Numerical Investigations through ANNs for Solving COVID-19 Model
Abstract
:1. Introduction
- Artificial intelligence (AI) knacks-based computational procedure via neural networks models learned with Livenberg-Marquardt algorithm is introduced and implemented to solve nonlinear coronavirus spreading model represented with 7 classes based systems of ordinary differential equations (ODEs).
- The comparison of the results obtained through designed computing ANNs-LMB with numerical solutions are found in good agreement on the basis of absolute error (AE) values, which approve the value, worth and significance of the ANNs-LMB to solve the nonlinear coronavirus spreading model.
- The performance or convergence curves on mean square error (MSE), regression metric calculations of correlation index, and error histograms (EHs) through exhaustive simulations further indorse the reliability and consistency of the ANNs-LMB scheme.
2. Material and Methods
3. Numerical Experimentation with Interpretation of Results
- Case 1. Considering the nonlinear coronavirus spreading model with the appropriate values is shown as:
- Case 2. Considering the nonlinear coronavirus spreading model with the appropriate values is shown as:
- Case 3. Considering the nonlinear coronavirus spreading model with the appropriate values is shown as:
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramani, V.K.; Shinduja, R.; Suresh, K.P.; Naik, R. A Study on the Global Scenario of COVID-19 Related Case Fatality Rate, Recovery Rate and Prevalence Rate and Its Implications for India—A Record Based Retrospective Cohort Study. Adv. Infect. Dis. 2020, 10, 233–248. [Google Scholar] [CrossRef]
- Pratiwi, C.D.; Mungkasi, S. Euler’s and Heun’s numerical solutions to a mathematical model of the spread of COVID-19. AIP Conf. Proc. 2021, 2353, 030110. [Google Scholar]
- Donders, F.; Lonnée-Hoffmann, R.; Tsiakalos, A.; Mendling, W.; Martinez de Oliveira, J.; Judlin, P.; Xue, F.; Donders, G.G.G.; ISIDOG COVID-19 Guideline Workgroup. ISIDOG recommendations concerning COVID-19 and pregnancy. Diagnostics 2020, 10, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J. Mathematical models for COVID-19: Applications, limitations, and potentials. J. Public Health Emerg. 2020, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, T.; Lancaster, K. Mathematical models as public troubles in COVID-19 infection control: Following the numbers. Health Sociol. Rev. 2020, 29, 177–194. [Google Scholar] [CrossRef]
- Javeed, S.; Anjum, S.; Alimgeer, K.S.; Atif, M.; Khan, M.S.; Farooq, W.A.; Hanif, A.; Ahmed, H.; Yao, S.W. A novel Mathematical model for COVID-19 with remedial strategies. Results Phys. 2021, 27, 104248. [Google Scholar] [CrossRef] [PubMed]
- Jewell, B.L.; Mudimu, E.; Stover, J.; Ten Brink, D.; Phillips, A.N.; Smith, J.A.; Martin-Hughes, R.; Teng, Y.; Glaubius, R.; Mahiane, S.G. Potential effects of disruption to HIV programmes in sub-Saharan Africa caused by COVID-19: Results from multiple mathematical models. Lancet HIV 2020, 7, e629–e640. [Google Scholar] [CrossRef]
- Sánchez, Y.G.; Sabir, Z.; Guirao, J.L. Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID-19). Fractals 2020, 28, 2040026. [Google Scholar] [CrossRef]
- Khrapov, P.; Loginova, A. Comparative analysis of the mathematical models of the dynamics of the coronavirus COVID-19 epidemic development in the different countries. Int. J. Open Inf. Technol. 2020, 8, 17–22. [Google Scholar]
- Elsonbaty, A.; SABIR, Z.; RAMASWAMY, R.; ADEL, W. Dynamical analysis of a novel discrete fractional SITRs model for COVID-19. Fractals 2021, 2021, 2140035. [Google Scholar] [CrossRef]
- Thompson, R.N. Epidemiological models are important tools for guiding COVID-19 interventions. BMC Med. 2020, 18, 152. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z.; Shoaib, M.; Gupta, M.; Sánchez, Y.G. A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics. Symmetry 2020, 12, 1628. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z.; Amin, F.; Saeed, T.; Guerrero-Sanchez, Y. Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19. Alex. Eng. J. 2021, 60, 2811–2824. [Google Scholar] [CrossRef]
