Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landslide Danger Assessment
2.2.1. Landslide Inventory
2.2.2. Susceptibility Map
2.3. Ecological Values
2.3.1. Biodiversity
2.3.2. Conservation Status
2.3.3. Habitat Fragmentation
2.3.4. Ecological Values Evaluation
2.4. Ecological Regeneration Delay
2.5. Landslide Ecological Vulnerability Assessment
2.6. Landslide Socio-Economic Vulnerability Assessment
2.6.1. Marginalization Index
2.6.2. Population Density
2.6.3. Building Density
2.6.4. Integration of the Three Socio-Economic Vulnerability Factors
2.7. Integration of Vulnerability Components
2.8. First Attempt Risk Assessment through the Integration of Vulnerability and Susceptibility Map
3. Results
3.1. Susceptibility Map
3.2. Landslide Ecological Vulnerability Assessment
3.3. Landslide Socio-Economic Vulnerability Assessment
3.4. Integration of Vulnerability Components
3.5. Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- CRED. The Human Cost Of Natural Disasters: A Global Perspective; Centre for Research on the Epidemiology of Disaster: Brussels, Belgium, 2015. [Google Scholar]
- Petley, D. Global Patterns of Loss of Life From Landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide Susceptibility Assessment in the Hoa Binh Province of Vietnam: A Comparison of the Levenberg–Marquardt and Bayesian Regularized Neural Networks. Geomorphology 2012, 171, 12–29. [Google Scholar]
- Schuster, R.L. Socioeconomic Significance of Landslides. In Landslides: Investigation and Mitigation; National Academy Press: Washington, DC, USA, 1996; Volume 247, pp. 12–35. [Google Scholar]
- Yin, J.; Guo, S.; Gentine, P.; Sullivan, S.C.; Gu, L.; He, S.; Chen, J.; Liu, P. Does the Hook Structure Constrain Future Flood Intensification under Anthropogenic Climate Warming. Water Resour. Res. 2021, 57, E2020wr028491. [Google Scholar] [CrossRef]
- De Vallejo, L.I.G.; Ferrer, M.; Ortuño, L.; Oteo, C. Ingeniería Geológica; Pearson Educación: Madrid, Spain, 2002. [Google Scholar]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide Hazard Evaluation: A Review of Current Techniques and their Application in A Multi-Scale Study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C.; Ngai, Y.Y. Landslide Risk Assessment And Management: An Overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martínez, S.; Román, M.V.; Hantson, S.; Pettinari, M.L. Integration of Ecological and Socio-Economic Factors to Assess Global Vulnerability to Wildfire. Glob. Ecol. Biogeogr. 2014, 23, 245–258. [Google Scholar] [CrossRef]
- Nor Diana, M.I.; Muhamad, N.; Taha, M.R.; Osman, A.; Alam, M. Social Vulnerability Assessment for Landslide Hazards in Malaysia: A Systematic Review Study. Land 2021, 10, 315. [Google Scholar] [CrossRef]
- Ram, P.; Gupta, V. Landslide Hazard, Vulnerability, and Risk Assessment (Hvra), Mussoorie Township, Lesser Himalaya, India. Environ. Dev. Sustain. 2021. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Yin, K.; Zhang, Y.; Gui, L. Quantitative Risk Analysis of the Hazard Chain Triggered by A Landslide and the Generated Tsunami in the Three Gorges Reservoir Area. Landslides 2021, 18, 667–680. [Google Scholar] [CrossRef]
- Van Westen, C.; Fonseca, F.; Van Den Bout, B. Challenges in Analyzing Landslide Risk Dynamics for Risk Reduction Planning. In Proceedings of the 13th International symposium on landslides, Cartagena, Colombia, 15–19 June 2020; Sociedad Colombiana de Geotecnia Transversal: Bogotá, Colombia, 2021. [Google Scholar]
