L/min) | 149.1 ± 24.0 | 126.6 ± 21.4 | −15.1 | −21.0 (−29.7, −11.5) | 152.0 ± 15.7 | 1.9 | 3.6 (−12.5, 18.8) |
BF (breaths/min) | 49.4 ± 10.5 | 43.4 ± 10.0 | −12.1 | −5.1 (−9.4, −0.9) | 51.5 ± 7.2 | 4.3 | 2.9 (−3.6, 9.7) |
VCO2 (L/min) | 5.2 ± 0.5 | 4.5 ± 0.3 | −13.5 | −0.5 (−0.7, −0.2) | 4.9 ± 0.3 | −5.8 | −0.2 (−0.4, 0.1) |
EqO2 (L/min) | 36.2 ± 4.4 | 33.1 ± 6.3 | −8.6 | −3.4 (−5.8, −0.7) | 37.9 ± 4.9 | 4.7 | 0.8 (−2.3, 3.7) |
EqCO2 (L/min) | 27.7 ± 2.4 | 26.9 ± 3.2 | −2.9 | −0.8 (−2.4, 0.8) | 29.7 ± 3.2 | 7.2 | 2.1 (−0.3, 4.4) |
HR (beats/min) | 181.2 ± 8.9 | 174.9 ± 9.8 | −3.5 | −5.9 (−9.2, −2.5) | 183.3 ± 7.1 | 1.2 | 2.0 (−1.0, 5.2) |
VTin (L) | 3.1 ± 0.3 | 2.7 ± 1.0 | −12.9 | −1.2 (−0.3, 0.1) | 3.04 ± 0.25 | −1.3 | −0.04 (−0.22, 0.16) |
VTex (L) | 3.1 ± 0.3 | 2.6 ± 1.0 | −16.1 | −0.4 (−0.9, 0.1) | 2.97 ± 0.20 | −2.6 | −0.10 (−0.32, 0.14) |
Tin (s) | 0.61 ± 0.11 | 0.67 ± 0.14 | 9.8 | 0.05 (0.00, 0.10) | 0.56 ± 0.08 | −8.2 | −0.05 (−0.18, 0.03) |
Tex (s) | 0.64 ± 0.11 | 0.77 ± 0.15 | 20.3 | 0.11 (0.05, 0.17) | 0.62 ± 0.11 | −3.1 | −0.03 (−0.12, 0.05) |
TiTot (%) | 48.5 ± 1.9 | 46.4 ± 2.4 | −4.3 | −2.1 (−3.2, 0.9) | 47.7 ± 2.2 | −1.6 | −0.1 (−0.6, 0.4) |
PETO2 (mmHg) | 16.0 ± 0.4 | 15.4 ± 0.7 | −3.8 | −0.4 (−0.63, −0.15) | 15.9 ± 0.2 | −0.6 | −0.0 (−0.3, 0.2) |
PETCO2 (mmHg) | 4.8 ± 0.4 | 5.2 ± 0.5 | 8.3 | 0.3 (0.1, 0.6) | 4.8 ± 0.5 | 0.6 | 0.02 (−0.3, 0.3) |
RER | 1.31 ± 0.09 | 1.22 ± 0.13 | −6.9 | −0.1 (−0.1, −0.0) | 1.25 ± 0.10 | −4.6 | −0.06 (−0.11, −0.01) |
CG (n = 8) | |||||||
---|---|---|---|---|---|---|---|
Pre | PostPRE | PostFINAL | |||||
Variable | Value | Value | %Change | Δ (95%CrI) | Value | %Change | Δ (95%CrI) |
Power (W/kg) | 4.6 ± 0.3 | 4.7 ± 0.3 | 0.9 | 0.1 (−0.2, 0.3) | 4.8 ± 0.3 | 3.0 | 0.1 (−0.1, 0.4) |
VO2max (mL/min) | 3673.0 ± 451.8 | 3581.6 ± 508.5 | −2.5 | −94.5(−326.0, 125.0) | 3689.3 ± 491.3 | 0.4 | 8.1 (−218.0, 239.0) |
VO2max (mL/kg/min) | 51.1 ± 5.4 | 49.4 ± 3.9 | −3.3 | −1.6 (−5.6, 2.7) | 50.9 ± 4.0 | −0.4 | −0.1 (−4.6, 4.2) |
VT1 (W) | 144.4 ± 28.8 | 150.6 ± 27.8 | 4.3 | 6.2 (−7.1, 20.3) | |||
VT1 (mL/kg/min) | 23.6 ± 4.8 | 25.9 ± 3.6 | 9.8 | 2.3 (−0.5, 5.2) | |||
VT1 (L/min) | 1.7 ± 0.4 | 1.9 ± 0.4 | 9.9 | 0.2 (−0.0, 0.4) | |||
VT2 (W) | 253.8 ± 52.7 | 286.3 ± 38.1 | 12.8 | 32.5 (11.4, 53.7) | |||
VT2 (mL/kg/min) | 39.1 ± 6.5 | 44.1 ± 5.4 | 12.8 | 5.0 (0.6, 9.4) | |||
