Effect of Climate Change on CO2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Temperature Index
3. Results
3.1. Interannual Variation of Ecosystem Respiration
3.2. Interannual Variation of Gross Ecosystem Exchange
3.3. Interannual Variation of Net Ecosystem Exchange
3.4. Redundancy Analysis of CO2 Flux and Meteorology
3.4.1. Redundancy Analysis of CO2 Flux and Temperature
3.4.2. Redundancy Analysis of CO2 Flux and Moisture
3.4.3. The Main Factors Influencing Gross Ecosystem Exchange and Ecosystem Respiration
3.5. Mathematical Model Construction
3.6. Relationship between CO2 Flux and Temperature Index
4. Discussion
4.1. Evolution Characteristics, Similarities, and Differences of CO2 Fluxes in Different Ecosystems
4.2. Similarities and Differences of Influencing Factors in Different Ecosystems
4.3. Relationship between CO2 Flux and Climate Change in Different Ecosystems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagle, P.; Gowda, P.H.; Moorhead, J.E.; Marek, G.W.; Brauer, D.K. Net ecosystem exchange of CO2 and H2O fluxes from irrigated grain sorghum and maize in the Texas High Plains. Sci. Total Environ. 2018, 637, 163–173. [Google Scholar] [CrossRef] [PubMed]
- De la Motte, L.G.; Mamadou, O.; Beckers, Y.; Bodson, B.; Heinesch, B.; Aubinet, M. Rotational and continuous grazing does not affect the total net ecosystem exchange of a pasture grazed by cattle but modifies CO2 exchange dynamics. Agric. Ecosyst. Environ. 2018, 253, 157–165. [Google Scholar] [CrossRef]
- Webster, K.L.; Bhatti, J.S.; Thompson, D.; Nelson, S.A.; Shaw, C.H.; Bona, K.A.; Hayne, S.L.; Kurz, W.A. Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands. Carbon Balance Manag. 2018, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Duan, J.; Wang, S.; Luo, C.; Zhu, X.; Xu, B.; Chang, X.; Cui, S. Effects of seeding ratios and nitrogen fertilizer on ecosystem respiration of common vetch and oat on the Tibetan plateau. Plant Soil 2012, 362, 287–299. [Google Scholar] [CrossRef]
- Jane, S.F.; Rose, K.C. Carbon quality regulates the temperature dependence of aquatic ecosystem respiration. Freshw. Biol. 2018, 63, 1407–1419. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.; Felton, A.J.; Xia, L.; Zhang, Y.; Luo, Y.; Cheng, X.; Cao, J. Post-fire co-stimulation of gross primary production and ecosystem respiration in a meadow grassland on the Tibetan Plateau. Agric. For. Meteorol. 2021, 303, 108388. [Google Scholar] [CrossRef]
- Bao, X.; Li, Z.; Xie, F. Eight years of variations in ecosystem respiration over a residue-incorporated rotation cropland and its controlling factors. Sci. Total Environ. 2020, 733, 139325. [Google Scholar] [CrossRef]
- Shi, P.; Qin, Y.; Liu, Q.; Zhu, T.; Li, Z.; Li, P.; Ren, Z.; Liu, Y.; Wang, F. Soil respiration and response of carbon source changes to vegetation restoration in the Loess Plateau, China. Sci. Total Environ. 2020, 707, 135507. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Wang, S.; Bai, X.; Luo, G.; Wu, L.; Chen, F.; Qian, Q.; Xiao, J.; Zeng, C. Response of the weathering carbon sink in terrestrial rocks to climate variables and ecological restoration in China. Sci. Total Environ. 2021, 750, 141525. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.M.; Black, T.A.; Price, D.T.; Kurz, W.; Desai, A.; Gonsamo, A.; Jassal, R.S.; Gough, C.M.; Bohrer, G.; et al. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob. Ecol. Biogeogr. 2013, 22, 994–1006. [Google Scholar] [CrossRef]