- Saha, S.; Sarkar, R.; Roy, J.; Hembram, T.K.; Acharya, S.; Thapa, G.; Drukpa, D. Measuring Landslide Vulnerability Status of Chukha, Bhutan Using Deep Learning Algorithms. Sci. Rep. 2021, 11, 16374. [Google Scholar] [CrossRef]
- Tsangaratos, P.; Loupasakis, C.; Nikolakopoulos, K.; Angelitsa, V.; Ilia, I. Developing A Landslide Susceptibility Map Based on Remote Sensing, Fuzzy Logic and Expert Knowledge of the Island of Lefkada, Greece. Environ. Earth Sci. 2018, 77, 363. [Google Scholar] [CrossRef]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Acharya, S.; Alamri, A.M. Spatial Landslide Risk Assessment at Phuentsholing, Bhutan. Geosciences 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; Mccarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L. A Framework for Vulnerability Analysis in Sustainability Science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [Green Version]
- Birkmann, J. Indicators and Criteria for Measuring Vulnerability: Theoretical Bases and Requirements. In Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies; United Nations University Press: Tokyo, Japan, 2006; pp. 55–77. [Google Scholar]
- Papathoma-Köhle, M.; Neuhäuser, B.; Ratzinger, K.; Wenzel, H.; Dominey-Howes, D. Elements at Risk as a Framework for Assessing the Vulnerability of Communities to Landslides. Nat. Hazards Earth Syst. Sci. 2007, 7, 765–779. [Google Scholar] [CrossRef]
- Ranagalage, M. Landslide Hazards Assessment in Nuwara Eliya District in Sri Lanka. In Proceedings of the Japanese Geographical Meeting, Tsukuba, Japan, 3 May 2017; pp. 28–30. [Google Scholar]
- Williams, L.R.R.; Kapustka, L.A. Ecosystem vulnerability: A complex interface with technical components. Environ. Toxicol. Chem. 2000, 19, 1055–1058. [Google Scholar]
- Chen, W.; Li, Y. Gis-Based Evaluation of Landslide Susceptibility Using Hybrid Computational Intelligence Models. Catena 2020, 195, 104777. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kerle, N. Random Forests and Evidential Belief Function-Based Landslide Susceptibility Assessment in Western Mazandaran Province, Iran. Environ. Earth Sci. 2016, 75, 185. [Google Scholar] [CrossRef]
- Bruzón, A.G.; Arrogante-Funes, P.; Arrogante-Funes, F.; Martín-González, F.; Novillo, C.J.; Fernández, R.R.; Vázquez-Jiménez, R.; Alarcón-Paredes, A.; Alonso-Silverio, G.A.; Cantu-Ramirez, C.A. Landslide Susceptibility Assessment Using an Automl Framework. Int. J. Environ. Res. Public Health 2021, 18, 971. [Google Scholar] [CrossRef]
- Fell, R.; Hartford, D. Landslide Risk Management. In Landslide Risk Assessment; Routledge, Taylor & Francis Group: Oxon, UK, 2018; pp. 51–109. [Google Scholar]
- SGM. Carta Geológico-Minera; Servicio Geológico Mexicano: Pachuca de Soto, Mexico, 1999. [Google Scholar]
- SGM. SISMOS: Causas, Características e Impactos; Servicio Geológico Mexicano: Pachuca de Soto, Mexico, 2017; Available online: https://www.gob.mx/sgm/es/articulos/sismos-causas-caracteristicas-e-impactos?idiom=es (accessed on 11 September 2021).
- Cerca-Martínez, M. Deformacion Y Magmatismo Cretacico Tardio-Terciario Temprano En La Zona De La Plataforma Guerrero Morelos. Ph.D. Thesis, Universidad Nacional Autonoma De Mexico, Ciudad de México, Mexico, 2004. [Google Scholar]
- Conagua. Report on: Reporte del Clima en México. 2021. Available online: https://smn.conagua.gob.mx/es/reporte-delclima-en-mexico (accessed on 11 September 2021).
- Conanp. Comisión Nacional De Áreas Naturales Protegidas. Fichas Áreas Naturales Protegidas. 2021. Available online: https://simec.conanp.gob.mx/consulta_fichas.php (accessed on 11 September 2021).
