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Abstract: Background: the Lombardy region in Italy was the first area in Europe to record an outbreak
of COVID-19 and one of the most affected worldwide. As this territory is strongly polluted, it was
hypothesized that pollution had a role in facilitating the diffusion of the epidemic, but results are
uncertain. Aim: the paper explores the effect of air pollutants in the first spread of COVID-19
in Lombardy, with a novel geomatics approach addressing the possible confounding factors, the
reliability of data, the measurement of diffusion speed, and the biasing effect of the lockdown
measures. Methods and results: all municipalities were assigned to one of five possible territorial
classes (TC) according to land-use and socio-economic status, and they were grouped into districts
of 100,000 residents. For each district, the speed of COVID-19 diffusion was estimated from the
ambulance dispatches and related to indicators of mean concentration of air pollutants over 1, 6, and
12 months, grouping districts in the same TC. Significant exponential correlations were found for
ammonia (NH3) in both prevalently agricultural (R2 = 0.565) and mildly urbanized (R2 = 0.688) areas.
Conclusions: this is the first study relating COVID-19 estimated speed of diffusion with indicators of
exposure to NH3. As NH3 could induce oxidative stress, its role in creating a pre-existing fragility
that could have facilitated SARS-CoV-2 replication and worsening of patient conditions could be
speculated.

Keywords: COVID-19; SARS-CoV-2; pollution; health geomatics; emergency medical services;
correlation analysis

1. Introduction

The epidemic of coronavirus disease 2019 (COVID-19), generated by the diffusion of
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), officially started in
Italy on 21 February 2020, when the first case was diagnosed in the hospital of Codogno
(Lodi province), which is a small city in the south of Lombardy region, the most populated
area of Italy with 10.06 million resident people (16.67% of the total 60.36 million people
living in Italy). The Lombardy region was the first area in all of Europe to record an
endemic outbreak of COVID-19 and became one of the most affected all over the world
during the first peak, with 78,105 confirmed cases (0.78% on the total population) reached at
4 May 2020 (first lift of lockdown measure), although it is widely recognized that the actual

Int. J. Environ. Res. Public Health 2021, 18, 12154. https://doi.org/10.3390/ijerph182212154 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0003-3161-5561
https://orcid.org/0000-0002-1770-6486
https://doi.org/10.3390/ijerph182212154
https://doi.org/10.3390/ijerph182212154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph182212154
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph182212154?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 12154 2 of 18

cases might have been even ten times higher, as inferred by the recorded cases fatality
rate (CFR, number of casualties/total number of diagnosed patients) set at 13.72% at 4
May 2020 compared to the estimated infection fatality rate (IFR, number of casualties/total
number of infected patients) considered to be 0.5–1% [1].

The reasons for such a powerful spread of the pandemic still need to be assessed
and are certainly manifold, including demographic and environmental factors. As the
territory of the Lombardy region is one of the most polluted areas in Europe (https://
earthobservatory.nasa.gov/images/15900/smog-in-northern-italy, accessed on 3 Novem-
ber 2021), it was straightforward to hypothesize that air pollution could have played a role
in facilitating the diffusion of the epidemic. As a matter of fact, it is well known that air
pollution is a significant cause of respiratory diseases [2–7] and has a negative impact on
overall health conditions [8,9].

The hypothesis of a correlation between air pollutant levels and COVID-19 diffu-
sion has been widely addressed by recent scientific literature. Twenty different pub-
lications on this topic were identified [8,10–28]: most of them (50%) were focused on
Italy [10–19], whereas three were focused on the USA [8,20,21], three on China [22–24],
one on France [25], one on England [26], and two were cross-country (one on Europe [27]
and one worldwide [28]). Six of these studies considered the effects of pollution on
COVID-19 casualties [12,20,21,23,25,27], seven dealt with the number of confirmed in-
fections [10,11,13,16,17,22,24], while the remaining seven took into consideration both
infections and casualties [8,14,15,18,19,26,28]. The air pollutants considered in the analy-
sis were particulate matter (PM2.5 [8,12–16,18,20–26,28], and PM10 [8,10–12,15–18,22–26]),
nitrogen dioxide (NO2 [8,12–14,16,19,20,22,24,26–28]), sulfur dioxide (SO2 [8,24]), ozone
(O3 [11,12,19,20,24,26]), carbon oxide (CO [8,22,24]), and nitrogen oxide (NO [16,26]). The
level of each pollutant was usually computed through average concentrations [8,10,12–
14,16,18–28], whereas some studies (all relevant to Italy) applied, as an indirect measure
of pollution level, the number of days in which the European threshold for daily av-
erage concentration was exceeded [11,15,17]; finally, other studies considered both ap-
proaches [10,12,26]. The most applied analysis method was represented by studying the
correlation between air pollutant measurements and COVID-19 data, which was repre-
sented by the number of positive cases or/and casualties, relevant to different regions, con-
sidering cumulated data computed on a given time window [11–15,17,20,21,23,24,26–28].
Alternatively, four studies also took into account (with different approaches) a time com-
ponent in the analysis of the correlation [10,16,22,25], while three other studies focused
instead on a single region and analyzed the correlation between day-by-day levels of
pollutants and correspondent daily COVID-19 data [8,18,19], accounting for a time delay.