- Xi, C.; Peili, S.; Ning, Z.; Ben, N.; Yongtao, H.; Xianzhou, Z. Biophysical regulation of carbon flux in different rainfall regime in a Northern Tibetan Alpine Meadow. J. Resour. Ecol. 2017, 8, 30–41. [Google Scholar] [CrossRef]
- Helbig, M.; Chasmer, L.E.; Desai, A.; Kljun, N.; Quinton, W.L.; Sonnentag, O. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape. Glob. Change Biol. 2017, 23, 3231–3248. [Google Scholar] [CrossRef] [Green Version]
- Bd, E.; Hutjis, R. Climate change impact and adaptation in South Omo Zone, Ethiopia. J. Geol. Geophys. 2015, 4, 1–14. [Google Scholar] [CrossRef]
- Shah, R.D.T.; Sharma, S.; Haase, P.; Jähnig, S.C.; Pauls, S.U. The climate sensitive zone along an altitudinal gradient in central Himalayan rivers: A useful concept to monitor climate change impacts in mountain regions. Clim. Change 2015, 132, 265–278. [Google Scholar] [CrossRef]
- Lee, M.-H.; Bae, D.-H. Climate change impact assessment on green and blue water over Asian Monsoon Region. Water Resour. Manag. 2015, 29, 2407–2427. [Google Scholar] [CrossRef]
- Reyes, W.M.; Epstein, H.E.; Li, X.; McGlynn, B.L.; Riveros-Iregui, D.A.; Emanuel, R.E. Complex terrain influences ecosystem carbon responses to temperature and precipitation. Glob. Biogeochem. Cycles 2017, 31, 1306–1317. [Google Scholar] [CrossRef]
- Bragazza, L.; Buttler, A.; Robroek, B.; Albrecht, R.; Zaccone, C.; Jassey, V.; Signarbieux, C. Persistent high temperature and low precipitation reduce peat carbon accumulation. Glob. Change Biol. 2016, 22, 4114–4123. [Google Scholar] [CrossRef]
- Gustafson, E.J.; Miranda, B.; De Bruijn, A.M.; Sturtevant, B.R.; Kubiske, M.E. Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition. Environ. Model. Softw. 2017, 97, 171–183. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Scott, R.L.; Jenerette, G.D.; Hamerlynck, E.P.; Huxman, T.E. Temperature and precipitation controls over leaf- and ecosystem-level CO2 flux along a woody plant encroachment gradient. Glob. Change Biol. 2012, 18, 1389–1400. [Google Scholar] [CrossRef]
- Schippers, P.; Sterck, F.; Vlam, M.; Zuidema, P. Tree growth variation in the tropical forest: Understanding effects of temperature, rainfall and CO2. Glob. Change Biol. 2015, 21, 2749–2761. [Google Scholar] [CrossRef]
- Vargas, R.; Baldocchi, D.D.; Querejeta, J.I.; Curtis, P.S.; Hasselquist, N.J.; Janssens, I.A.; Allen, M.F.; Montagnani, L. Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature. New Phytol. 2010, 185, 226–236. [Google Scholar] [CrossRef]
- Nogueirol, R.C.; Alleoni, L.R.F.; Fracetto, F.J.C.; Baretta, D.; Cerri, C.E.P. Greenhouse gases emission from soil contaminated with automobile industry residue in Brazil. Plant Soil 2010, 333, 315–323. [Google Scholar] [CrossRef]
- Yue, X.-L.; Gao, Q.-X. Contributions of natural systems and human activity to greenhouse gas emissions. Adv. Clim. Change Res. 2018, 9, 243–252. [Google Scholar] [CrossRef]
- Talukdar, S.; Banthia, N. Carbonation in concrete infrastructure in the context of global climate change: Development of a service lifespan model. Constr. Build. Mater. 2012, 40, 775–782. [Google Scholar] [CrossRef]
- Vitale, D.; Bilancia, M. Role of the natural and anthropogenic radiative forcings on global warming: Evidence from cointegration–VECM analysis. Environ. Ecol. Stat. 2013, 20, 413–444. [Google Scholar] [CrossRef]