- INEGI. Anuario Estadístico Y Geográfico De Guerrero 2013; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2013. [Google Scholar]
- Ramos-Bernal, R.; Váquez-Jiménez, R.; Romero-Calcerrada, R.; Arrogante-Funes, P.; Novillo, C. Evaluation of Unsupervised Change Detection Methods Applied to Landslide Inventory Mapping Using Aster Imagery. Remote Sens. 2018, 10, 1987. [Google Scholar] [CrossRef] [Green Version]
- Centro Nacional de Prevención de Desastres. El Deslizamiento De Ladera En La Comunidad La Pintada, Guerrero; Centro Nacional de Prevención de Desastres: Ciudad de México, Mexico, 2019. [Google Scholar]
- Cruden, D.; Varnes, D. Landslide Types and Processes. In Landslides Investigation and Mitigation; Special Report; National Academy Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Varnes, D.J. Slope Movement Types and Processes. Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Goyes-Peñafiel, P.; Hernandez-Rojas, A. Landslide Susceptibility Index Based on the Integration of Logistic Regression and Weights of Evidence: A Case Study in Popayan, Colombia. Eng. Geol. 2021, 280, 105958. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Mohammadi, A.; Shahabi, H.; Ahmad, B.B.; Al-Ansari, N.; Shirzadi, A.; Clague, J.J.; Jaafari, A.; Chen, W.; Nguyen, H. Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in A Tropical Environment. Int. J. Environ. Res. Public Health 2020, 17, 4933. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía. Geología de la República Mexicana 1985, 2nd ed.; Instituto Nacional de Estadística y Geografía: Aguascalientes City, Mexico, 1990; Available online: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/historicos/1329/702825230968/702825230968_8.pdf (accessed on 14 October 2021).
- Catani, F.; Casagli, N.; Ermini, L.; Righini, G.; Menduni, G. Landslide Hazard And Risk Mapping At Catchment Scale In The Arno River Basin. Landslides 2005, 2, 329–342. [Google Scholar] [CrossRef]
- Segoni, S.; Tofani, V.; Rosi, A.; Catani, F.; Casagli, N. Combination of Rainfall Thresholds and Susceptibility Maps for Dynamic Landslide Hazard Assessment at Regional Scale. Front. Earth Sci. 2018, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Segoni, S.; Pappafico, G.; Luti, T.; Catani, F. Landslide Susceptibility Assessment in Complex Geological Settings: Sensitivity to Geological Information and Insights on Its Parameterization. Landslides 2020, 17, 2443–2453. [Google Scholar] [CrossRef] [Green Version]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide Susceptibility Mapping Using Random Forest, Boosted Regression Tree, Classification and Regression Tree, and General Linear Models and Comparison of their Performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Vuillez, C.; Tonini, M.; Sudmeier-Rieux, K.; Devkota, S.; Derron, M.-H.; Jaboyedoff, M. Land Use Changes, Landslides and Roads in the Phewa Watershed, Western Nepal from 1979 to 2016. Appl. Geogr. 2018, 94, 30–40. [Google Scholar] [CrossRef]
- Mcadoo, B.G.; Quak, M.; Gnyawali, K.R.; Adhikari, B.R.; Devkota, S.; Rajbhandari, P.L.; Sudmeier-Rieux, K. Roads and Landslides in Nepal: How Development Affects Environmental Risk. Nat. Hazards Earth Syst. Sci. 2018, 18, 3203–3210. [Google Scholar] [CrossRef] [Green Version]
- Buchhorn, M.; Smets, B.; Bertels, L.; De Roo, B.; Lesiv, M.; Tsendbazar, N.E.; Linlin, L.; Tarko, A. Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015–2019: Product User Manual; Zenodo: Geneve, Switzerland, 2020. [Google Scholar]
- USGS. LANDSAT 8 (L8): Data Users Handbook. 2019. Available online: https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf (accessed on 14 October 2021).
- Pycaret: An-Open Source, Low-Code Machine Learning Library in Python. Available online: https://www.pycaret.org (accessed on 14 October 2021).
