Cabbage and Sauerkraut Consumption in Adolescence and Adulthood and Breast Cancer Risk among US-Resident Polish Migrant Women
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.1.1. Controls
2.1.2. Cases
2.2. Exposure Assessment
2.2.1. Dietary Habits
2.2.2. Other Variables
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
US | United States |
BC | Breast cancer |
OR | Odds ratio |
95% CI | 95% confidence interval |
I3C | indole-3-carbinol |
DIM | 3,3′-diindolylmethane |
ITC | isothiocyanates |
DMA | Detroit Metropolitan Area |
MSU | Michigan State University |
WSU | Wayne State University |
ISCR | Illinois State Cancer Registry |
IRB | Institutional Review Board |
OSR | Office for Survey Research |
IPPSR | Institute for Public Policy and Social Research |
RDD | Random Digit Dialing |
HCFA | Health Care Financing Administration |
NORC | National Opinion Research Center |
RR4 | Response Rate 4 |
AAPOR | American Association for Public Opinion Research |
PWHS | Polish Women’s Health Study |
FFQ | Food frequency questionnaire |
NHS | Nurses’ Health Study |
MDCSS | Metropolitan Detroit Cancer Surveillance System |
FTP | Full-term pregnancy |
OC | Oral contraceptive |
HRT | Hormone replacement therapy |
MET | Metabolic Equivalent |
MET-h | MET hours |
BMI | Body mass index |
DMBA | 7,12-dimethylbenz[a]anthracene |
References
- World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective; Continuous Update Project Expert Report 2018; World Cancer Research Fund/American Institute for Cancer Research: Washington, DC, USA, 2018. [Google Scholar]
- Steinmetz, K.A.; Potter, J.D. Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control 1991, 2, 325–357. [Google Scholar] [CrossRef]
- Steinmetz, K.A.; Potter, J.D. Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control 1991, 2, 427–442. [Google Scholar] [CrossRef]
- Gandini, S.; Merzenich, H.; Robertson, C.; Boyle, P. Meta-analysis of studies on breast cancer risk and diet: The role of fruit and vegetable consumption and the intake of associated micronutrients. Eur. J. Cancer 2000, 36, 636–646. [Google Scholar] [CrossRef]
- Smith-Warner, S.A.; Spiegelman, D.; Yaun, S.-S.; Adami, H.-O.; Beeson, W.L.; Van Den Brandt, P.A.; Folsom, A.R.; Fraser, G.E.; Freudenheim, J.L.; Goldbohm, R.A. Intake of fruits and vegetables and risk of breast cancer: A pooled analysis of cohort studies. JAMA 2001, 285, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Adzersen, K.H.; Jess, P.; Freivogel, K.W.; Gerhard, I.; Bastert, G. Raw and cooked vegetables, fruits, selected micronutrients, and breast cancer risk: A case–control study in Germany. Nutr. Cancer 2003, 46, 131–137. [Google Scholar] [CrossRef]
- Riboli, E.; Norat, T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 2003, 78, 559S–569S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, A.; Tjønneland, A.; Thomsen, B.L.; Loft, S.; Stripp, C.; Overvad, K.; Møller, S.; Olsen, J.H. Fruits and vegetables intake differentially affects estrogen receptor negative and positive breast cancer incidence rates. J. Nutr. 2003, 133, 2342–2347. [Google Scholar] [CrossRef] [Green Version]
- Boggs, D.A.; Palmer, J.R.; Wise, L.A.; Spiegelman, D.; Stampfer, M.J.; Adams-Campbell, L.L.; Rosenberg, L. Fruit and vegetable intake in relation to risk of breast cancer in the Black Women’s Health Study. Am. J. Epidemiol. 2010, 172, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Chan, D.; Vieira, A.; Rosenblatt, D.N.; Vieira, R.; Greenwood, D.; Norat, T. Fruits, vegetables and breast cancer risk: A systematic review and meta-analysis of prospective studies. Breast Cancer Res. Treat. 2012, 134, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Emaus, M.J.; Peeters, P.H.; Bakker, M.F.; Overvad, K.; Tjønneland, A.; Olsen, A.; Romieu, I.; Ferrari, P.; Dossus, L.; Boutron-Ruault, M.C. Vegetable and fruit consumption and the risk of hormone receptor–defined breast cancer in the EPIC cohort. Am. J. Clin. Nutr. 2015, 103, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Farvid, M.S.; Chen, W.Y.; Rosner, B.A.; Tamimi, R.M.; Willett, W.C.; Eliassen, A.H. Fruit and vegetable consumption and breast cancer incidence: Repeated measures over 30 years of follow-up. Int. J. Cancer 2019, 144, 1496–1510. [Google Scholar] [CrossRef] [PubMed]