However, in all these approaches, there are some critical issues that require specific
attention:

(1) Data reliability: It is widely recognized that the official data relevant to COVID-19
were underestimating its actual diffusion [21,29–31], and this was particularly true
when considering Italy during the first pandemic peak (March–April 2020, ISTAT,
https://www.istat.it/it/archivio/245415, last access on 3 November 2021): immedi-
ately after the first confirmed case, screening protocols were arranged in an attempt to
understand the contagion line, tracing back all contacts of people positive to tests but,
after few days, when the recorded cases exceeded tracing possibilities [32], testing
started to be performed (according to limited capabilities) only to people showing
compatible symptoms with COVID-19. Still, diagnosis capabilities were quickly satu-
rated, and the swab test for COVID-19 was performed for the most severe patients
only [33,34].

(2) Confounding factors: As clearly stated in a letter to the editors by Riccò et al. [35], it
is possible that, studying the relationship between air pollution and COVID-19 cases,
‘we are observing a correlation rather than a causation’. The use of territorial subdivi-
sions for administrative purposes may force the comparison of areas with significant
socio-economic disparities, which is likely to be a much more relevant factor (com-
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pared to pollution) when assessing the speed of diffusion of the pandemic. Therefore,
Riccò et al. suggested that ‘a more appropriate way in dealing with and understand-
ing the relationship between air pollution and SARS-CoV-2 infection incidence rates
may occur comparing geographical areas characterized by similar socio-economic
development, but strikingly different environmental status (e.g., highly polluted areas
versus those with low pollution levels)’. Some studies [13,14,17,20,21,23,26] did take
into account possible confounding factors (as suggested by the literature [29]), such
as population density [13,20,26], population age [13,14,20,26], socio-economic sta-
tus [20,23,26], ethnicity [20], people mobility [17,20], and healthcare resources [20,23].

(3) Lockdown-related biases: As once again stated by Riccò et al. [35], ‘it should be
stressed that lockdown measures are significantly affecting air pollutants, reducing
their daily concentrations’. The comparison of territories where lockdown measures
were established at very different epidemic phases (a widely applied approach, espe-
cially in studies relevant to the Italian territory) lacks in meaningfulness, as the impact
of complete lockdown measures heavily affects both phenomena under analysis
(COVID-19 epidemic and air pollution).

To overcome possible limitations due to these critical issues, we hypothesized the
following:

• Diffusion of the pandemic could be inferred by the analysis of georeferenced Emer-
gency Medical Services (EMS) interventions (ambulances dispatches) for respiratory
problems, which is an approach we recently proposed and validated [36]. Such indi-
rect data are not biased by testing policies and management strategies, which instead
affected consistently the reliability of official data, especially in the very first phases of
the pandemic.

• A comparison among areas having very similar territorial and socio-economic charac-
teristics within the Lombardy region could highlight possible differences in relation to
pandemic diffusion and air pollutants, thus reducing the effect of confounding factors;
in addition, limiting the analysis during the first peak (up to 23 March 2020) could
minimize the confounding effects of lockdown measures.

Accordingly, the aim of this study was to explore the possible effects of different
indicators of air pollution in facilitating the spread of the COVID-19 epidemic in the
Lombardy region (a total area of 23,863.65 km2) in Italy during the first period of the
pandemic by a novel approach based on the subdivision of the territory in homogeneous
areas based on land utilization, and among them, the comparison of the correlations
between the mean concentrations of air pollutants computed over different exposure
intervals (starting one, six, and twelve months before 31 January 2020), and the speed
of the evolution of the pandemic, which was estimated using the daily incidence EMS
interventions for respiratory problems over the resident population. To this scope, a
Geomatics approach was applied with the use of Geographic Information Systems, which
is a set of tools for capturing, storing, checking, manipulating, analyzing, and displaying
spatially georeferenced data [37].

2. Materials and Methods
Data Sources and Software

All the information relevant to the administrative limits and to the demographics of
the resident population were obtained as open data by the Italian National Institute of
Statistics website (ISTAT, Istituto Nazionale di Statistica, https://www.istat.it/it/, accessed
on 3 November 2021), which was updated on 1 January 2019. The georeferenced database
of EMS ambulances dispatched for respiratory causes on the Lombardy territory within the
target time period, from 1 January 2020 to 23 March 2020, was provided after anonymiza-
tion by AREU (Agenzia Regionale Emergenza/Urgenza), which is the EMS provider in
Lombardy. For each record, the following information were available: date and time (of
first arrival, of eventual arrival of means for advanced life support, of eventual arrival to
hospital), gender and age of the patient, place (category) and coordinates of intervention,

https://www.istat.it/it/
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intervention outcome (transport to hospital or not), and hospital where the patient was
transported.

