£

and Public Health

International Journal of
Environmental Research

Article

Quantitative Analysis of a Spatial Distribution and Driving
Factors of the Urban Heat Island Effect: A Case Study of
Fuzhou Central Area, China

Meizi You !, Riwen Lai "%, Jiayuan Lin ! and Zhesheng Zhu 2

check for

updates
Citation: You, M,; Lai, R;; Lin, J.; Zhu,
Z. Quantitative Analysis of a Spatial
Distribution and Driving Factors of
the Urban Heat Island Effect: A Case
Study of Fuzhou Central Area, China.
Int. J. Environ. Res. Public Health 2021,
18,13088. https://doi.org/10.3390/
ijerph182413088

Academic Editor: Nir Krakauer

Received: 20 October 2021
Accepted: 7 December 2021
Published: 11 December 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
youmeizi0305@163.com (M.Y.); Lance_Lyn@163.com (J.L.)

School of Forestry, Northeast Forestry University, Harbin 150000, China; swongs@163.com
*  Correspondence: filrw@fafu.edu.cn; Tel.: +86-0591-8370-9857

Abstract: Land surface temperature (LST) is a joint product of physical geography and socio-
economics. It is important to clarify the spatial heterogeneity and binding factors of the LST for
mitigating the surface heat island effect (SUHI). In this study, the spatial pattern of UHI in Fuzhou
central area, China, was elucidated by Moran’s I and hot-spot analysis. In addition, the study divided
the drivers into two categories, including physical geographic factors (soil wetness, soil brightness,
normalized difference vegetation index (NDVI) and modified normalized difference water index
(MNDWI), water density, and vegetation density) and socio-economic factors (normalized differ-
ence built-up index (NDBI), population density, road density, nighttime light, park density). The
influence analysis of single factor on LST and the factor interaction analysis were conducted via
Geodetector software. The results indicated that the LST presented a gradient layer structure with
high temperature in the southeast and low temperature in the northwest, which had a significant
spatial association with industry zones. Especially, LST was spatially repulsive to urban green
space and water body. Furthermore, the four factors with the greatest influence (4-Value) on LST
were soil moisture (influence = 0.792) > NDBI (influence = 0.732) > MNDWI (influence = 0.618) >
NDVI (influence = 0.604). The superposition explanation degree (influence (Xi N Xj)) is stronger
than the independent explanation degree (influence (Xi)). The highest and the lowest interaction
existed in ”soil wetness 1 MNDWI” (influence = 0.864) and “nighttime light N population density”
(influence = 0.273), respectively. The spatial distribution of SUHI and its driving mechanism were
also demonstrated, providing theoretical guidance for urban planners to build thermal environment
friendly cities.

Keywords: land surface temperature; urban heat island effect; spatial pattern analysis; driving
factors; Geodetector (Geographic Detector); hot-spot analysis

1. Introduction

Influenced by urbanization and industrialization, the global surface ecological struc-
ture saw great and profound changes in the past century [1]. The dramatic expansion of
urban built-up areas leads to changes in surface characteristics and increases the storage of
urban surface energy [2]. Concurrently, the perspective of urban population expansion is
pessimistic, with 58% of the world’s population expected to live in cities by 2050 (World
urbanization prospects, 2018) [3]. Of particular concern is that fact that 67~76% of global
energy and 71~76% of CO, emissions of global ultimate energy are consumed in city
systems [4]. Greenhouse gas emissions promote global warming and cause strong thermal
discomfort and inconvenience to the urban population, which increases the energy demand
for artificial indoor air cooling [5,6]. Finally, a vicious circle of energy consumption and
generation is built [7].
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The urban heat island (UHI) refers to the phenomenon of any area being consistently
hotter than the surrounding area, or the higher temperatures in built-up areas compared
with most rural surroundings [8]. In the era of rapid urbanization, the scope and intensity
of the UHI effect keeps increasing, and the types and scale of UHI occurrence also becomes
more complex and diversified [9]. Especially after the 20th century, the research on the
UHI effect has become a hot-spot with theoretical and practical significance [10]. Oke
proposed that urbanization produced at least two heat islands and divided the urban
atmosphere into two layers [11]. Among them, the urban canopy layer (UCL) is made
up of the “rough elements” of the city (mainly the air spaces between buildings up to
their roofs), governed by the processes on a microscopic scale. The urban boundary
layer (UBL) refers to the atmosphere significantly influenced by the friction of the earth’s
surface, thermal processes and evaporation, governed by the processes on a microscopic
scale [12]. The research of UHI is inseparable from data acquisition, so the selection of
observation methods is the fundamental problem of the research. The previous methods
include meteorological observation [13-15], numerical simulation [16], and remote sensing
monitoring [17]. Remote sensing monitoring allows for the relatively easy study of large-
scale and long-term series of temperature changes using multi-period image data, becoming
the critical technical means to study the UHI effect. This study focuses on the surface layer
heat islands (SLHI) which attracts more and more attention and all UHI mentioned below
refer to surface heat islands, unless otherwise noted. LST can quantitatively describe the
thermal behavior [18], so it can be used as a substitute for SUHI analysis [19].