- Bones, A.M.; Rossiter, J.T. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol. Plant 1996, 97, 194–208. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC); Working Group on the Evaluation of Cancer-Preventive Strategies; World Health Organization (WHO). Cruciferous vegetables, isothiocyanates and indoles. In ARC Handbooks of Cancer Prevention; IARC Press: Lyon, France, 2004; Volume 9. [Google Scholar]
- Murillo, G.; Mehta, R.G. Cruciferous vegetables and cancer prevention. Nutr. Cancer 2001, 41, 17–28. [Google Scholar] [CrossRef]
- Higdon, J.V.; Delage, B.; Williams, D.E.; Dashwood, R.H. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007, 55, 224–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herr, I.; Büchler, M.W. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat. Rev. 2010, 36, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Filomeno, M.; Riso, P.; Polesel, J.; Levi, F.; Talamini, R.; Montella, M.; Negri, E.; Franceschi, S.; La Vecchia, C. Cruciferous vegetables and cancer risk in a network of case–control studies. Ann. Oncol. 2012, 23, 2198–2203. [Google Scholar] [CrossRef]
- Johnson, I.T. Cruciferous vegetables and risk of cancers of the gastrointestinal tract. Mol. Nutr. Food Res. 2018, 62, 1701000. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, B.B.; Ichikawa, H. Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle 2005, 4, 1201–1215. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, N.; Fritz, V.; Upadhyaya, P.; Kassie, F.; Hecht, S.S. Research on cruciferous vegetables, indole-3-carbinol, and cancer prevention: A tribute to Lee W. Wattenberg. Mol. Nutr. Food Res. 2016, 60, 1228–1238. [Google Scholar] [CrossRef]
- Talalay, P.; Fahey, J. Phytochemicals from Cruciferous Plants Protect Against Cancer by Modulating Carcinogen Metabolism; American Society for Nutritional Sciences: Rockville, MD, USA, 2001. [Google Scholar]
- Thomson, C.A.; Ho, E.; Strom, M.B. Chemopreventive properties of 3, 3’-diindolylmethane in breast cancer: Evidence from experimental and human studies. Nutr. Rev. 2016, 74, 432–443. [Google Scholar] [CrossRef] [Green Version]
- Wattenberg, L.W.; Loub, W.D. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res. 1978, 38, 1410–1413. [Google Scholar]
- Grubbs, C.J.; Steele, V.E.; Casebolt, T.; Juliana, M.M.; Eto, I.; Whitaker, L.M.; Dragnev, K.H.; Kelloff, G.J.; Lubet, R.L. Chemoprevention of chemically induced mammary carcinogenesis by indole-3-carbinol. Anticancer Res. 1995, 15, 709–716. [Google Scholar]
- Dekker, M.; Verkerk, R. Dealing with variability in food production chains: A tool to enhance the sensitivity of epidemiological studies on phytochemicals. Eur. J. Nutr. 2003, 42, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Thornalley, P.J. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem. Toxicol. 2007, 45, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Verkerk, R.; Schreiner, M.; Krumbein, A.; Ciska, E.; Holst, B.; Rowland, I.; De Schrijver, R.; Hansen, M.; Gerhäuser, C.; Mithen, R. Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 2009, 53, S219. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, U.; Sheehy, E.; Rai, D.; Gaffney, M.; Evans, P.; Cummins, E. Quantitative human exposure model to assess the level of glucosinolates upon thermal processing of cruciferous vegetables. LWT-Food Sci. Technol. 2015, 63, 253–261. [Google Scholar] [CrossRef]
- Terry, P.; Wolk, A.; Persson, I.; Magnusson, C. Brassica vegetables and breast cancer risk. JAMA 2001, 285, 2975–2977. [Google Scholar]
- Ambrosone, C.B.; McCann, S.E.; Freudenheim, J.L.; Marshall, J.R.; Zhang, Y.; Shields, P.G. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J. Nutr. 2004, 134, 1134–1138. [Google Scholar] [CrossRef]
- Zhang, C.X.; Ho, S.C.; Chen, Y.M.; Fu, J.H.; Cheng, S.Z.; Lin, F.Y. Greater vegetable and fruit intake is associated with a lower risk of breast cancer among Chinese women. Int. J. Cancer 2009, 125, 181–188. [Google Scholar] [CrossRef]
- Liu, X.; Lv, K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: A meta-analysis. Breast 2013, 22, 309–313. [Google Scholar] [CrossRef]
- The World Bank. Household Budget Survey in 1989; Central Statistical Office: Warsaw, Poland, 1990. [Google Scholar]
- The World Bank. Household Budget Survey in 2018; National Statistics Office: Warsaw, Poland, 2020. [Google Scholar]
- US Food Supply 1972-94 USDA/ERS. Available online: https://www.ers.usda.gov/data-products/food-availability-per-capita-data-system/ (accessed on 1 October 2020).