- Tsangaratos, P.; Ilia, I.; Hong, H.; Chen, W.; Xu, C. Applying Information Theory And Gis-Based Quantitative Methods to Produce Landslide Susceptibility Maps in Nancheng County, China. Landslides 2017, 14, 1091–1111. [Google Scholar] [CrossRef]
- Duro, D.C.; Coops, N.C.; Wulder, M.A.; Han, T. Development of a Large Area Biodiversity Monitoring System Driven by Remote Sensing. Prog. Phys. Geogr. 2007, 31, 235–260. [Google Scholar] [CrossRef]
- Xiong, X.; Wolfe, R.; Barnes, W.; Guenther, B.; Vermote, E.; Saleous, N.; Salomonson, V. Terra and Aqua Modis Design, Radiometry, and Geometry in Support of Land Remote Sensing. In Land Remote Sensing and Global Environmental Change; Springer: Berlin/Heidelberg, Germany, 2010; pp. 133–164. [Google Scholar]
- Running, S.; Mu, Q.; Zhao, M. Mod17a2h Modis/Terra Gross Primary Productivity 8-Day L4 Global 500m Sin Grid V006 [Data Set]. Nasa Eosdis Land Process. Daac. 2015. Available online: https://lpdaac.usgs.gov/products/mod17a2hv006/ (accessed on 11 September 2021).
- Myneni, R.; Knyazikhin, Y.; Park, T. Mod15a2h Modis/Terra Leaf Area Index/Fpar 8-Day L4 Global 500m Sin Grid V006 [Data Set]. Nasa Eosdis Land Process. Daac. 2015. Available online: https://lpdaac.usgs.gov/products/mod15a2hv006/ (accessed on 11 September 2021).
- Unep-Wcmc, I. Protected Planet: The World Database on Protected Areas (Wdpa); Unep-Wcmc And Iucn: Cambridge, UK, 2020. [Google Scholar]
- Hunter, M., Jr.; Calhoun, A. A Triad Approach to Land-Use Allocation; Environmental Science: Bellingham, WA, USA, 1996; pp. 477–491. [Google Scholar]
- Vogt, P. User Guide of Guidos Toolbox; European Commission Joint Research Centre (Jrc): Ispra, Italy, 2017; Release 3.0, Revision 3, July 2021. [Google Scholar]
- Riitters, K.H.; Wickham, J.D.; Wade, T.G. An Indicator of Forest Dynamics Using a Shifting Landscape Mosaic. Ecol. Indic. 2009, 9, 107–117. [Google Scholar] [CrossRef]
- Kurki, S.; Nikula, A.; Helle, P.; Lindén, H. Landscape Fragmentation and Forest Composition Effects on Grouse Breeding Success in Boreal Forests. Ecology 2000, 81, 1985–1997. [Google Scholar] [CrossRef]
- Opdam, P.; Verboom, J.; Pouwels, R. Landscape Cohesion: An Index for the Conservation Potential of Landscapes for Biodiversity. Landsc. Ecol. 2003, 18, 113–126. [Google Scholar] [CrossRef]
- Opdam, P.; Steingröver, E.; Van Rooij, S. Ecological Networks: A Spatial Concept for Multi-Actor Planning of Sustainable Landscapes. Landsc. Urban Plan. 2006, 75, 322–332. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European Policy Support and Public Data Requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- CONAPO. Índice De Marginación Por Entidad Federativa Y Municipio 2010; Consejo Nacional de Población: Ciudad de México, Mexico, 2010. [Google Scholar]
- Cutter, S.L. Gi Science, Disasters, and Emergency Management. Trans. Gis 2003, 7, 439–446. [Google Scholar] [CrossRef]
- Eidsvig, U.M.; Mclean, A.; Vangelsten, B.V.; Kalsnes, B.; Ciurean, R.L.; Argyroudis, S.; Winter, M.; Mavrouli, O.C.; Fotopoulou, S.; Pitilakis, K. Assessment of Socioeconomic Vulnerability to Landslides Using an Indicator-Based Approach: Methodology and Case Studies. Bull. Eng. Geol. Environ. 2014, 73, 307–324. [Google Scholar] [CrossRef]
- Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide Susceptibility Mapping Using Frequency Ratio, Analytic Hierarchy Process, Logistic Regression, and Artificial Neural Network Methods at the Inje Area, Korea. Environ. Earth Sci. 2013, 68, 1443–1464. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Novillo, C.J.; Arrogante-Funes, P.; Vázquez-Jiménez, R.; Maestre, F.T. Albedo Estimated from Remote Sensing Correlates with Ecosystem Multifunctionality in Global Drylands. J. Arid Environ. 2018, 157, 116–123. [Google Scholar] [CrossRef]