VT2 (L/min) | 2.8 ± 0.6 | 3.2 ± 0.6 | 13.1 | 0.3 (0.1, 0.7) | |||
VE (L/min) | 141.9 ± 17.4 | 139.6 ± 17.9 | −1.6 | −1.8 (−11.9, 7.70) | 140.5 ± 22.3 | −1.0 | −1.9 (−19.0, 15.7) |
BF (breaths/min) | 53.3 ± 8.7 | 54.8 ± 9.3 | 2.8 | 1.6 (−3.3, 6.2) | 53.0 ± 7.5 | −0.6 | 0.1 (−7.0, 6.4) |
VCO2 (L/min) | 4.8 ± 0.7 | 4.5 ± 0.6 | −6.3 | −0.2 (−0.5, −0.0) | 4.9 ± 0.3 | 2.1 | −0.1 (−0.4, 0.1) |
EqO2 (L/min) | 37.2 ± 3.9 | 37.3 ± 2.3 | 0.2 | 0.4 (−2.3, 3.2) | 36.4 ± 1.9 | −2.2 | −0.5 (−2.3, 3.7) |
EqCO2 (L/min) | 28.7 ± 2.8 | 29.4 ± 1.3 | 2.4 | 1.2 (−0.7, 2.8) | 29.0 ± 2.8 | 1.0 | 0.5 (−2.3, 3.0) |
HR (beats/min) | 178.4 ± 12.6 | 173.8 ± 13.5 | −2.6 | −4.6 (−7.7, −1.1) | 175.4 ± 14.8 | −1.7 | −3.0 (−6.4, 0.4) |
VTin (L) | 2.74 ± 0.57 | 2.69 ± 0.6 | −1.8 | −0.03(−0.29, 0.24) | 2.75 ± 0.56 | 0.4 | 0.01 (−0.20, 0.24) |
VTex (L) | 2.73 ± 0.60 | 2.62 ± 0.59 | −4.0 | −0.1 (−0.7, 0.5) | 2.70 ± 0.54 | −1.1 | −0.02 (−0.27, 0.22) |
Tin (s) | 0.57 ± 0.11 | 0.56 ± 0.10 | −1.8 | −0.01 (−0.06, 0.04) | 0.57 ± 0.09 | 0.5 | 0.01(−0.07, 0.09) |
Tex (s) | 0.58 ± 0.10 | 0.57 ± 0.09 | −1.7 | −0.01 (−0.08, 0.05) | 0.58 ± 0.06 | 0.5 | −0.01 (−0.09, 0.08) |
TiTot (%) | 49.3 ± 2.0 | 49.6 ± 1.6 | 0.6 | 0.4 (−0.8, 1.5) | 49.9 ± 2.2 | 1.2 | −0.0 (−0.3, 0.3) |
Vt/Ti (L/s) | 4.81 ± 0.56 | 4.70 ± 0.64 | −2.3 | −0.1 (−0.3, 0.2) | 4.72 ± 0.82 | −1.9 | −0.1 (−0.6, 0.4) |
Vt (L) | 2.74 ± 0.61 | 2.62 ± 0.60 | −4.4 | −0.1 (−0.3, 0.1) | 2.69 ± 0.54 | −1.8 | −0.0 (−0.3, 0.2) |
PETO2 (mmHg) | 16.1 ± 0.3 | 16.1 ± 0.3 | −0.1 | −0.1 (−0.31, 0.1) | 16.0 ± 0.2 | −0.6 | −0.1 (−0.3, 0.1) |
PETCO2 (mmHg) | 4.7 ± 0.4 | 4.6 ± 0.1 | −2.1 | 0.1 (−0.2, 0.3) | 4.8 ± 0.5 | 2.2 | 0.02 (−0.21, 0.26) |
RER | 1.30 ± 0.05 | 1.27 ± 0.10 | −2.3 | −0.0 (−0.1, 0.0) | 1.26 ± 0.09 | −3.1 | −0.04 (−0.09, 0.02) |
Variable | FB vs. Control | ||||
---|---|---|---|---|---|
Pre | PostPRE | PostFINAL | Δ PostPRE | Δ PostFINAL | |
Power (W/kg) | 0.26 (−0.09, 0.59) | 0.39 (−0.04, 0.76) | 0.82 (0.49, 1.17) | 0.12 (−0.18, 0.44) | 0.58 (0.23, 0.92) |
VO2max (mL/min) | 285.0 (−131.0, 750.0) | 172 (−277.0, 619.0) | 280.0 (−157.0, 740.0) | −110.6 (−366.0, 152.0) | −5.1 (−362.9, 346.8) |
VO2max (mL/kg/min) | 4.53 (−0.19, 9.45) | 4.27 (−1.0, 9.0) | 5.27 (0.69, 10.83) | −0.39 (−5.12, 4.35) | 1.2 (−4.5, 6.9) |
VT1 (W) | 14.5 (−12.4, 43.0) | 29.3 (1.8, 56.7) | 14.8 (−3.5, 32.9) | ||
VT1 (mL/kg/min) | 2.94 (−1.26, 7.31) | 3.58 (−0.68, 7.93) | 0.5 (−3.2, 4.3) | ||