- Tokunaga, M.; Norman, J.E.; Jr Asano, M.; Tokuoka, S.; Ezaki, H.; Nishimori, I.; Tsuji, Y. Malignant breast tumors among atomic bomb survivors, Hiroshima and Nagasaki, 1950–74. J. Natl. Cancer Inst. 1979, 62, 1347–1359. [Google Scholar] [PubMed]
- Berkey, C.S.; Frazier, A.L.; Gardner, J.D.; Colditz, G.A. Adolescence and breast carcinoma risk. Cancer 1999, 85, 2400–2409. [Google Scholar] [CrossRef]
- Ahlgren, M.; Melbye, M.; Wohlfahrt, J.; Sørensen, T.I. Growth patterns and the risk of breast cancer in women. N. Engl. J. Med. 2004, 351, 1619–1626. [Google Scholar] [CrossRef]
- Wu, A.H.; Wan, P.; Hankin, J.; Tseng, C.-C.; Yu, M.C.; Pike, M.C. Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis 2002, 23, 1491–1496. [Google Scholar] [CrossRef] [PubMed]
- Biro, F.M.; Wolff, M.S. Puberty as a window of susceptibility. In Environment and Breast Cancer; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–41. [Google Scholar]
- Biro, F.M.; Deardorff, J. Identifying Opportunities for Cancer Prevention During Preadolescence and Adolescence: Puberty as a Window of Susceptibility. J. Adolesc. Health 2013, 52 (Suppl. 5), S15–S20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahabir, S. Association Between Diet During Preadolescence and Adolescence and Risk for Breast Cancer During Adulthood. J. Adolesc. Health 2013, 52 (Suppl. 5), S30–S35. [Google Scholar] [CrossRef] [Green Version]
- Colditz, G.A.; Bohlke, K.; Berkey, C.S. Breast cancer risk accumulation starts early: Prevention must also. Breast Cancer Res. Treat. 2014, 145, 567–579. [Google Scholar] [CrossRef]
- Farvid, M.S.; Chen, W.Y.; Michels, K.B.; Cho, E.; Willett, W.C.; Eliassen, A.H. Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: Population based cohort study. BMJ 2016, 353, i2343. [Google Scholar] [CrossRef] [Green Version]
- Harris, H.R.; Willett, W.C.; Vaidya, R.L.; Michels, K.B. Adolescent dietary patterns and premenopausal breast cancer incidence. Carcinogenesis 2016, 37, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Harris, H.R.; Willett, W.C.; Vaidya, R.L.; Michels, K.B. An adolescent and early adulthood dietary pattern associated with inflammation and the incidence of breast cancer. Cancer Res. 2017, 77, 1179–1187. [Google Scholar] [CrossRef] [Green Version]
- The American Association for Public Opinion Research (AAPOR). Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys, 9th ed.; The American Association for Public Opinion Research (AAPOR): Washington, DC, USA, 2016. [Google Scholar]
- Staszewski, J.; Haenszel, W. Cancer mortality among the Polish-born in the United States. J. Natl. Cancer Inst. 1965, 35, 291–297. [Google Scholar]
- Freedman, D.; Thornton, A.; Camburn, D.; Alwin, D.; Young-DeMarco, L. The life history calendar: A technique for collecting retrospective data. Sociol. Methodol. 1988, 18, 37–68. [Google Scholar] [CrossRef] [PubMed]
- Nurses’ Health Study 1986 Long Questionnaire and Nurses’ Health Study II 1998 Diet Questionnaire. Available online: https://www.nurseshealthstudy.org/participants/questionnaires (accessed on 3 October 2021).