- Roy, J.; Saha, S.; Arabameri, A.; Blaschke, T.; Bui, D.T. A Novel Ensemble Approach for Landslide Susceptibility Mapping (Lsm) in Darjeeling and Kalimpong Districts, West Bengal, India. Remote Sens. 2019, 11, 2866. [Google Scholar] [CrossRef] [Green Version]
- Tewari, N.K.; Misra, A.K. Landslide Vulnerability Assessment in Gangotri Valley Glacier Himalaya Through Gis and Remote Sensing Techniques. Appl. Water Sci. 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Menggenang, P.; Samanta, S. Modelling and Mapping of Landslide Hazard Using Remote Sensing and Gis Techniques. Modeling Earth Syst. Environ. 2017, 3, 1113–1122. [Google Scholar] [CrossRef]
- Morales Hernández, R. Análisis Regional De La Marginación En El Estado De Guerrero, México. Pap. De Población 2015, 21, 251–274. [Google Scholar]
- Zhou, Q.; Xu, Q.; Peng, D.; Fan, X.; Ouyang, C.; Zhao, K.; Li, H.; Zhu, X. Quantitative Spatial Distribution Model of Site-Specific Loess Landslides on the Heifangtai Terrace, China. Landslides 2021, 18, 1163–1176. [Google Scholar] [CrossRef]
- Duan, G.; Zhang, J.; Zhang, S. Assessment of Landslide Susceptibility Based on Multiresolution Image Segmentation and Geological Factor Ratings. Int. J. Environ. Res. Public Health 2020, 17, 7863. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Z.; Wang, M.; Peng, L.; Hong, H. Comparative Study of Landslide Susceptibility Mapping with Different Recurrent Neural Networks. Comput. Geosci. 2020, 138, 104445. [Google Scholar] [CrossRef]
- Park, Y.; Pradhan, A.M.S.; Kim, U.; Kim, Y.-T.; Kim, S. Development and Application of Urban Landslide Vulnerability Assessment Methodology Reflecting Social and Economic Variables. Advances in Meteorology; Hindawi Limited: London, UK, 2016; Volume 2016. [Google Scholar]
- Hassan, R.; Scholes, R.; Ash, N. Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Brondizio, E.S.; Settele, J.; Díaz, S.; Ngo, H.T. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019. [Google Scholar]
- Ippolito, A.; Sala, S.; Faber, J.; Vighi, M. Ecological Vulnerability Analysis: A River Basin Case Study. Sci. Total Environ. 2010, 408, 3880–3890. [Google Scholar] [CrossRef] [PubMed]
- Devoli, G.; Strauch, W.; Chávez, G.; Høeg, K. A Landslide Database for Nicaragua: A Tool for Landslide-Hazard Management. Landslides 2007, 4, 163–176. [Google Scholar] [CrossRef]
- Du, J.; Glade, T.; Woldai, T.; Chai, B.; Zeng, B. Landslide Susceptibility Assessment Based On An Incomplete Landslide Inventory In The Jilong Valley, Tibet, Chinese Himalayas. Eng. Geol. 2020, 270, 105572. [Google Scholar] [CrossRef]
- Pellicani, R.; Van Westen, C.J.; Spilotro, G. Assessing Landslide Exposure in Areas with Limited Landslide Information. Landslides 2014, 11, 463–480. [Google Scholar] [CrossRef]
Variable | Source | Spatial Resolution (m) |
---|---|---|
Slope | SRTM | 30 |
Aspect | SRTM | 30 |
Distance to the drainage network | SRTM | 30 |
Drainage network density | SRTM | 30 |
Standard curvature of the Earth | SRTM | 30 |
Cumulative annual precipitation | Daymet | 1000 |
Litology | Geological chart | 1:250,000 |
Distance to lineaments | Geological chart | 30 |
Density of lineaments | Geological chart | 30 |
Distance to road infrastructure | Communication routes | 30 |
Density to road infrastructure | Communication routes | 30 |
NDVI | Sensor Landsat 8 | 30 |
Land cover | Copernicus Global Land Service | 100 |
LM Category | Discrete Value |
---|---|
A | 0 |
D | 0 |
N | 3 |
Ad | 0 |
An | 1 |
Dn | 1 |
Da | 0 |
Na | 2 |
Nd | 2 |
Adn | 1 |
Dan | 1 |
Nad | 2 |
ad | 0 |