For research urban climate, the analysis and understanding of the past is important to
predict the future trends and change directions [20,21]. Many scholars have studied the
spatio-temporal variation, spatial patterns, drivers, and mitigation measures of UHI. Since
then, UHIs have been examined across years, seasons and days, with most of the literature
concluding it reaches the peak in summer [22]. This phenomenon worsens every year and is
more pronounced at night [23,24]. As for the formation mechanism, more attention are paid
to land use/land cover (LULC), landscape index, and energy consumption [25-27]. The
correlation between soil wetness, soil brightness, and LST [28,29] has been demonstrated.
In addition, previous references also introduced urban form factors, such as sky view factor,
building density, and plot ratio [30]. According to the correlation between the driving
factors and LST, relevant strategies to mitigate the heat island effect are proposed [31,32].
Generally, urban green space and water body are the main cold islands of a city and play
an essential role in mitigating the UHI effect [33].

The structure and function of urban system exhibit heterogeneity and non-linearity
at the spatio-temporal scale. For instance, it was found that the cooling effect of green
roofs on pedestrians was negligible when the building height was increased [34]. However,
in another study, the cooling effect was demonstrated to be was 0.4~0.7 °C [35]. The
difference between the two studies may be due to the absence of urban microelements in
the mesoscale study model, which also have a great effect on LST. Therefore, it is necessary
to ensure that these indicators are meaningful at scale in understanding how the constraint
indicators affect the heterogeneity of UHI Sun et al. recruited the ordinary least squares
(OLS) regression model to discuss the impact of Ningbo urban form on LST under different
grid sizes and came to the conclusion that the interpretation degree of urban form was
positively correlated with grid size [36]. The study on the surface thermal environment
of Wuhan indicated that 500~650 m is the most appropriate analysis scale to accurately
describe the potential model of local LST [37].

The traditional mathematical and statistical models are well established [38], but
some of the models applied in UHI-influence factor studies do not take into account the
spatial autocorrelation of the LST, such as single or multiple linear regression and principal
component regression [39,40]. They are based on the assumption that the factors are
linear, and it is challenging to reflect the complex superposition effect and details of the
spatial distribution among drivers [41]. Quantifying the interaction of socio-economic
factors is another obstacle. Some scholars introduced geographically weighted regression
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(GWR) model to study the influence [42], which considered the spatial non-stationary
of LST. However, it is complex and susceptible to the change of bandwidth, resulting
in obvious differences in results [43]. Based on the principle of spatial stratification and
heterogeneity, the geographic detector detects the correlation of multi-factor variables and
the mechanism of its behavior result variables at the same spatial scale [44,45]. Geodetector
can directly quantify the influence of each factor on LST and clarify the types of interactions
among factors, which is conducive to grasping the spatial mechanism and understanding
the causes of spatial action. Geodetector model has simple parameter settings and wide
application scenarios compared with the GWR model [46-48]. In recent years, some
scholars choose geographic detector to detect the influencing factors of UHI. Hu et al.
recruited geodetector to detect the potential drivers of Major core, New District core, and
Industrial Park, respectively [49]. In addition, it turned out that the driving factors of LST
in each center are very different, showing a bilinear or non-linear enhancement relationship.
Zhao et al. clarified the driving factors of UHI in Xi’an built-up area from the natural and
socio-economic perspectives using geographical detectors, and the results showed that the
top three factors affecting LST are NDBI, NDVI, and SAVI [50]. Compared to UHI driver
analysis based on other models, the literature on geographic detectors is relatively sparse
in terms of choice of indicators.