- Kharis, M. Mathematical modeling of Avian Influenza epidemic with bird vaccination in constant population. J. Phys. Conf. Ser. 2018, 983, 012116. [Google Scholar] [CrossRef]
- Yulida, Y.; Karim, M.A. Pemodelan Matematika Penyebaran COVID-19 di Provinsi Kalimantan Selatan. Media Bina Ilm. 2020, 14, 3257–3264. [Google Scholar]
- Awan, S.E.; Raja, M.A.Z.; Gul, F.; Khan, Z.A.; Mehmood, A.; Shoaib, M. Numerical Computing Paradigm for Investigation of Micropolar Nanofluid Flow between Parallel Plates System with Impact of Electrical MHD and Hall Current. Arab. J. Sci. Eng. 2021, 46, 645–662. [Google Scholar] [CrossRef]
- Sabir, Z.; Guirao, J.L.; Saeed, T. Solving a novel designed second order nonlinear Lane–Emden delay differential model using the heuristic techniques. Appl. Soft Comput. 2021, 102, 107105. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Guirao, J.L.; Shoaib, M. A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems. Alex. Eng. J. 2021, 60, 2641–2659. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Shoaib, M.; Aguilar, J.G. FMNEICS: Fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane–Emden system. Comput. Appl. Math. 2020, 39, 303. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Baleanu, D. Fractional Mayer Neuro-swarm heuristic solver for multi-fractional Order doubly singular model based on Lane-Emden equation. Fractals 2021, 29, 2140017-1219. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z. Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl. Soft Comput. 2019, 80, 506–524. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Amin, F.; Guirao, J.L.; Raja, M.A.Z. Stochastic numerical technique for solving HIV infection model of CD4+ T cells. Eur. Phys. J. Plus 2020, 135, 403. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Umar, M.; Shoaib, M. Neuro-swarm intelligent computing to solve the second-order singular functional differential model. Eur. Phys. J. Plus 2020, 135, 474. [Google Scholar] [CrossRef]
- Sabir, Z.; Manzar, M.A.; Raja, M.A.Z.; Sheraz, M.; Wazwaz, A.M. Neuro-heuristics for nonlinear singular Thomas-Fermi systems. Appl. Soft Comput. 2018, 65, 152–169. [Google Scholar] [CrossRef]
- Raja, M.A.Z.; Umar, M.; Sabir, Z.; Khan, J.A.; Baleanu, D. A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur. Phys. J. Plus 2018, 133, 364. [Google Scholar] [CrossRef]
- Umar, M.; Raja, M.A.Z.; Sabir, Z.; Alwabli, A.S.; Shoaib, M. A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment. Eur. Phys. J. Plus 2020, 135, 565. [Google Scholar] [CrossRef]
- Sabir, Z.; Khalique, C.M.; Raja, M.A.Z.; Baleanu, D. Evolutionary computing for nonlinear singular boundary value problems using neural network, genetic algorithm and active-set algorithm. Eur. Phys. J. Plus 2021, 136, 195. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Guirao, J.L.; Shoaib, M. A Neuro-Swarming Intelligence-Based Computing for Second Order Singular Periodic Non-linear Boundary Value Problems. Front. Phys. 2020, 8, 224. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Chakraborty, T.; Rai, S.N. Stochastic forecasting of COVID-19 daily new cases across countries with a novel hybrid time series model. medRxiv 2021. [Google Scholar] [CrossRef]
- Braga, M.D.B.; Fernandes, R.D.S.; Souza, G.N.D., Jr.; Rocha, J.E.C.D.; Dolácio, C.J.F.; Tavares, I.D.S., Jr.; Pinheiro, R.R.; Noronha, F.N.; Rodrigues, L.L.S.; Ramos, R.T.J.; et al. Artificial neural networks for short-term forecasting of cases, deaths, and hospital beds occupancy in the COVID-19 pandemic at the Brazilian Amazon. PLoS ONE 2021, 16, e0248161. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, I.D.; Mpesiana, T.A. Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 2020, 43, 635–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [Google Scholar] [CrossRef]