VT1 (L/min) | 0.20 (−0.18, 0.60) | 0.23 (−0.13, 0.63) | 0.03 (−0.22, 0.29) | ||
VT2 (W) | 32.5 (−5.17, 67.5) | 19.4 (−17.5, 54.7) | −14.8 (−43.6, 13.9) | ||
VT2 (mL/kg/min) | 7.69 (1.86, 13.27) | 2.61 (−2.77, 8.43) | −5.4 (−11.3, 0.6) | ||
VT2 (L/min) | 0.51 (−0.00, 0.98) | 0.13 (−0.36, 0.61) | 0.2 (−0.8, 0.0) | ||
VE (L/min) | 6.68 (−12.25, 26.0) | −12.01 (−31.76, 6.1) | 11.48 (−7.25, 30.8) | −19.77 (−39.95, 0.10) | 5.5 (−18.9, 30.2) |
BF (breaths/min) | −3.90 (−11.9, 4.88) | −10.73 (−19.7, −2.13) | −1.51 (−10.3, 7.21) | −7.20 (−17–41, 3.19) | 2.8 (−6.5, 11.3) |
VCO2 (L/min) | −382.6 (−889, 82.4) | −22.1 (−542, 436.0) | −287.7 (−772, 223.8) | −371.7 (−732.9, −10.2) | −0.03 (−0.30, 0.24) |
EqO2 (L/min) | −1.03 (−4.97, 3.15) | −4.36 (−8.41, 0.03) | 0.51 (−3.84, 4.55) | −3.51 (−8.07, 1.21) | 1.3 (−3.2, 5.8) |
EqCO2 (L/min) | −0.96 (−3.57, 1.44) | −2.50 (−4.97, 0.38) | 0.65 (−1.87, 3.09) | −1.61 (−4.87, 1.81) | 1.6 (−1.8, 5.2) |
HR (beats/min) | 2.80 (−6.91, 13.1) | 1.46 (−8.96, 11.3) | 7.78 (−2.58, 17.5) | −1.08 (−5.47, 3.27) | 5.0 (3.5, 9.6) |
VTin (mL) | 320.7 (−177.0, 858.0) | −21.3 (−530.0, 564.0) | 4.1 (−536.0, 522.0) | −371.0 (−1075.3, 335.0) | −0.05 (−0.34, 0.24) |
Vtex (mL) | 340.3 (−174.0, 880.0) | −28.6 (−586.0, 509.0) | −9.8 (−543.0, 518.0) | −324.0 (−1002.6, 374.1) | −0.07 (−0.41, 0.26) |
Tin (s) | 0.03 (−0.06, 0.13) | 0.10 (−0.00, −0.20) | −0.01 (−0.11, 0.08) | 0.06 (−0.04, 0.17) | −0.05 (−0.15, 0.06) |
Tex (s) | 0.01 (−0.04, 0.16) | 0.19 (0.09, 0.30) | 0.04 (−0.06, 0.14) | 0.14 (0.01, 0.27) | −0.02 (−0.14, 0.09) |
Titot (%) | −0.79 (−2.85, 1.07) | −3.19 (−5.25, 1.10) | −2.12 (−4.07, 0.02) | −2.49 (−4.10, −0.85) | −0.1 (−0.5, 0.3) |
PETO2 (mmHg) | −0.17 (−0.58, 0.27) | −0.65 (−1.08, 0.21) | −0.06 (−0.46, 0.37) | −0.51 (−0.99, −0.03) | 0.0 (−0.2, 0.3) |
PETCO2 (mmHg) | 0.11 (−0.28, 0.50) | 0.56 (0.15, 0.97) | 0.06 (−0.36, 0.46) | 0.48 (−0.02, 0.98) | 0.00 (−0.28, 0.30) |
RER | 0.01 (−0.07, 0.09) | −0.05 (−0.14, 0.04) | −0.00 (−0.09, 0.09) | −0.06 (−0.12, 0.01) | −0.02 (−0.09, 0.05) |
FB (n = 10) | |||||
Variable | Pre-Incremental Test | Post-Incremental Test | %Change | Δ (95% HDI) | |
Pre vs. Pre | ΔPOST vs. ΔPRE | ||||
MIPPRE (cmH2O) | 165.3 ± 35.5 | 172.4 ± 34.4 | 4.3 | 30.5 (18.1, 43.0) | −7.5 (−24.7, 10.2) |
MIPPOST (cmH2O) | 198.2 ± 35.2 | 200.9 ± 36.7 | 1.3 | ||
Value | %Change | Post vs. Pre | |||
