Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Two-Dimensional Migration Equipment
2.2. Media and Materials
2.3. Experiment Designs
2.3.1. Configurations of the Porous Media
2.3.2. Experimental Procedure
Diesel Injection Experiment
Precipitation Leaching Experiment
Natural Attenuation Process Monitoring
3. Results
3.1. Free Migration of the LNAPL
3.1.1. Free Migration of the LNAPL in the M-C-M Tank
3.1.2. Free Migration of the LNAPL in the M-F-C Tank
3.1.3. Analysis of Influencing Factors of LNAPL Migration under Different Media Structures
3.2. The Driving Migration Process of the LNAPL
3.2.1. The Driving Migration Process of the LNAPL in the M-C-M Tank
3.2.2. The Driving Migration Process of the LNAPL in the M-F-C Tank
3.2.3. Analysis of Influencing Factors of Driving Migration Process under Different Media Structures
3.3. Natural Attenuation Process of the LNAPL
3.3.1. Natural Attenuation Characteristics of the LNAPL in the M-C-M Tank
3.3.2. Natural Attenuation Characteristics of the M-F-C Tank
3.3.3. Natural Attenuation Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheng, Y.; Zhang, X.; Zhai, X.; Zhang, F.; Li, G.; Zhang, D. A mobile, modular and rapidly-acting treatment system for optimizing and improving the removal of non-aqueous phase liquids (NAPLs) in groundwater. J. Hazard Mater. 2018, 360, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, G.; Zhang, R.; Zhu, H.; Fu, J. Simulation and assessment of underwater gas release and dispersion from subsea gas pipelines leak. Process Saf. Environ. Prot. 2018, 119, 46–57. [Google Scholar] [CrossRef]
- Tsai, Y.; Chou, Y.; Wu, Y.; Lee, C. Noninvasive survey technology for LNAPL-contaminated site investigation. J. Hydrol. 2020, 587, 125002. [Google Scholar] [CrossRef]
- Abbas, M.; Jardani, A.; Ahmed, A.S.; Revil, A.; Brigaud, L.; Begassat, P.; Dupont, J.P. Redox potential distribution of an organic-rich contaminated site obtained by the inversion of self-potential data. J. Hydrol. 2017, 554, 111–127. [Google Scholar] [CrossRef]
- Govindarajan, D.; Banerjee, A.; Chandrakumar, N.; Raghunathan, R. Magnetic resonance imaging of enhanced mobility of light non aqueous phase liquid (LNAPL) during drying of water wet porous media. J. Contam. Hydrol. 2020, 234, 103683. [Google Scholar] [CrossRef]
- Oostrom, M.; Hofstee, C.; Lenhard, R.J.; Wietsma, T.W. Flow behavior and residual saturation formation of liquid carbon tetrachloride in unsaturated heterogeneous porous media. J. Contam. Hydrol. 2003, 64, 93–112. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, J.; Jia, Y.; Xu, Z. Experimental study on non-aqueous phase liquid multiphase flow characteristics and controlling factors in heterogeneous porous media. Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Sharma, R.S.; Mohamed, M. An experimental investigation of LNAPL migration in an unsaturated/saturated sand. Eng. Geol. 2003, 70, 305–313. [Google Scholar] [CrossRef]
- Xiong, Q.; Baychev, T.G.; Jivkov, A.P. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 2016, 192, 101–117. [Google Scholar] [CrossRef]
- Fagerlund, F.; Illangasekare, T.H.; Niemi, A. Nonaqueous-phase liquid infiltration and immobilization in heterogeneous media: 2. Application to stochastically heterogeneous formations. Vadose Zone J. 2007, 6, 483–495. [Google Scholar] [CrossRef]
- Francisca, F.M.; Montoro, M.A. Influence of Particle Size Distribution and Wettability on the Displacement of LNAPL in Saturated Sandy Soils. J. Environ. Eng. 2015, 141, 040140916. [Google Scholar] [CrossRef]
- Alazaiza, M.Y.D.; Ramli, M.H.; Copty, N.K.; Sheng, T.J.; Aburas, M.M. LNAPL saturation distribution under the influence of water table fluctuations using simplified image analysis method. Bull. Eng. Geol. Environ. 2020, 79, 1543–1554. [Google Scholar] [CrossRef]
- Lenhard, R.J. Measurement and modeling of 3-phase saturation pressure hysteresis. J. Contam. Hydrol. 1992, 9, 243–269. [Google Scholar] [CrossRef]