- Composition of Foods: Raw, Processed, and Prepared, 1963–1992. In Agricultural Handbook Series No. 8; US Dept of Agriculture: Washington, DC, USA, 1993.
- Łoś-Kuczera, M.; Piekarska, J. Skład i Wartość Odżywcza Produktów Spożywczych; Część II–VII; PZWL: Warsaw, Poland, 1988. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Leon, A.S.; Jacobs, J.D.; Montoye, H.J.; Sallis, J.F.; Paffenbarger, J.R. Compendium of physical activities: Classification of energy costs of human physical activities. Med. Sci. Sports Exerc. 1993, 25, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Rosner, B. Fundamentals of Biostatistics; Nelson Education: Scarborough, ON, Canada, 2015. [Google Scholar]
- Katz, E.; Nisani, S.; Chamovitz, D.A. Indole-3-carbinol: A plant hormone combatting cancer. F1000Research 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Trosko, J.E. Dietary modulation of the multistage, multimechanisms of human carcinogenesis: Effects on initiated stem cells and cell–cell communication. Nutr. Cancer 2006, 54, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.; McDougal, A.; Wang, F.; Safe, S. Aryl hydrocarbon receptor-mediated antiestrogenic and antitumorigenic activity of diindolylmethane. Carcinogenesis 1998, 19, 1631–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Cases (n = 131) | Controls (n = 284) | p1,* |
---|---|---|---|
% | % | ||
Study site | 0.7 2 | ||
Cook County, Chicago | 77.1 | 76.1 | |
Detroit Metropolitan Area | 22.9 | 23.9 | |
Age (y) at diagnosis (cases)/interview (controls) | 0.3 3 | ||
<35 | 4.6 | 5.6 | |
35–44 | 19.1 | 14.8 | |
45–54 | 30.5 | 27.8 | |
55–64 | 20.6 | 16.2 | |
65–74 | 19.1 | 23.9 | |
≥75 | 6.1 | 11.6 | |
Age (y) in 1985 | 0.3 3 | ||
<35 | 36.6 | 34.5 | |
35–44 | 22.9 | 22.2 | |
45–54 | 22.9 | 25.0 | |
55–64 | 13.7 | 17.6 | |
≥65 | 3.8 | 0.7 | |
Migration status in 1985 | 0.2 | ||
In Poland | 43.5 | 44.4 | |
In US < 10 y | 22.9 | 25.0 | |
In US ≥ 10y | 33.6 | 30.6 | |
First degree family history of breast cancer | 15.3 | 8.1 | 0.02 |
Age at menarche (y) | 0.3 | ||
<13 | 23.7 | 20.8 | |
13–<15 | 53.4 | 47.9 | |
≥15 | 22.9 | 31.3 | |
Age at first full-term pregnancy (y) | 0.03 | ||
Nulliparous | 11.5 | 9.2 | |
<22 | 20.6 | 28.5 | |
22–<30 | 51.9 | 53.9 | |
30+ | 16.0 | 8.4 | |
Ever used oral contraception | 15.3 | 12.0 | 0.4 |
Ever used hormonal replacement therapy | 14.5 | 11.6 | 0.4 |
Premenopausal at diagnosis (cases)/interview (controls) | 44.3 | 38.4 | 0.8 |
BMI in 1985–1989 (kg/m2) | 0.8 | ||
<18.5 | 3.8 | 5.6 | |
18.5–<25.0 | 64.9 | 59.5 | |
25.0–<30.0 | 25.2 | 26.1 | |
≥30.0 | 6.1 | 8.8 | |
Physical activity in 1985–1989 (METS/24 h) | 0.01 | ||
≤48.8 | 45.0 | 33.1 | |
48.8–<59.6 | 35.1 | 33.4 | |
≥59.6 | 19.9 | 33.5 | |