RPEPRE | 8.9 ± 1.0 | 6.7 | 0.6 (−0.0 to 1.2) | ||
RPEPOST | 9.5 ± 0.5 | ||||
CG (n = 8) | |||||
Variable | Pre-incremental test | Post- incremental test | %Change | Δ (95% HDI) | |
Pre vs. Pre | ΔPOST vs. ΔPRE | ||||
MIPPRE (cmH2O) | 180.8 ± 44.0 | 178.5 ± 54.7 | −1.3 | 15.4 (2.6, 27.7) | 3.7 (−14.7, 21.9) |
MIPPOST (cmH2O) | 195.6 ± 37.1 | 191.6 ± 33.0 | −2.1 | ||
Value | %Change | Post vs. Pre | |||
RPEPRE | 8.4 ± 0.9 | 9.5 | 0.7 (0.1, 1.4) | ||
RPEPOST | 9.2 ± 0.7 |
Variable | Δ (95% HDI) | ||
---|---|---|---|
Pre vs. Pre | ΔPOST vs. ΔPRE | Post vs. Pre | |
MIP (cmH2O) | 17.0 (−1.6, 35.3) | −4.5 (−22.3, 10.7) | |
RPE | −1.1 (−2.4, 0.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Montesinos, J.L.; Fernandez-Santos, J.R.; Vaz-Pardal, C.; Aragon-Martin, R.; Arnedillo-Muñoz, A.; Reina-Novo, J.; Orantes-Gonzalez, E.; Heredia-Jimenez, J.; Ponce-Gonzalez, J.G. Chronic Effects of a Training Program Using a Nasal Inspiratory Restriction Device on Elite Cyclists. Int. J. Environ. Res. Public Health 2021, 18, 777. https://doi.org/10.3390/ijerph18020777
Gonzalez-Montesinos JL, Fernandez-Santos JR, Vaz-Pardal C, Aragon-Martin R, Arnedillo-Muñoz A, Reina-Novo J, Orantes-Gonzalez E, Heredia-Jimenez J, Ponce-Gonzalez JG. Chronic Effects of a Training Program Using a Nasal Inspiratory Restriction Device on Elite Cyclists. International Journal of Environmental Research and Public Health. 2021; 18(2):777. https://doi.org/10.3390/ijerph18020777
Chicago/Turabian StyleGonzalez-Montesinos, Jose L., Jorge R. Fernandez-Santos, Carmen Vaz-Pardal, Ruben Aragon-Martin, Aurelio Arnedillo-Muñoz, Jose Reina-Novo, Eva Orantes-Gonzalez, Jose Heredia-Jimenez, and Jesus G. Ponce-Gonzalez. 2021. "Chronic Effects of a Training Program Using a Nasal Inspiratory Restriction Device on Elite Cyclists" International Journal of Environmental Research and Public Health 18, no. 2: 777. https://doi.org/10.3390/ijerph18020777
APA StyleGonzalez-Montesinos, J. L., Fernandez-Santos, J. R., Vaz-Pardal, C., Aragon-Martin, R., Arnedillo-Muñoz, A., Reina-Novo, J., Orantes-Gonzalez, E., Heredia-Jimenez, J., & Ponce-Gonzalez, J. G. (2021). Chronic Effects of a Training Program Using a Nasal Inspiratory Restriction Device on Elite Cyclists. International Journal of Environmental Research and Public Health, 18(2), 777. https://doi.org/10.3390/ijerph18020777