- Essaid, H.I.; Bekins, B.A.; Cozzarelli, I.M. Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding. Water Resour. Res. 2015, 51, 4861–4902. [Google Scholar] [CrossRef]
- Aminnaji, M.; Golfier, F.; Niasar, V.J.; Babaei, M. Interplay of biofilm growth, NAPL biodegradation and micro-scale heterogeneity in natural attenuation of aquifers delineated by pore-network modelling. Adv. Water Resour. 2020, 145, 103750. [Google Scholar] [CrossRef]
- Sharma, R.S.; Mohamed, M. Patterns and mechanisms of migration of light non-aqueous phase liquid in an unsaturated sand. Geotechnique 2003, 53, 225–239. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Z.; Wang, J.; Zhao, Y.; Dou, Z. Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance. J. Hydrol. 2021, 602, 126719. [Google Scholar] [CrossRef]
- Alazaiza, M.Y.D.; Ngien, S.K.; Copty, N.; Bob, M.M.; Kamaruddin, S.A. Assessing the influence of infiltration on the migration of light non-aqueous phase liquid in double-porosity soil media using a light transmission visualization method. Hydrogeol. J. 2019, 27, 581–593. [Google Scholar] [CrossRef]
- Flores, G.; Katsumi, T.; Inui, T.; Ramli, H. Characterization of LNAPL Distribution in Whole Domains Subject to Precipitation by the Simplified Image Analysis Method; Manassero, M., Dominijanni, A., Foti, S., Musso, G., Eds.; CRC Press-Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 573–577. [Google Scholar]
- Frollini, E.; Piscitelli, D.; Verginelli, I.; Baciocchi, R.; Petitta, M. A methodological approach to assess the dissolution of residual LNAPL in saturated porous media and its effect on groundwater quality: Preliminary experimental results. Water Air Soil Pollut. 2016, 227, 1–11. [Google Scholar] [CrossRef]
- Conrad, S.H.; Wilson, J.L.; Mason, W.R.; Peplinski, W.J. Visualization of residual organic liquid trapped in aquifers. Water Resour. Res. 1992, 28, 467–478. [Google Scholar] [CrossRef]
- Steffy, D.A.; Johnston, C.D.; Barry, D.A. Numerical simulations and long-column tests of LNAPL displacement and trapping by a fluctuating water table. J. Contam. Hydrol. 1998, 7, 325–356. [Google Scholar] [CrossRef]
- Wang, W.; Kuo, T.; Chen, Y.; Fan, K.; Liang, H.; Chen, J. Effect of precipitation on LNAPL recovery performance: An integration of laboratory and field results. J. Petrol. Sci. Eng. 2014, 116, 1–7. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Houston, S.L.; Nguyen, Q.; Fredlund, M.D. Moisture Movement through Cracked Clay Soil Profiles. Geotech. Geol. Eng. 2010, 28, 865–888. [Google Scholar] [CrossRef]
- Dou, Z.; Sleep, B.; Zhan, H.; Zhou, Z.; Wang, J. Multiscale roughness influence on conservative solute transport in self-affine fractures. Int. J. Heat Mass Tran. 2019, 133, 606–618. [Google Scholar] [CrossRef]
- Stormont, J.C. The effect of constant anisotropy on capillary barrier performance. Water Resour. Res. 1995, 31, 783–785. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Soga, K.; Illangasekare, T.H.; Nikolopoulos, P. Laboratory study of immiscible contaminant flow in unsaturated layered sands. Vadose Zone J. 2008, 7, 1–9. [Google Scholar] [CrossRef]
- Schroth, M.H.; Istok, J.D.; Selker, J.S. Three-phase immiscible fluid movement in the vicinity of textural interfaces. J. Contam. Hydrol. 1998, 32, 1–23. [Google Scholar] [CrossRef]
- Wipfler, E.L.; Ness, M.; Breedveld, G.D.; Marsman, A.; van der Zee, S. Infiltration and redistribution of LNAPL into unsaturated layered porous media. J. Contam. Hydrol. 2004, 71, 47–66. [Google Scholar] [CrossRef]
- Yildiz, I.; Açıkkalp, E.; Caliskan, H.; Mori, K. Environmental pollution cost analyses of biodiesel and diesel fuels for a diesel engine. J. Environ. Manag. 2019, 243, 218–226. [Google Scholar] [CrossRef]