Data relevant to pollution indicators were obtained as open data by Agenzia Regionale
per la Protezione Ambientale–Lombardia (ARPA, Regional Agency for Environmental
Protection–Lombardy division, https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-
Indicatori.aspx, accessed on 3 November 2021). Pollutant data were collected by 85 sta-
tions (not all stations monitored all the pollutants) distributed on the Lombardy territory,
monitoring PM2.5 and PM 10, NO and NO2, O3, CO, ammonia (NH3), SO2, and benzene
(C6H6), with a time resolution of one hour.

Data about the land use were retrieved from the DUSAF open database, which was
managed by the Lombardy region (http://www.geoportale.regione.lombardia.it, accessed
on 3 November 2021).

All processing of georeferenced data was performed using QGIS (https://qgis.org, ac-
cessed on 3 November 2021), an open-source Geographic Information System released and
updated as part of the OsGeo project and community (https://www.osgeo.org/, accessed
on 3 November 2021). Database management and statistical analysis were performed using
Python libraries (https://www.python.org/, accessed on 3 November 2021).

For all the 1506 municipalities located in the Lombardy region, the percentage of natu-
ral, agricultural, industrial, and urban terrain was computed using the DUSAF database;
in addition, the mean annual tax contribution of the resident population (as reported by IS-
TAT) was considered as a socio-economic indicator. Based on these 5 attributes, a K-means
clustering algorithm was applied to classify each municipality into 5 territorial classes
(from TC0 to TC4, which were manually selected as the most meaningful subdivision after
inspecting all the results with varying number of classes from 3 to 7).

To reduce geographical granularity and the related effect of random noise, neigh-
bor municipalities were aggregated to obtain 77 districts of at least 100,000 residents (as
described in [36]), resulting in districts with a median (25th–75th) population of 107,724
(100,382–121,096), except for the cities of Milan, Brescia, Monza, and Bergamo (having each
a total resident population above 100,000 units) that formed districts themselves. Then,
each district was assigned to the TC corresponding to the majority class of at least 75% of
its municipalities, where the 75% threshold was empirically considered as meaningful.

For each district d, the total number of ambulance dispatches for each day in the period
was computed. Starting from these data, to consider the time component (thus indirectly
highlighting the speed of the diffusion of the pandemic), the following procedure was:

• A moving average filter with a window of 5 days was applied;
• The exponential data regression in the form y = eλt+q was iteratively computed on a

sequence having as its last point the value at 23 March 2020 (last data point available)
and as the first point each possible previous day (moving backward up to 1 January
2020); then, the earliest point with a correlation coefficient R2 > 0.9 was selected as the
starting day (td) of the pandemic diffusion;

• The parameter λd resulting from the exponential regression between (td) and 23
March 2020 was considered as a representative estimate of the speed of the pandemic
diffusion for the district d.

A graphical representation of the procedure is reported in Figure 1.

https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx
https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx
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Figure 1. Data representing the daily number of ambulances dispatched in a district, which were 
filtered with a 5-day moving average and plotted; the day 𝑡ௗ̅ is identified as the earliest day where 
the exponential regression function (𝑦 =  𝑒୶ା୯) had a correlation coefficient R2 > 0.9, and the λௗ 
parameter of such a function (computed from 𝑡ௗ̅) was considered as the estimator of the speed of 
the COVID-19 pandemic diffusion. 

As regards air pollution data, for every district d, its centroid was computed, and the 
five available recording stations (within a 25 km range) closest to the centroid were se-
lected (Figure 2). 

 
Figure 2. Map of the Lombardy region, indicating the boundaries of the 77 generated districts (see 
text for details) and their centroid (green dots), together with the position of the air pollutants re-
cording stations (red dots). For each district, the computation of the air pollutants time-series was 
based on the recorded values of the closest recording stations (maximum 5) in a radius of 25 km 
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Figure 1. Data representing the daily number of ambulances dispatched in a district, which were
filtered with a 5-day moving average and plotted; the day td is identified as the earliest day where
the exponential regression function (y = eλ

dx+q ) had a correlation coefficient R2 > 0.9, and the λd

parameter of such a function (computed from td ) was considered as the estimator of the speed of the
COVID-19 pandemic diffusion.

As regards air pollution data, for every district d, its centroid was computed, and the
five available recording stations (within a 25 km range) closest to the centroid were selected
(Figure 2).
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Figure 2. Map of the Lombardy region, indicating the boundaries of the 77 generated districts
(see text for details) and their centroid (green dots), together with the position of the air pollutants
recording stations (red dots). For each district, the computation of the air pollutants time-series was
based on the recorded values of the closest recording stations (maximum 5) in a radius of 25 km
around the centroid, with values weighted according to their radial distance to the centroid (see text
for details).
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For each pollutant, the daily data from these stations were used to compute a spatially
weighted average Pi(t)d based on the Euclidean distance. Finally, for each pollutant Pi
included in the analysis, from these time series, the mean values over the previous (starting

31 January 2020, before the official COVID-19 first case) 12 months (Pd
i 12), 6 months (Pd

i 6),

and 1 month (Pd
i 1) were obtained for each district d as reported in the following formula:

Pd
i t =

∑m
∑s cpi,s,m ∗ 1

ed
s

∑s
1
ed
s

M
(1)

where:
Pd

i t is the average concentration of pollutant i in district d in the time period t, with
i = 1, . . . ,9 indicating the different considered pollutant (PM2.5, PM10, NO, NO2, O3, CO,
NH3, SO2, C6H6);

d = 1, . . . ,77 represents the index of the district;
t indicates the considered exposure period (1 month, 6 months, or 12 months starting

from 31 January 2020 and going backward in time);
m = 1, . . . ,M is the day index in the considered time period (with M = 31 if t is 1 month,

183 if t is 6 months, or 365 if t is 12 months);
s = 1, . . . ,S is the index of the considered recording station;
cpi,s,m is the concentration of pollutant i measured by the station s at day m;
ed

s is the Euclidian distance between the recording station s and the centroid of the
district d.