Total energy intake in 1985–1989 (kcal/d) | 0.3 | ||
<1935 | 32.8 | 25.0 | |
1935–<2365 | 24.4 | 25.0 | |
2365–2880 | 24.4 | 25.0 | |
≥2880 | 18.3 | 25.0 | |
Alcohol intake in 1985–1989 (drinks/week) | 0.5 | ||
none | 9.2 | 14.8 | |
<0.7 | 46.2 | 42.6 | |
≥0.7 | 44.6 | 42.6 | |
Highest level of education attained by 1989 (Levels I, II, III) | 0.001 | ||
I—some high school (HS)/technical training or below | 21.4 | 39.1 | |
II—Completed HS/Technical or Business training after HS | 44.3 | 42.6 | |
III—Some or graduated from college, postgraduate or professional school | 34.3 | 18.3 |
Type of Cabbage/ Sauerkraut Food | 12–13 Years Old Adolescence Servings/Week | 1985–1989 Adulthood Servings/Week | |||||
---|---|---|---|---|---|---|---|
Percentile LSMean SEM | Control (284) | Case (131) | Delta Control- Case | Control (284) | Case (131) | Delta Control- Case | |
Total | 75th | 4.60 | 3.67 | 0.93 | 4.18 | 3.72 | 0.46 |
50th | 3.08 | 2.41 | 0.67 | 2.96 | 2.23 | 0.73 | |
25th | 1.82 | 1.38 | 0.44 | 1.52 | 1.39 | 0.13 | |
LSMean (SEM) | 3.38 (0.16) | 2.64 (0.22) | 0.74 ** | 3.07 (0.14) | 2.49 (0.20) | 0.57 ** | |
Raw/short-cooked | 75th | 3.31 | 2.40 | 0.91 | 2.96 | 2.46 | 0.50 |
50th | 2.05 | 1.66 | 0.39 | 1.82 | 1.50 | 0.32 | |
25th | 1.17 | 0.90 | 0.27 | 0.92 | 0.77 | 0.15 | |
LSMean (SEM) | 2.44 (0.13) | 1.86 (0.18) | 0.58 ** | 2.12 (0.11) | 1.62 (0.15) | 0.50 ** | |
Long-cooked | 75th | 1.36 | 1.13 | 0.23 | 1.27 | 1.23 | 0.04 |
50th | 0.69 | 0.69 | 0.00 | 0.76 | 0.75 | 0.01 | |
25th | 0.34 | 0.40 | −0.06 | 0.46 | 0.40 | 0.06 | |
LSMean (SEM) | 0.93 (0.06) | 0.77 (0.08) | 0.16 (NS) | 0.94 (0.05) | 0.88 (0.07) | 0.06 (NS) |
Cabbage/Sauerkraut | Servings Per Week | Number Cases, Controls | Model 1 OR a | 95% CI | Trend 1 Serv/Week OR (95% CI) b p-Value | Model 2 OR c | 95% CI | Trend 1 Serv/Week OR (95% CI) b p-Value |
---|---|---|---|---|---|---|---|---|
At age 12–13 | ||||||||
Total | ≤2 | 58, 86 | 1.0 | (-) | 0.79 (0.68–0.91) p = 0.001 | 1.0 | (-) | 0.79 (0.67–0.92) p = 0.003 |
2–≤4 | 49, 102 | 0.65 | 0.38–1.10 | 0.67 | 0.37–1.18 | |||
>4 | 24, 96 | 0.37 | 0.19–0.68 | 0.36 | 0.18–0.71 | |||
Raw/Short-cooked | ≤1.5 | 62, 94 | 1.0 | (-) | 0.72 (0.58–0.87) p = 0.001 | 1.0 | (-) | 0.73 (058–0.90) p = 0.004 |
1.5–≤3 | 51, 111 | 0.60 | 0.36–1.00 | 0.63 | 0.36–1.09 | |||
>3 | 18, 79 | 0.33 | 0.16–0.64 | 0.35 | 0.16–0.72 | |||
Long-cooked | ||||||||
≤0.5 | 50, 104 | 1.0 | (-) | 0.84 (0.59–1.19) p = 0.33 | 1.0 | (-) | 0.84 (0.56–1.23) p = 0.36 | |
0.5–≤1 | 43, 73 | 1.14 | 0.64–2.01 | 1.05 | 0.56–1.95 | |||
>1 | 38, 107 | 0.80 | 0.45–1.38 | 0.78 | 0.41–1.44 | |||
In 1985–1989 | ||||||||
Total | ≤2 | 55, 98 | 1.0 | (-) | 0.84 (0.72–0.97) p = 0.02 | 1.0 | (-) | 0.84 (0.69–1.02) p = 0.08 |