There are numerous factors that affect LST. Studies on UHI in China are geographically
biased, mainly focusing on metropolises, such as Beijing, Shanghai, and Shenzhen [51-53],
with less research on the less developed coastal areas of southeast China. Fujian province
is the core area of the 21st Century Maritime Silk Road [54,55] and is facing many environ-
mental problems while undergoing rapid urbanization. How to coordinate the relationship
between urbanization and livable thermal environment construction is an unavoidable
challenge. Based on the above analysis, this study took Fuzhou, the capital of Fujian
province, as the study case to further deepen the spatial distribution, causes and mitigation
strategies of UHI by enriching the indicators. The relationship between the spatial pattern
of UHI and urban development was explained using hot-spot analysis and circle analysis,
based on the spatial autocorrelation of LST had been verified. The rest of the paper is
organized as follows. Section 2 introduces the study area, factor collected and describes
methodology. Section 3 displays the result of spatial analysis and driver analysis. The last
section discusses the contribution and future work, followed by conclusions.

2. Material and Methods
2.1. Study Scope: The Fuzhou Central Area, China

Fuzhou city is a crucial city of the West Coast Economic Zone in China, located in
25°15' N t0 26°39’ N and 118°08' E to 120°31’ E (Figure 1). The study area has a subtropical
monsoon climate with long summers and short winters. The annual average temperature
is 20.7 °C, and the temperature from August to October is higher than the annual average.
The main urban area of Fuzhou is the core area of production and life with the highest
level of urbanization. The study area includes Gulou district, Cangshan district, Taijiang
district, and Jin’an district (built-up areas), covering an area of 225 km?. Fuzhou is known
as one of the “Four Furnace Cities” in China [56]. It is urgent to find the driving factors
behind the heat island effect in Fuzhou, providing theoretical direction for mitigating urban
thermal environment.

2.2. Data Preparation

Landsat 8 OLI/TIRS (path 119/row 42) image was downloaded from the United States
Geological Survey (http:/ /earthexplorer.usgs.gov/ (accessed on 9 September 2019)). Imag-
ines with minimal cloud cover (less than 5%) had been subjected to a set of preprocessing
procedures, including radiometric calibration, atmospheric correction, and image registra-
tion. The administrative divisions and road network were obtained from Fuzhou Urban
and Rural Planning Bureau (http://ghj.fuzhou.gov.cn/ (accessed on 10 September 2019)).
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Figure 1. The location of the study area: Fuzhou central area, China.

2.3. Methodology
2.3.1. Retrieval of LST from Landsat Images

The thermal infrared sensor of the Landsat-8 satellite has two thermal bands, band
10 and band 11. The USGS (United States Geological Survey) claimed that it is not rec-
ommended to use the split-window algorithm (SW) based on two bands to retrieve the
LST due to the fact that the parameter setting of the band 11 is unstable. Previous single
band inversion algorithms mainly include the Radiation Transport Equation algorithm
(RTE), the Single-Channel algorithm (SC), and the Mono-Window algorithm (SW). Yu
et al. found that, in Fuzhou, the accuracy of RTE algorithm based on band 10 is higher
than the other two methods [57]. RTE is a traditional algorithm based on the atmospheric
radiation transfer model, calculating the surface temperature according to the composition
of thermal radiation energy received by satellite thermal infrared sensors. The band 10 of
Landsat-8 images was used as in Equations (1)—(3):

Ry = [e-P(T.)+(1—¢)-R)]-T+R". 1)

In the formula, (R, ) is the thermal radiation intensity of the wavelength (A) received
by satellite sensor. (¢) represents the land surface emissivity and P(T;) is the ground
radiance. (1) is atmospheric transmissivity. RT and R are known as atmospheric upward
radiance and downward radiance, respectively. (7), RT, and R | can be estimated by the
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Atmospheric Correction Parameter Calculator accessed on NASA (http:/ /atmcorr.gsfc.
nasa.gov/ (accessed on 9 September 2019)). Then, the radiation intensity of the blackbody
with the same surface temperature in the thermal infrared band (P(Ts)) can be obtained by
Equation (2):

P(Ts) = [Ry—R'—(1—¢) R, -1]/(e- 7). )

According to the inverse function of Planck’s formula, the real surface temperature
(Ts) can be obtained as follows:

In Equation (3), K; and Kj are constants and indicate the preset constant before the
satellite launch, which are presented in the metadata MTL file query. For the Landsat-8
TIRS 10th, K; = 774.8853 W -m2-sr ! - um~1, K, = 1321.0789.