A graphical representation of the time series for PM2.5, PM10, and CO for the city of
Milan in the preceding 12 months is reported in Figure 3.
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Figure 3. Example of extracted time-series of three pollutants (PM2.5, PM10, and CO) in the city of
Milan for the considered retrospective period of 12 months, from 1 February 2019 to 31 January 2020.

As a final step, separately for each of the five TC, the values of pandemic diffusion
speed λd for each district d ∈ TC were separately fitted with the exponential regression:

λd = eτ∗P
d
i t+w (2)

with the corresponding computed values of Pd
i 12, Pd

i 6, and Pd
i 1 (for i = 1, . . . ,9) to ex-

plore the possible relationship with air pollutants over different retrospective periods of
cumulative exposure, thus resulting in 9 × 5 × 3 = 135 different values of R2.
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3. Results
3.1. Territorial Subdivision and Clustering

The clustering of municipalities based on the land utilization and mean annual tax
contribution of the resident population resulted in a composition of the five TC as described
in Table 1, with the associated map of the resulting classification of municipalities over the
Lombardy territory reported in Figure 4A: class 0 was prevalently agricultural; classes 1
and 3 reflected mainly natural areas characterized by lower or higher income, respectively;
classes 2 and 4 had a mixed land utilization in which urbanized areas or agriculture/natural
prevailed, respectively.

Table 1. Composition of the different territorial clustering classes (TC) with relation to the five
considered attributes.

TC
Number

% Urbanized
Area

% Industrial
Area

% Agricultural
Area

% Natural
Area

Mean Tax
Contribution (€)

0 7.97 4.6 76.28 11.21 15,332.84

1 8.47 1.23 3.51 86.76 10,589.85

2 45.05 16.9 17.02 20.99 18,124.67

3 6.46 1.52 2.84 89.12 15,513.17

4 23.21 10.53 33.18 33.13 17,714.22
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21 (13–35) 
51 (36–64) 
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Figure 4. (A) Map of Lombardy region with each of the municipality administrative boundaries
highlighted (thin black lines), as well as the boundaries of generated 77 districts of approximatively
100,000 residents (bold black lines). The color attributed to each municipality reflects the results of the
mapping operation with the corresponding territorial clustering class (see text for details). (B) Map
of Lombardy region with the boundaries of generated 77 districts superimposed. The color attributed
to each district is the result of the mapping operation with the corresponding territorial clustering
class (see text for details). Class 0: prevalently agricultural; class 1: mainly natural area with lower
income; class 2: mixed land utilization with prevalent urbanized areas; class 3: mainly natural area
with higher income; class 4: mixed land utilization with prevalent agriculture/natural areas.

Based on the TC of each municipality within each district, out of the 77 districts, for
15, a TC was not assigned (i.e., the threshold of 75% of municipalities belonging to the
same TC was not reached, and then, they were discarded from further analysis), 16 were
assigned to class 0, 17 were assigned to class 2, 10 were assigned to class 3, and 19 were
assigned to class 4, while no district was assigned to class 1. The corresponding map of the
districts assigned to the different TC is shown in Figure 4B. These results are coherent with
the geography of the territory: class 0 (mainly agricultural) is prevalent in the southern belt
corresponding to Pianura Padana (plain and less urbanized); class 2, the most urbanized, is
in proximity of the city of Milan, capital of Lombardy, and of the other largest cities; class 3
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(mainly not anthropic) is in the northern part of the region, characterized by mountains,
while class 4 (most balanced) characterizes the extended hinterland of Milan.

From Table 2, it is possible to evidence that TC0 (mainly agricultural) was characterized
by a higher prevalence of ambulance dispatches from 1 January 2020 to 23 March 2020,
which was followed closely by TC3 (mainly natural), thus confirming that the epidemic
appeared stronger outside the urbanized areas than in more populated clusters (TC2) in
proportion to the resident population.

Table 2. Aggregated data distribution, expressed as median (25th–75th percentiles), for the four clustering classes TC (see
text for details), reporting the cumulated prevalence of ambulances dispatched (normalized by 100,000 residents) in the
considered time period (1 January 2020–23 March 2020), and the values distribution generated by the different districts
composing each clustering class, together with the values distribution of all the measurements for each pollutant in the
three considered time windows (12 months, 6 months, 1 month).