2–≤4 | 52, 107 | 0.87 | 0.52–1.45 | 0.86 | 0.47–1.56 | |||
>4 | 24, 79 | 0.48 | 0.25–0.87 | 0.50 | 0.23–1.06 | |||
Raw/Short-cooked | ≤1.5 | 67, 118 | 1.0 | (-) | 0.75 (0.61–0.92) p = 0.005 | 1.0 | (-) | 0.73 (0.57–0.93) p = 0.009 |
1.5–≤3 | 45, 99 | 0.74 | 0.44–1.23 | 0.70 | 0.38–1.27 | |||
>3 | 19, 67 | 0.40 | 0.20–0.75 | 0.37 | 0.17–0.78 | |||
Long-cooked | ≤0.5 | 43, 77 | 1.0 | (-) | 0.87 (0.57–1.31) p = 0.50 | 1.0 | (-) | 1.03 (0.62–1.70) p = 0.92 |
0.5–≤1 | 44, 107 | 0.70 | 0.39–1.22 | 0.73 | 0.39–1.37 | |||
>1 | 44, 100 | 0.77 | 0.43–1.35 | 0.96 | 0.48–1.90 |
Cell Legend
| Adult Servings per week | |||
Low ≤1.5/wk | Medium 1.5–≤3.0/wk | High >3.0/wk | ||
Adolescent Servings per week | Low ≤1.5/wk | 1.0 | 0.57 | 0.29 |
(Reference) | 0.21–1.51 | 0.07–1.14 | ||
48, 58 | 14, 24 | 4, 12 | ||
Medium 1.5–≤3.0/wk | 0.51 | 0.54 | 0.27 | |
0.23–1.10 | 0.24–1.19 | 0.08–0.83 | ||
20, 44 | 24, 46 | 7, 21 | ||
High >3.0/wk | 0.27 | 0.27 | 0.23 | |
0.06–1.14 | 0.08–0.86 | 0.07–0.65 | ||
3, 16 | 7, 29 | 8, 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, D.R.; Stein, A.D.; He, J.-P.; Noel, M.M.; Hembroff, L.; Nelson, D.A.; Vigneau, F.; Shen, T.; Scott, L.J.; Charzewska, J.; et al. Cabbage and Sauerkraut Consumption in Adolescence and Adulthood and Breast Cancer Risk among US-Resident Polish Migrant Women. Int. J. Environ. Res. Public Health 2021, 18, 10795. https://doi.org/10.3390/ijerph182010795
Pathak DR, Stein AD, He J-P, Noel MM, Hembroff L, Nelson DA, Vigneau F, Shen T, Scott LJ, Charzewska J, et al. Cabbage and Sauerkraut Consumption in Adolescence and Adulthood and Breast Cancer Risk among US-Resident Polish Migrant Women. International Journal of Environmental Research and Public Health. 2021; 18(20):10795. https://doi.org/10.3390/ijerph182010795
Chicago/Turabian StylePathak, Dorothy Rybaczyk, Aryeh D. Stein, Jian-Ping He, Mary M. Noel, Larry Hembroff, Dorothy A. Nelson, Fawn Vigneau, Tiefu Shen, Laura J. Scott, Jadwiga Charzewska, and et al. 2021. "Cabbage and Sauerkraut Consumption in Adolescence and Adulthood and Breast Cancer Risk among US-Resident Polish Migrant Women" International Journal of Environmental Research and Public Health 18, no. 20: 10795. https://doi.org/10.3390/ijerph182010795
APA StylePathak, D. R., Stein, A. D., He, J. -P., Noel, M. M., Hembroff, L., Nelson, D. A., Vigneau, F., Shen, T., Scott, L. J., Charzewska, J., Wajszczyk, B., Clark, K., Rybaczyk, L. A., Pathak, B. A., Błaszczyk, D., Bankowski, A., & Willett, W. C. (2021). Cabbage and Sauerkraut Consumption in Adolescence and Adulthood and Breast Cancer Risk among US-Resident Polish Migrant Women. International Journal of Environmental Research and Public Health, 18(20), 10795. https://doi.org/10.3390/ijerph182010795