- Filho, W.L.; Taddese, H.; Balehegn, M.; Nzengya, D.; Debela, N.; Abayineh, A.; Mworozi, E.; Osei, S.; Ayal, D.Y.; Nagy, G.J.; et al. Introducing experiences from African pastoralist communities to cope with climate change risks, hazards and extremes: Fostering poverty reduction. Int. J. Disaster Risk Reduct. 2020, 50, 101738. [Google Scholar] [CrossRef]
- Filho, W.L.; Sima, M.; Sharifi, A.; Luetz, J.M.; Salvia, A.L.; Mifsud, M.; Olooto, F.M.; Djekic, I.; Anholon, R.; Rampasso, I.; et al. Handling climate change education at universities: An overview. Environ. Sci. Eur. 2021, 33, 1–19. [Google Scholar] [CrossRef]
- Arnone, E.; Pumo, D.; Francipane, A.; La Loggia, G.; Noto, L.V. The role of urban growth, climate change, and their interplay in altering runoff extremes. Hydrol. Process. 2018, 32, 1755–1770. [Google Scholar] [CrossRef]
- Guo, W.-L.; Hong-Bo, S.; Jing-Jin, M.; Ying-Juan, Z.; Ji, W.; Wen-Jun, S.; Zi-Yin, Z. Basic features of climate change in North China during 1961–2010. Adv. Clim. Change Res. 2013, 4, 73–83. [Google Scholar] [CrossRef]
- Sarah, B.; Jana, L.H.; Elise, P.; David, G.W.; Jack, A.M.; Joanne, N. Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland. Oecologia 2010, 162, 791–802. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Y.; Yu, G. A Dataset of Carbon and Water Fluxes over Xilinhot Temperate Steppe in Inner Mongolia (2003–2010); Science Data Bank: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Dai, X.; Wang, H.; Xu, M. An Observation Dataset of Carbon and Water Fluxes of Artificial Coniferous Forests in Qianyanzhou (2003–2010); Science Data Bank: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, Y.; Qi, D. A Dataset of Carbon, Water and Energy Fluxes Observed in Xishuangbanna Tropical Seasonal Rain Forest from 2003 to 2010; Science Data Bank: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J. The dependence of soil CO2 efflux on temperature. Soil Biol. Biochem. 2001, 33, 155–165. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Zhuang, Q.; He, J.; Lu, Y.; Ji, L.; Xiao, J.; Luo, T. Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: An analysis with a process-based biogeochemical model. Glob. Ecol. Biogeogr. 2010, 19, 649–662. [Google Scholar] [CrossRef]
- Ye, J.-S.; Reynolds, J.F.; Sun, G.-J.; Li, F.-M. Impacts of increased variability in precipitation and air temperature on net primary productivity of the Tibetan Plateau: A modeling analysis. Clim. Change 2013, 119, 321–332. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, H.; Liu, Y.; Xu, Y.; Dai, J. Phenological response of different vegetation types to temperature and precipitation variations in northern China during 1982–2012. Int. J. Remote Sens. 2017, 38, 3236–3252. [Google Scholar] [CrossRef]
- Ma, T.; Parker, T.; Unger, S.; Gewirtzman, J.; Fetcher, N.; Moody, M.L.; Tang, J. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic. Sci. Total Environ. 2022, 805, 149926. [Google Scholar] [CrossRef]
- Dittmar, C.; Fricke, W.; Elling, W. Impact of late frost events on radial growth of common beech (Fagus sylvatica L.) in Southern Germany. Eur. J. For. Res. 2005, 125, 249–259. [Google Scholar] [CrossRef]