Class 0 Class 2 Class 3 Class 4

Ambulances
dispatched/100k

residents (1 January
2020–23 March 2020)

Total
distribution in

districts

699.6

664.8 (561.1–778.1)

437.5

394.7 (340.9–473.4)

650.1

587.7 (469.9–737)

430.7

393 (341.1–503.3)

PM2.5 [µg/m3]
12 months
6 months
1 month

18 (11–31)
21 (13–35)
51 (36–64)

17 (11–28)
18 (12–32)
48 (35–62)

14 (7–24)
12 (5–24)

22 (4–39.25)

16 (11–27)
17 (11–30)
44 (33–57)

PM10 [µg/m3]
12 months
6 months
1 month

27 (18–42)
29 (20–46)

62 (47–77.5)

24 (17–35)
26 (17–41)
59 (44–75)

19 (11–30)
20 (10–30)

34 (18.5–52)

24 (17–37)
25 (17–40)
57 (42–72)

NO [µg/m3]
12 months
6 months
1 month

26 (14–52)
32 (16–65)

80 (53–117)

53 (29–104)
68 (34–131)

164 (101–256)

20 (11–41)
25 (13–53)
59 (29–98)

31 (17–64)
39 (20–84)

114 (66–185)

NO2 [µg/m3]
12 months
6 months
1 month

20 (11–33)
23 (13–35)
39 (31–48)

37 (22–56)
40 (24–58)
64 (49–80)

16 (9–29)
19 (10–32)
36 (22–50)

23 (13–39)
27 (15–41)
48 (36–64)

O3 [µg/m3]
12 months
6 months
1 month

39 (10–74)
20 (4–50)
4 (2–10)

40 (8–75)
18 (6–53)
6 (5–10)

58 (26–87)
38 (13–69)
21 (7–54)

40 (10–74)
19 (6–51)
6 (3–11)

CO [mg/m3]
12 months
6 months
1 month

0.3 (0.2–0.6)
0.5 (0.3–0.7)
0.9 (0.7–1.1)

0.6 (0.3–0.9)
0.7 (0.4–1)

1.2 (0.8–1.6)

0.3 (0.2–0.4)
0.3 (0.2–0.4)
0.4 (0.2–0.6)

0.4 (0.3–0.7)
0.5 (0.3–0.8)
1 (0.7–1.3)

NH3 [µg/m3]
12 months
6 months
1 month

17 (7–40)
17 (6–37)
22 (6–43)

13 (6–18)
14 (12–16)
15 (13–16)

3 (1–6)
3 (0–5)
2 (0–7)

4 (2–8)
3 (2–7)
3 (2–5)

SO2 [µg/m3]
12 months
6 months
1 month

2.9 (1.7–4.1)
2.8 (1.7–4)

2.9 (1.9–3.8)

2.2 (1.3–3.5)
2.5 (1.5–3.8)
3.6 (1.9–6)

1.1 (0.7–1.9)
1.5 (0.9–2.4)
2.5 (1.6–3.6)

2 (1.2–3)
2.3 (1.5–3.2)

3 (2.3–4)

C6H6 [µg/m3]
12 months
6 months
1 month

0.4 (0.2–0.8)
0.5 (0.3–1.3)
2 (1.6–2.5)

0.9 (0.5–1.5)
1.1 (0.6–1.9)
2.4 (1.5–3.7)

0.5 (0.3–1.5)
0.9 (0.3–2.1)
1.9 (1.4–2.7)

0.4 (0.2–0.9)
0.5 (0.3–1)

1.6 (1.2–2.2)

Examining pollutants levels, values relevant to the 1-month observational window
appeared higher than those for 6 or 12 months for most pollutants except for O3: this can
be explained by the origin of the time windows (going backward from 31 January 2020)
and the relevant pollution sources in the considered periods.

Considering the different indicators of pollutants concentrations in the different TC,
TC0 showed the highest levels of PM2.5, PM10, NH3, SO2 in all the observational periods,
while TC2 (mainly urbanized) was characterized by the highest concentration of NO, NO2,



Int. J. Environ. Res. Public Health 2021, 18, 12154 9 of 18

CO, and C6H6, and TC3 prevailed only for O3. These results may reflect the possible main
sources of pollution in those classes: in TC0, it was due to agricultural activities, while in
TC2, it was due to transportation and heating.

3.2. Data Correlations

In Figure 5, the values of the λd parameter, representing the estimate of the pandemic
diffusion speed computed from the ambulance dispatches, are color-coded for each district.
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Figure 5. Values of the lambda parameter (λd), which was used as an estimator of the speed of
COVID-19 diffusion on the basis of ambulances dispatched for respiratory issues (see text for details)
for each district of approximately 100,000 residents, mapped on the territory of the Lombardy
region (Italy).

The class-specific correlation between the speed of diffusion of COVID-19 (estimated
from the dispatched ambulances for respiratory issues) and the exposition to pollutants
was evaluated on the basis of the correlation coefficient R2 for exponential regression

(λd = eτ∗Pd
i t+w). A complete representation of the results is reported in Figure 6.