an | 1 |
dn | 1 |
adn | 1 |
NN | 4 |
AA | 0 |
DD | 0 |
MSPA Categories | Definition | Wj |
---|---|---|
Perforation | Borders of nonforest islands within the forest matrix | 1.3 |
Bridge | Pixels joining two forest patches | 1.5 |
Core | Pixels within the forest matrix | 2 |
Background | Nonforested areas | 1 |
Islet | Forest islands outside the forest matrix | 1.1 |
Branch | Forest corridor linked to a forest patch | 1.2 |
Loop | Pixels joining the same forest patch | 1.2 |
Edge | Borders of the forest matrix | 1.3 |
Factor | Variable Name | Variable Range | Assigned Values |
---|---|---|---|
Biodiversity | NPP | 0–1,000,000 (g C) | Values between 1 and 4 following natural breaks |
Conservation status | PNA | 0–1 | 0 = 0 |
1 = 4 | |||
NI (from LM categories) | 0–4 | 0 = 0 | |
1 = 1 | |||
2 = 2 | |||
3 = 3 | |||
4 = 4 | |||
Habitat fragmentation | HF (from MSPA categories) | 1–4 | 1–1.25 = 1 |
1–1.50 = 2 | |||
1–1.75 = 3 | |||
1.75–2 = 4 |
Discrete Variable | Definition | Slope Range in % Rise |
---|---|---|
1 | Very gentle | <5 |
2 | Gentle | 5–15 |
3 | Steep | >15–30 |
4 | Very steep | >30 |
Discrete Variable | Definition | Range |
---|---|---|
1 | Low | <4 |
2 | Moderate | 4–8 |
3 | High | >8 |
Discrete variable | Definition | Range |
---|---|---|
1 | Low | <3 |
2 | Moderate | 3–6 |
3 | High | >6 |
Slope Factor | Level of Protection | Soil Erodibility and Rainfall Erosivity Factor | ||
---|---|---|---|---|
Low | Moderate | High | ||
Very gentle | Fully protected | Low | Moderate | Moderate |
Gentle | Fully protected | Low | Moderate | Moderate |
Steep | Fully protected | Moderate | Moderate | High |
Very steep | Fully protected | Moderate | High | High |
Very gentle | Not fully protected | Low | Moderate | Moderate |
Gentle | Not fully protected | Moderate | Moderate | High |
Steep | Not fully protected | Moderate | High | High |
Very steep | Not fully protected | Moderate | High | High |
Ecological Regeneration Delay | ||||
---|---|---|---|---|
Ecological Values | Low | Moderate | High | Very High |
Low | Low | Low | Moderate | High |
Moderate | Low | Moderate | High | Very high |
High | Moderate | High | Very high | Very high |
Ecological Vulnerability | Socio-Economic Vulnerability | |||
---|---|---|---|---|
Low | Moderate | High | Very High | |
Low | Low | Moderate | Moderate | High |
Moderate | Moderate | Moderate | High | High |
High | Moderate | High | High | Very high |
Very high | High | High | Very high | Very high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrogante-Funes, P.; Bruzón, A.G.; Arrogante-Funes, F.; Ramos-Bernal, R.N.; Vázquez-Jiménez, R. Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment. Int. J. Environ. Res. Public Health 2021, 18, 11987. https://doi.org/10.3390/ijerph182211987
Arrogante-Funes P, Bruzón AG, Arrogante-Funes F, Ramos-Bernal RN, Vázquez-Jiménez R. Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment. International Journal of Environmental Research and Public Health. 2021; 18(22):11987. https://doi.org/10.3390/ijerph182211987
Chicago/Turabian StyleArrogante-Funes, Patricia, Adrián G. Bruzón, Fátima Arrogante-Funes, Rocío N. Ramos-Bernal, and René Vázquez-Jiménez. 2021. "Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment" International Journal of Environmental Research and Public Health 18, no. 22: 11987. https://doi.org/10.3390/ijerph182211987
APA StyleArrogante-Funes, P., Bruzón, A. G., Arrogante-Funes, F., Ramos-Bernal, R. N., & Vázquez-Jiménez, R. (2021). Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment. International Journal of Environmental Research and Public Health, 18(22), 11987. https://doi.org/10.3390/ijerph182211987