- Heisler-White, J.L.; Blair, J.M.; Kelly, E.F.; Harmoney, K.; Knapp, A.K. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob. Change Biol. 2009, 15, 2894–2904. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, Y.; Zhang, X. Comparison of growth and physiological responses to severe drought between two altitudinal Hippophae rhamnoides populations. Silva Fenn. 2010, 44, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Choat, B.; Brodribb, T.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B. Triggers of tree mortality under drought. Nat. Cell Biol. 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, D.; Zhan, W.; Chen, H.; Zhu, Q.; Hao, Y.; Liu, W.; He, Y. Five-year measurements of net ecosystem CO2 Exchange at a fen in the Zoige Peatlands on the Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 11803–11818. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, T.; Liu, M.; Chen, Y.; Liu, G.; Xu, M.; Shi, P.; Peng, F.; Tsunekawa, A.; Liu, Y. Water and heat availability are divers of the aboveground plant carbon accumulation rate in alpine grasslands on the Tibetan Plateau. Glob. Ecol. Biogeogr. 2020, 29, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Wu, M.; Han, Y.; Xia, J.; Li, L.; Wan, S. Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperature steppe. New Phytol. 2008, 177, 209–219. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.; Smith, P.; Van der Velde, M.; Vicca, S.; Babst, F. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [Green Version]
- Gudasz, C.; Sobek, S.; Bastviken, D.; Koehler, B.; Tranvik, L.J. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments. J. Geophys. Res. Biogeosciences 2015, 120, 1215–1225. [Google Scholar] [CrossRef] [Green Version]
- Amini Tabrizi, R.; Dontsova, K.; Grachet, N.G.; Tfaily, M.M. Elevated temperatures drive abiotic and biotic degradation of organic matter in a peat bog under oxic conditions. Sci. Total Environ. 2021, 804, 150045. [Google Scholar] [CrossRef]
- Chan, E.C.; Lin, J.C. What is the value of agricultural census data in carbon cycle studies? J. Geophys. Res. Space Phys. 2011, 116, 116. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Cai, W.; Xia, J.; Chen, J.; Liu, S.; Dong, W.; Merbold, L.; Law, B.; Arain, A.; Beringer, J.; et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteorol. 2014, 192, 108–120. [Google Scholar] [CrossRef]
- Ma, J.; Yan, X.; Dong, W.; Chou, J. Gross primary production of global forest ecosystems has been overestimated. Sci. Rep. 2015, 5, 10820. [Google Scholar] [CrossRef] [Green Version]
- Noumonvi, K.D.; Ferlan, M. Empirical vs. light-use efficiency modelling for estimating carbon fluxes in a mid-succession ecosystem developed on abandoned karst grassland. PLoS ONE 2020, 15, e0237351. [Google Scholar] [CrossRef]
- Melillo, J.M.; Frey, S.D.; DeAngelis, K.M.; Werner, W.J.; Bernard, M.J.; Bowles, F.P.; Pold, G.; Knorr, M.A.; Grandy, A.S. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 2017, 358, 101–105. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Ju, W.; Schwalm, C.R.; Sippel, S.; Wu, X.; He, Q.; Song, L.; Zhang, C.; Li, J.; Sitch, S.; et al. Large-scale droughts responsible for dramatic reductions of terrestrial net carbon uptake over North America in 2011 and 2012. J. Geophys. Res. Biogeosci. 2018, 123, 2053–2071. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Chen, A.; Gao, M.; Slette, I.; Piao, S. The impact of the 2009/2010 drought on vegetation growth and terrestrial carbon balance in Southwest China. Agric. For. Meteorol. 2019, 269, 239–248. [Google Scholar] [CrossRef]