The correlation distributions for each TC for each pollutant were examined: Ammonia
showed statistically significant values (p < 0.05) considering all the exposure time periods
(1, 6, and 12 months) in TC0 (mainly agricultural use), TC2 (mainly urbanized), and TC4
(balanced land use). Conversely, CO and SO2 showed significant values for all exposure
periods but only in TC4, while for O3, it was significant for TC2 and 6-months exposure
only. Based on these results, as ammonia showed high R2 values (the highest value of R2

was 0.69 for class 4 at 6 months mean exposure) in different classes, further considerations
will be focused on this pollutant only, considering a value of R2 > 0.5 as cut-off.

Table 3 summarizes the results of the exponential regression between ammonia con-
centration indicator and the estimated speed of COVID-19 diffusion, which were measured
with the parameter λd computed from the ambulance dispatches in the different TC and
exposure time windows.

It is possible to notice how the values of τ, representing the slope of such a correlation,
were higher in TC4 compared to TC0.

In Figure 7, the different graphs show the computed exponential regressions for am-
monia with the speed of COVID-19 diffusion, where each red dot represents the measured
combination of pollutant concentration and λd for each district included in the correspond-
ing TC. By comparing TC0 (mainly agricultural) with TC4 (balanced land use), it appears
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evident how, in the presence of higher values of NH3 concentration in TC0, the correspond-
ing values of λd are following the exponential relation, reaching values up to double those
observed in TC4.
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Figure 6. Bar chart representation of all the correlation coefficients between the estimated speed
of COVID-19 diffusion and the average concentration of nine different pollutants computed in the
previous 12, 6, and 1 months, separately for the four classes representing comparable territorial
areas (see text for details); values in bold highlight correlation coefficients with a p-value < 0.05.
Class 0: prevalently agricultural; Class 2: mixed land utilization with prevalent urbanized areas;
Class 3: mainly natural area with higher income; Class 4: mixed land utilization with prevalent
agriculture/natural areas.

Table 3. Results of exponential regression between ammonia concentration indicators and the esti-
mated speed of COVID-19 diffusion, measured with the parameter λd computed from the ambulance
dispatches, in the different TCs and exposure time windows where R2 was higher than 0.5; the τ

parameter represents the slope of this exponential regression.

Territorial Class Exposure Time Period [Months] τ R2 Exp Regression

Class 4 12 0.0943 0.652

Class 4 6 0.0968 0.688

Class 4 1 0.0922 0.674

Class 0 12 0.0596 0.523

Class 0 6 0.067 0.553

Class 0 1 0.0643 0.565
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Figure 7. Plots (each red dot refers to one district) of the mean level of ammonia (NH3) recorded in a specific time period
against the λd parameter (estimation of the speed of diffusion of COVID-19; see text for details) for all districts belonging to
the same territorial clustering class (areas comparable from the point of view of territory characteristics, see text for details),
and exponential regression of data distribution (blue line). Class 0: prevalently agricultural; Class 4: mixed land utilization
with prevalent agriculture/natural areas.
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4. Discussion

This is the first study in which the association between the estimated speed of diffu-
sion of COVID-19 and the level of exposure to several pollutant indicators was studied,
considering land utilization in the comparison. Interestingly, the strongest association was
found for the ammonia indicator.

Specifically, this correlation emerged in TC0, which consisted of prevalently agri-
cultural areas (76.28%,) and TC4, which consisted of a balanced share of different land
uses (of which 33.18% was agricultural use). Interestingly, in TC4, the correlation was
higher (R2 = 0.688) when compared to TC0 (R2 = 0.565), and it was associated to values
of τ (i.e., describing the slope of the relation between the estimated speed of COVID-19
diffusion and measured level of ammonia indicator) higher by 0.0347, 0.0298, and 0.0279,
respectively for 12, 6, and 1 month duration, despite the lower levels of ammonia measured
in the same observation periods. This could be due to the higher level of urbanization in
TC4, supporting the hypothesis that a higher density of population, in territories where
urbanized areas are interleaved with agricultural activities and consequently exposed
to NH3 pollution, thus creating the conditions of pre-existing fragility, could result in a
more evident and faster spreading of COVID-19 due to its high rate of human-to-human
transmission. In addition, very similar values were observed comparing the three different
observation periods for both TC0 and TC4, thus evidencing how the estimated speed of
diffusion was related to the mean level of ammonia indicator recorded in the period, with
no difference between the longer (12 months) or shorter (1 month) continuous exposure.

Surprisingly, when considering the prevalence of ambulance dispatches over the
considered period, TC0 showed the highest values, followed by TC3 (mainly natural),
confirming that the epidemic appeared stronger outside the urbanized areas; hence, in
TC3, no specific correlation with pollutant indicators was evidenced, thus suggesting other
causes for this phenomenon possibly related to the movement of people (already infected)
toward the countryside (i.e., pre-Alps and Alps areas) at the beginning of the pandemic, in
addition to the early lockdown established in Lombardy since 9 March 2020.