- Hansen, A.M.; Eibisch, N.; Márquez-Pacheco, H. Migration in soil and natural attenuation of two hydrocarbons from the diesel fraction. Procedia Ear Planet. Sci. 2013, 7, 334–337. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Ma, T.; Cheng, Y. Migration of LNAPLs contaminant in layered heterogeneous porous media. Environ. Sci. Technol. 2013, 36, 31–34. [Google Scholar]
- Pan, Y.; Zhang, Q.; Yu, Y.; Tong, Y.; Wu, W.; Zhou, Y.; Hou, W.; Yang, J. Three-dimensional migration and resistivity characteristics of crude oil in heterogeneous soil layers. Environ. Pollut. 2021, 268, 115309. [Google Scholar] [CrossRef]
- Gavin, K.; Xue, J. A simple method to analyze infiltration into unsaturated soil slopes. Comput. Geotech. 2008, 35, 223–230. [Google Scholar] [CrossRef]
- Yang, H.; Rahardjo, H.; Leong, E.C. Behavior of unsaturated layered soil columns during infiltration. J. Hydrol. Eng. 2006, 11, 329–337. [Google Scholar] [CrossRef]
- Wang, Y.; Shag, M. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores. J. Environ. Sci.-China 2009, 21, 1424–1431. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Soga, K.; Illangasekare, T.H. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone. J. Contam. Hydrol. 2005, 76, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Gidda, T.; Stiver, W.H.; Zytner, R.G. Passive volatilization behaviour of gasoline in unsaturated soils. J. Contam. Hydrol. 1999, 39, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Zheng, X.L.; Li, B.; Ma, Y.X.; Cao, J.H. Volatilization behaviours of diesel oil from the soils. J. Environ. Sci.-China 2004, 16, 1033–1036. [Google Scholar]
Type of Media | Particle Size Range (mm) | Specific Gravity (g/cm3) |
---|---|---|
Coarse Sand | 0.5–2 | 2.62 |
Medium Sand | 0.25–0.5 | 2.68 |
Fine Sand | 0.05–0.25 | 2.74 |
Type | Density (g/mL) | Dynamic Viscosity (cSt) | Surface Tension (dyne/cm) | Burning Point (°C) | Boiling Point (°C) |
---|---|---|---|---|---|
0# | 0.829 | 2.54 | 27.8 | 220 | 180–410 |
M-C-M | M-F-C | |||||
---|---|---|---|---|---|---|
Media | Filling Height (cm) | Porosity (%) | Media | Filling Height (cm) | Porosity (%) | |
Layer 1 | Medium Sand | 32 | 35.6 | Medium Sand | 33 | 39.7 |
Layer 2 | Coarse Sand | 29 | 32 | Fine Sand | 25 | 40.3 |
Layer 3 | Medium Sand | 33.5 | 36.2 | Coarse sand | 35 | 32 |
Configuration | Initial Water Table (cm) | Initial Capillary Fringe (cm) | Leakage Volume (mL) | Leakage Time (min) | Leakage Rate (mL/min) |
---|---|---|---|---|---|
M-C-M | 5 | 20 | 3200 | 160 | 20 |
M-F-C | 5 | 10 | 3200 | 160 | 20 |
M-C-M | Media | Medium Sand | Coarse Sand | Medium Sand | ||||
Depth (cm) | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
Natural attenuation rate (%) | 37.33 | 29.21 | 10.32 | 10.73 | 53.00 | 54.41 | 0.59 | |
M-F-C | Media | Medium Sand | Fine Sand | Coarse Sand | ||||
Depth (cm) | 20 | 30 | 40 | 50 | 60 | 70 | 80 | |
Natural attenuation rate (%) | 46.90 | 38.75 | 72.65 | 88.14 | 78.24 | 62.52 | 60.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, R.; Zhao, X.; Yang, J.; Pan, M.; Xue, Z.; Gao, X.; Wang, J.; Teng, Y. Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions. Int. J. Environ. Res. Public Health 2021, 18, 11073. https://doi.org/10.3390/ijerph182111073
Zuo R, Zhao X, Yang J, Pan M, Xue Z, Gao X, Wang J, Teng Y. Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions. International Journal of Environmental Research and Public Health. 2021; 18(21):11073. https://doi.org/10.3390/ijerph182111073
Chicago/Turabian StyleZuo, Rui, Xiao Zhao, Jie Yang, Minghao Pan, Zhenkun Xue, Xiang Gao, Jinsheng Wang, and Yanguo Teng. 2021. "Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions" International Journal of Environmental Research and Public Health 18, no. 21: 11073. https://doi.org/10.3390/ijerph182111073
APA StyleZuo, R., Zhao, X., Yang, J., Pan, M., Xue, Z., Gao, X., Wang, J., & Teng, Y. (2021). Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions. International Journal of Environmental Research and Public Health, 18(21), 11073. https://doi.org/10.3390/ijerph182111073