- Machado-Silva, F.; Peres, L.F.; Gouveia, C.M.; Enrich-Prast, A.; Peixoto, R.B.; Pereira, J.M.C.; Marotta, H.; Fernandes, P.J.F.; Libonati, R. Drought resilience debt drives NPP decline in the Amazon Forest. Glob. Biogeochem. Cycles 2021, 35, 9. [Google Scholar] [CrossRef]
- Sun, J.; Ye, C.; Liu, M.; Wang, Y.; Chen, J.; Wang, S.; Lu, X.; Liu, G.; Xu, M.; Li, R.; et al. Response of net reduction rate in vegetation carbon uptake to climate change across a unique gradient zone on the Tibetan Plateau. Environ. Res. 2022, 203, 111894. [Google Scholar] [CrossRef]
- Chen, L.; Liu, L.; Qin, S.; Yang, G.; Fang, K.; Zhu, B.; Kuzyakov, Y.; Chen, P.; Xu, Y.; Yang, Y. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nat. Commun. 2019, 10, 5112. [Google Scholar] [CrossRef] [Green Version]
- Kuzyakov, Y. Priming effects: Interactions between living and dead organic matter. Soil Biol. Biochem. 2010, 42, 1363–1371. [Google Scholar] [CrossRef]
Parameters | Instrument Model | Production Company | Country |
---|---|---|---|
Ecosystem respiration | LI-7500 | Campbell Scientific Inc | USA |
Gross ecosystem exchange | LI-7500 | Campbell Scientific Inc | USA |
Photosynthetically active radiation | LI190SB | LI-COR | USA |
Air temperature | HMP45C | Vaisala | USA |
Air moisture | HMP45C | Vaisala | USA |
Soil temperature | DR | Campbell Scientific | USA |
Soil moisture | DR | Campbell Scientific | USA |
Parameters | Frequency (min) | Position (m Above Ground Level) | ||
---|---|---|---|---|
XLHT | QYZ | XSBN | ||
Ecosystem Respiration | 30 | 2.5 | 39.6 | 42 |
Gross Ecosystem Exchange | 30 | 2.5 | 39.6 | 42 |
Photosynthetically active radiation | 30 | 1.5 | 39.6 | 7 |
Air temperature | 30 | 1.5 and 2.5 | 1.6 and 39.6 | 4.2 and 42 |
Air moisture | 30 | 1.5 and 2.5 | 1.6 and 39.6 | 4.2 and 42 |
Soil temperature | 30 | 0.05, 0.1, 0.2, 0.5, and 1.0 (m below ground) | 0.05, 0.1, 0.2, 0.5, and 1.0 (m below ground) | 0.05, 0.1, 0.2, 0.5, and 1.0 (m below ground) |
Soil moisture | 30 | 0.05, 0.2, and 0.5 (m below ground) | 0.05, 0.2, and 0.5 (m below ground) | 00.05, 0.2, and 0.5 (m below ground) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Man, Z.; Che, S.; Xie, C.; Jiang, R.; Liang, A.; Wu, H. Effect of Climate Change on CO2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems. Int. J. Environ. Res. Public Health 2021, 18, 13056. https://doi.org/10.3390/ijerph182413056
Man Z, Che S, Xie C, Jiang R, Liang A, Wu H. Effect of Climate Change on CO2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems. International Journal of Environmental Research and Public Health. 2021; 18(24):13056. https://doi.org/10.3390/ijerph182413056
Chicago/Turabian StyleMan, Zihao, Shengquan Che, Changkun Xie, Ruiyuan Jiang, Anze Liang, and Hao Wu. 2021. "Effect of Climate Change on CO2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems" International Journal of Environmental Research and Public Health 18, no. 24: 13056. https://doi.org/10.3390/ijerph182413056
APA StyleMan, Z., Che, S., Xie, C., Jiang, R., Liang, A., & Wu, H. (2021). Effect of Climate Change on CO2 Flux in Temperate Grassland, Subtropical Artificial Coniferous Forest and Tropical Rain Forest Ecosystems. International Journal of Environmental Research and Public Health, 18(24), 13056. https://doi.org/10.3390/ijerph182413056