When comparing the pollution indicators concentrations over the different observation
periods, their distribution in the different TC is in line with the expected main sources of
pollution. Ammonia concentration was the highest in TC0, with lower values measured
in TC4; high values were recorded also in TC2 (strongly urbanized), hence with weaker
correlation with the speed of diffusion estimated by ambulance dispatches. A possible
explanation for this observation is that strongly urbanized areas are characterized by
other unidentified drivers and pollution sources with a different impact on our indicator,
generating different mechanisms that hid the trends observed in TC0 and TC4.

In addition to these considerations, although it is well known that NH3 has a strong
impact on the generation of other pollutants, such as SO2, NO, NO2, and, especially,
secondary particulate matter [38,39], in the proposed analysis weaker correlations were
found with these derived pollutant indicators.

Our results are coherent with the analysis conducted by ARPA, which identified
in agricultural activity the main source (85%) of ammonia production (https://www.
arpalombardia.it/Pages/Aria/Aria-Progetti/Progetto-Ammoniaca.aspx, accessed on 3
November 2021), and with scientific literature on the topic [40–43]. Indeed, the emission
of NH3 from animal husbandry is recognized as the main source of NH3 in the atmo-
sphere [44], mainly originating from the microbial decomposition of nitrogen-containing
organic matter in manure. In both Europe and the United States, about 80% of total NH3
emissions comes from animal waste [45].

The effects of NH3 on the organisms depend on the concentration and duration of
the stimulation. Remodeling of the tracheal epithelium, the barrier between the body and
the environment, can originate from the stimulation of external gases [46] and result in
smooth muscle hyperplasia, pulmonary fibrosis, basal layer thickening, cell composition
changes, and inflammatory cell infiltration. NH3 exposure leads to a loss of cilia or to the
production of more mucus covered on the basal layer of tracheal cilia, and it also could

https://www.arpalombardia.it/Pages/Aria/Aria-Progetti/Progetto-Ammoniaca.aspx
https://www.arpalombardia.it/Pages/Aria/Aria-Progetti/Progetto-Ammoniaca.aspx
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cause chronic respiratory diseases and significantly aggravate the symptoms of emphysema
and asthma [47].

A recent study conducted in pigs, an animal model closely related to humans in
terms of metabolism, anatomy, and physiology [48], identified that NH3 could break down
the mucosal barrier of the respiratory tract, induce oxidative stress and inflammation in
pig trachea, reduce the activity of microtubules, and disrupt the balance of solute carrier
(SLC) transporters [49]. Oxidative stress represents an imbalance between the production
of reactive oxygen species (ROS) and antioxidant defenses, causing damage to crucial
biomolecules and cells, and affecting the entire organisms [50], leading to cell death by
the destruction of cellular components [51]. Indeed, the mechanisms of air pollution-
induced health effects involve oxidative stress and inflammation: particulate matter (PM),
ozone, nitrogen oxides, and transition metals are potent oxidants or able to generate ROS.
Oxidative stress is one of the toxicity mechanisms also associated to NH3 [52,53].

Interestingly, SARS-CoV-2 infection pathogenesis has been related to oxidative stress
by ROS as a response to aggression, with a perpetuation of the cytokine storm cycle,
blood-clotting mechanism, and exacerbating hypoxia in those patients that require hospi-
talization [54,55].

As several studies highlighted the strategy of some viruses to alter the redox balance
of a cell in order to survive, inducing oxidative stress in order to facilitate their replication
inside the cell [56], on the basis of our results, we could speculate that continuous exposure
to NH3 pollutant could have generated a pathophysiological substrate of inflammatory
status together with oxidative stress in favor of virus replication and thus facilitated
the further manifestation of clinical conditions that required the intervention of EMS
with higher levels associated to faster spreading of the virus. In urbanized areas where
agricultural activity was also present, this potential inflammatory condition, together with
the greater residential density, facilitated the virus transmission.

While results are various across recently published studies, most of them agree on
the identification of a correlation between COVID-19 data and PM2.5 (i.e., infections [8,13–
15,18,22,24,26,28] and casualties [8,12,14,15,18,21,23,25,26,28]), PM10 (i.e., infections [8,11,
15,17,18,22,24,26] and casualties [8,12,15,18,23,25,26]) and NO2 (i.e., infections [8,13,14,16,
19,22,24,26,28] and casualties [8,12,14,19,20,26–28]). However, these correlations were not
evident in our analyses.

Since the key point of our novel approach was to make a comparison of results among
areas with similar characteristics in terms of land use, it is realistic to hypothesize that
the previously identified correlation between PM and COVID-19 diffusion could have
an indirect origin: areas that were more densely inhabited were struck harder by the
COVID-19 epidemic in terms of diffusion because of the anthropization of the territory
and, as these areas are characterized by a much higher concentration of PM, the two
phenomena appeared correlated but without a direct risk association. This hypothesis is
further corroborated by the use, in literature, of only official diagnostic data, considering
that in metropolitan areas, compared to rural ones, all the infrastructures and protocols for
testing could be organized faster and with higher efficiency.