2.3.2. Spatial Analysis of the LST

To understanding the spatial pattern of UHI in Fuzhou, a three-step spatial analysis
was employed. As the Tobler’s First Law of Geography states, everything is related to
each other, and things that are close are more related to each other [58]. The geospatial
dependence phenomenon is known as spatial autocorrelation, having a significant effect
on the spatial distribution pattern of LST and the inherent driving forces utilizing statistical
analysis. The global spatial autocorrelation analysis of this study is mainly based on
Moran’s I, reveals the aggregation of LST spatial layout as a whole, and indicates whether
LST has spatial autocorrelation as follows:

nY X7 qwij(xi — %) (x; — X)

(Zznz 1 Z/n: 1 wi,j) Yo q1(xi—%)

Moran's I =

/ )

d;’g
Wij = =, —p’
’ n n p
Zi:12j:1dij

where x; and x; are the LST at the location of grid i and j. w; ; is the spatial weight as the
inverse of the distance d;; among locations i and j. We relied on the “Moran index” function
in ArcGIS 10.5 for spatial weight matrix calculation, and the concept of spatial relationship
can be divided into three categories: inverse distance, fixed distance band, and zone of
indifference. The inverse distance reflects the greater influence of nearby neighboring items
on the calculation of target items compared to distant elements. Considering the strong
spatial dependence of LST, we chose the more appropriate inverse distance to construct the
weights, where distance is the Euclidean distance. p is the power of the distance, which
is set to 1 in this paper. n is the number of grids. All the spatial weights are aggregated.
The value range of Moran’s I is [—1, 1]. A Moran’s I value > 0 and not close to 0 indicates
that the data are spatially positively correlated, the value close to 0 indicates that the data
are not correlated, and the value < 0 and not close to 0 indicates that the data are spatially
negatively correlated.

Moran’s I can be used to judge the spatial non-stationarity of LST, but cannot indicate
the range of spatial hot-spots. The research still needs the statistical significance identifi-
cation method to verify whether the spatial autocorrelation is significant enough for the
whole research scope of aggregate space units. GetisOrd G/ (hot-pot analysis) reveals the
significant high-value and low-value clusters in the spatial region and identifies the spatial
distribution of LST cold and hot-spots in the region. Its formula is [59]:

Q)

Z?: 1 wi,jX]' - Xz;q: 1 wi,j

2
IVE (X)z)\/ - sy (5= )

n
i
n n—1

1

, (6)

(
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where Gi* statistic is a z-score. The higher the z-score, the tighter the clustering of hot-spots
(high values). The lower the z-score, the tighter the clustering of cold-spots (low values).
Here, x; and x; are the LST at the location of grid i and j. w; ; is the spatial weight matrix,
and X is the mean of LST.

2.3.3. Selection of UHI Drivers

UHl is a thermal environmental problem caused by many factors. In this study, they
were classified into two types: geographical factors and socio-economic factors. Among
geographical factors, NDBI, NDVI, MNDWI, soil brightness and soil wetness are regarded
as the main drivers of LST [60,61]. The water density indicator and vegetation density
indicator were designed in this study to investigate the influence of area index density
on the cooling effect of both. The urban parks, the socio-economic factors, are often a
mixture of water bodies and green space patches, so they can be studied as a separate
indicator [62,63]. Fuzhou is consolidating and upgrading its park resources with the
aim of becoming a ‘park city’. The addition of park indicators will allow for a better
assessment of the ecological role played by parks in mitigating UHI. Population, roads,
and nighttime lighting are all important indicators of a city’s socio-economic development
and are, therefore, included in our study. On the basis of previous research results and
combined with our objectives, 11 factors were finally selected for the study of the driving
factors of UHI, as shown in Table 1.

Table 1. Drivers of land surface temperature.

Type Driving Factor Abbreviation Formulas Sources
Road Density RDD RDD = Lgoad/ Areagia https://www.openstreetmap.org/
Socio- . Population Density PPD - https://www.worldpop.org/
051ofaecct% r;omlc Nighttime Light NL - https://www.ngdc.noaa.gov/eog/ viirs/
Park Densit PD PD = Area,, i/ Areaqiq https:/ /www.openstreetmap.org/
- sy p 3 P P p-org
Normalized Difference NDBI NDBI = Float(b6 — b5)/Float(b6 + b5) [64]
NO{,f:ga;gfior?Iiffdegime NDVI NDVI = Float(b5 — bd)/Float(b5 + b4) [65]
Geographical ~ Modified Normalized MNDWI MNDWI = Float(b6 — b3)/Float(b6 + b3 [66]
srap. Difference Water Index
factor S TCB = 0.3029 x b2 +0.2786 x b3 + 0.4733 x
Soil Brightness SB b4 + 0.5599 x b5 + 0.508 x b6 + 0.1872 x b7 [67]
. TCW = 0.1511 x b2 + 0.1973 x b3 + 0.3283 x
Soil Wetness sw b + 03407 x b5 — 0.7117 x b6 — 0.4559 x b7
Water Density WD WD = Areayarer / Areag http:/ /www.gscloud.cn/
Vegetation Density VD VD = Areaye. / Areagia http://www.gscloud.cn/

bl,b2, b3 ... b7 represent seven bands of Landsat-8 remote sensing image. Website accessed on 5 December 2021.