- Saba, A.I.; Elsheikh, A.H. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks. Process Saf. Environ. Prot. 2020, 141, 1–8. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Bukhari, A.H.; Alrabaiah, H.; Shah, Z.; Kumam, P.; Islam, S. A stochastic numerical analysis based on hybrid NAR-RBFs networks nonlinear SITR model for novel COVID-19 dynamics. Comput. Methods Programs Biomed. 2021, 202, 105973. [Google Scholar] [CrossRef]
- Siddiqui, M.K.; Islam, M.Z.; Kabir, M.A. A novel quick seizure detection and localization through brain data mining on ECoG dataset. Neural Comput. Appl. 2019, 31, 5595–5608. [Google Scholar] [CrossRef]
- Naz, S.; Raja, M.A.Z.; Mehmood, A.; Zameer, A.; Shoaib, M. Neuro-intelligent networks for Bouc–Wen hysteresis model for piezostage actuator. Eur. Phys. J. Plus 2021, 136, 396. [Google Scholar] [CrossRef]
- Ahmad, I.; Ilyas, H.; Raja, M.A.Z.; Khan, Z.; Shoaib, M. Stochastic numerical computing with Levenberg-Marquardt backpropagation for performance analysis of heat Sink of functionally graded material of the porous fin. Surf. Interfaces 2021, 26, 101403. [Google Scholar] [CrossRef]
- Shoaib, M.; Raja, M.A.Z.; Jamshed, W.; Nisar, K.S.; Khan, I.; Farhat, I. Intelligent computing Levenberg Marquardt approach for entropy optimized single-phase comparative study of second grade nanofluidic system. Int. Commun. Heat Mass Transf. 2021, 127, 105544. [Google Scholar] [CrossRef]
- Markovič, R.; Šterk, M.; Marhl, M.; Perc, M.; Gosak, M. Socio-demographic and health factors drive the epidemic progression and should guide vaccination strategies for best COVID-19 containment. Results Phys. 2021, 2021, 104433. [Google Scholar] [CrossRef]
- Gosak, M.; Duh, M.; Markovič, R.; Perc, M. Community lockdowns in social networks hardly mitigate epidemic spreading. New J. Phys. 2021, 23, 043039. [Google Scholar] [CrossRef]
- Priesemann, V.; Balling, R.; Brinkmann, M.M.; Ciesek, S.; Czypionka, T.; Eckerle, I.; Giordano, G.; Hanson, C.; Hel, Z.; Hotulainen, P.; et al. An action plan for pan-European defence against new SARS-CoV-2 variants. Lancet 2021, 397, 469–470. [Google Scholar] [CrossRef]
- Javeed, S.; Ahmed, A.; Javed, M.A.; Khan, M.S. Stability analysis and numerical solution of dengue model. Punjab Univ. J. Math. 2021, 50, 45–67. [Google Scholar]
- Ahmad, S.; Javeed, S.; Ahmad, H.; Khushi, J.; Elagan, S.K.; Khames, A. Analysis and numerical solution of novel fractional model for dengue. Results Phys. 2021, 28, 104669. [Google Scholar] [CrossRef]
Case | M.S.E | Gradient | Performance | Epoch | Mu | Time | ||
---|---|---|---|---|---|---|---|---|
Training | Testing | Validation | ||||||
1 | 1.37 × 10−9 | 8.74 × 10−11 | 4.71 × 10−10 | 9.84 × 10−8 | 1.37 × 10−9 | 67 | 1 × 10−10 | 03 |
2 | 9.62 × 10−11 | 1.85 × 10−11 | 1.33 × 10−11 | 9.99 × 10−8 | 9.62 × 10−11 | 195 | 1 × 10−9 | 04 |
3 | 9.93 × 10−11 | 1.18 × 10−11 | 5.71 × 10−12 | 9.92 × 10−8 | 9.93 × 10−11 | 217 | 1 × 10−9 | 05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umar, M.; Sabir, Z.; Raja, M.A.Z.; Javeed, S.; Ahmad, H.; Elagen, S.K.; Khames, A. Numerical Investigations through ANNs for Solving COVID-19 Model. Int. J. Environ. Res. Public Health 2021, 18, 12192. https://doi.org/10.3390/ijerph182212192
Umar M, Sabir Z, Raja MAZ, Javeed S, Ahmad H, Elagen SK, Khames A. Numerical Investigations through ANNs for Solving COVID-19 Model. International Journal of Environmental Research and Public Health. 2021; 18(22):12192. https://doi.org/10.3390/ijerph182212192
Chicago/Turabian StyleUmar, Muhammad, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Shumaila Javeed, Hijaz Ahmad, Sayed K. Elagen, and Ahmed Khames. 2021. "Numerical Investigations through ANNs for Solving COVID-19 Model" International Journal of Environmental Research and Public Health 18, no. 22: 12192. https://doi.org/10.3390/ijerph182212192
APA StyleUmar, M., Sabir, Z., Raja, M. A. Z., Javeed, S., Ahmad, H., Elagen, S. K., & Khames, A. (2021). Numerical Investigations through ANNs for Solving COVID-19 Model. International Journal of Environmental Research and Public Health, 18(22), 12192. https://doi.org/10.3390/ijerph182212192