Moreover, the study of the impact of air pollution on COVID-19 diffusion and its
lethality is strictly related with the investigation on the mechanisms of airborne transmis-
sion of the SARS-CoV-2 virus, which is consistently debated in current research [12,57–63]
in light of its importance in the identification of strategies for limiting the spreading of
the pandemic. It is known that virus-laden aerosol could interact with atmospheric parti-
cles, creating clusters acting as carriers, thus enhancing the persistence of viruses in the
atmosphere [64,65], and therefore, it was hypothesized that the same mechanism could
apply to SARS-CoV-2 virus [6,61], which is a hypothesis that some research groups con-
sider enforced by the resulting correlation between PM concentrations and COVID-19
data [11,17,18,22] and the identification of SARS-CoV-2 RNA on particulate matter [66,67].
However, more recent studies stated that there is currently not enough evidence to prove
this mechanism to be a factor in the pandemic diffusion [10,29,63].
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Based on our exploratory research, we agree with this more recent interpretation and
suggest the possible role of intensive farming (and relevant NH3 pollution), especially
in proximity of urbanized areas, in creating a pre-existing fragility that could result in a
facilitating factor for the spreading of viruses such as SARS-CoV-2 and generating worse
clinical outcomes in COVID-19 patients [6,29,68]. However, the evaluation of the possible
pathophysiological mechanisms behind ammonia exposure and COVID-19 was beyond the
aim of our study, and specific research will be needed to further corroborate our hypothesis.

The lack of reliable and timely official data related to the COVID-19 epidemic led to the
use of the ambulance dispatches as an unbiased estimator of the virus spreading, although
it was not possible to distinguish between interventions actually related to COVID-19
diagnosis and other respiratory issues. However, we recently demonstrated the effective
relation between this indicator and mortality in Lombardy [36].

The adopted ecological design, based on grouping adjacent municipalities into dis-
tricts of approximately 100,000 residents from which to measure the number of ambulance
dispatches, represented a compromise between spatial resolution and the need of having
enough events to trigger a visible increase of cases in a specific cluster. As such, a different
territorial subdivision (using different number of residents, or applying different criteria),
could result in different municipalities composing a district, and as such potentially im-
pacting on the territorial clustering of the district, oand on the final results. However, as
shown in [36], the applied methodology could be considered sufficiently robust to spatial
variations in the subdivision of the territory, thus providing curves representing the daily
number of ambulances dispatched in a district with an exponential trend morphology.

The use of ground stations, not uniformly distributed across the territory, to measure
air pollutants in each district implies a strong approximation, as local phenomena nearby
the stations as well as geographical factors could impact on the measured values. The
use of satellite imagery, such as data from the Copernicus project, could provide more
accurate measurements. In addition, in the computation of the mean concentration of the
pollutant indicator over temporal periods, the underlying assumption was that residential
population was always exposed to these levels, which might not always correspond to
reality due to possible mobility across districts.

Despite the apparent coherence in the obtained results, we cannot exclude the presence
of several confounding factors in the observed phenomena, which could lead to alternative
explanations. As already mentioned, we did not consider the possible movement flows of
people from the urbanized areas toward natural areas before and during the lockdown,
possibly caused by the perception of risk at the arrival of the epidemic and its modifica-
tions during the epidemic curve, also potentially in differentiated phases of the disease
(asymptomatic or symptomatic period). This limitation, thus resulting in people being
exposed to pollutant levels different over time to what was hypothesized in our approach,
should be tackled in further studies where mobility data could be available. Similarly, the
possible role of animals as carriers to facilitate the spreading in rural and farming areas
cannot be a priori excluded.

5. Conclusions

In this study a novel method was proposed and applied to explore the role of air
pollution indicators on the estimated speed of diffusion of the COVID-19 pandemic during
the first outbreak (1 January 2020 to 23 March 2020), with specific reference to the territory
of Lombardy region, Italy. The main novelties were related to the following:

• The reliability of analyzed data, by considering the number of ambulances dispatches
for respiratory issues;

• The management of confounding factors, by comparing only territories with similar
land-use characteristics;

• Considering the time component, by focusing on the initial spread of the disease, to
avoid biases introduced by effect of lockdown measures;
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• The method to estimate the speed of diffusion, by computing the slope of the expo-
nential interpolation of daily data rather than using cumulated data.

For the first time, a risk association between ammonia indicator levels and estimated
speed of SARS-CoV-2 virus diffusion was found in conjunction with mainly agricultural or
mixed (urbanized and agricultural) land utilization. From these results, we could speculate
that oxidative stress, as one of the toxicity mechanisms associated to NH3, could have
contributed to a pre-existing fragility due to inflammatory status in residents of those areas,
thus facilitating virus replication and further worsening of clinical conditions that required
the intervention of EMS.

Our study underlines the importance of tracking ammonia concentration indicators
together with other pollutants as well as the need to thoroughly investigate the possible
pathophysiological mechanisms behind ammonia exposure and COVID-19.

The possible role of intensive farming (and relevant NH3 pollution exposure), espe-
cially in proximity of urbanized areas, in creating a pre-existing fragility able to facilitate
the spread of viruses such as SARS-CoV-2, should be carefully investigated in the future.
Further analyses of the data relevant to the following waves of contagion could contribute
to a better understanding of the robustness of the observed risk association.
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