2.3.4. Scale Section and Buffer Analysis

Both the spatial characteristics of the LST and the performance of drivers are scale-
dependent [68,69]. With the change of observation scale, patterns and driving forces
may manifest in different ways. To ensure the rationality of the subsequent study, we
selected an area (Cangshan district) that is more than half of the total study area for pre-
experimentation as the optimal scale. The range of grid scales was 100, 200, 300, 400,
500 m. The scale of 1 km was not chosen, considering the total size of the study area [70],
because the large size of the grid would swallow up much of the indicator information,
and the small sample size would affect the accuracy of the results. Pre-experimental
results are presented in the Appendix A. The experimental results show that LST and
related indicators are best interpreted at the 500 m grid scale, so this is taken as the spatial
heterogeneity cell. In addition, the major urban areas of Fuzhou City present a monocentric
circle development pattern. Therefore, from the geometric center of the study area, an
equidistant multi-ring buffer with 18 concentric circles was carried out outwards for 500 m.
The mean value and standard deviation of G} within each circle were calculated separately.
In addition, the spatial distribution characteristics of UHI circles and inter-circle differences
exhibited in the urbanization process were analyzed.
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2.3.5. Geodetector Analysis

The ArcGIS 10.5 was used to create a 200 x 200 m fishnet, and the attribute values
of the 11 drivers in the grid were calculated using the extraction analysis tool. Since
the application of Geographical detector requires independent variables to be categorical
variables, the attribute values of the factors were reclassified. To maximize the accuracy of
the study, we finally chose the natural break method [71] after comparing the results of
different discretization methods with the highest interpretation. The results are shown in
Figure 2.
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Figure 2. Spatial distribution of 11 driving factors in the study area.

Based on the data spatialization, the factor detector of the geographical detector was
recruited to quantitatively analyze each influencing factors to get their relative strength
in affecting the spatial pattern of UHI. The data processing was performed using the free
Geographical Detector software package (http://www.geodetector.cn/ (accessed on 10
February 2021)), and its model is as follows:

L 2
_1 N, W
LNty g SSW )

1= N SST”

where Equation (6) is used to judge to what extent factor X explains the spatial hetero-
geneity of LST (y), h € (1,2,3...L), and L is the number of layers (categories) of factor X.
The g-Value can test the heterogeneity between layers, and, when the g-Value is larger, the
number of layers of factor X is better [72]. We manually repeatedly tested and compared
the g-Values of factor to finally obtain the number of layers for the best effect (when g-Value
is the largest). For example, NDVI has the greatest degree of g-Value when the number of
layer (category) is 8. Nj, and N are the number of units in layer / and the whole area, and
(7,3 and ¢ are the variance of layer  and the y value of the whole region. SSW and SST are
in the sum of squares and the total sum of squares.

The interaction between two factors was analyzed using the interaction detector
and the g value of the interaction between two factors was calculated. There are five
types of interaction: non-linear reduction, single-factor non-linear attenuation, bi-factor
enhancement, independent, and non-linear enhancement. The regression model can
only judge the multiplication relationship between two factors. The model we recruited
has a clearer indication for the strength, direction, linear, and non-linear relationship of
interaction [73].
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3. Results
3.1. Spatial Distribution Characteristics of the LST

As shown in Figure 3, the average temperature, maximum temperature, and minimum
temperature were 33.660 °C, 40.968 °C, and 26.319 °C, respectively. Based on Equation (4),
the Moran’s I value for the LST of the study area was 0.900, thus being close to 1. In
addition, the Z value was 179.287. At the p = 0.01 level, the spatial distribution of LST
had significant spatial autocorrelation. The similarity and variability of LST over spatial
units were measured using Gi* analysis, and the results are shown in Figure 4. The Gi*
analysis at 90%, 95%, and 99% confidence intervals presented that the spatial distribution
of LST had a different level of hot-spots and cold-spots at the time point of this study. The
hot-spots were mainly concentrated in the south central and east and spatially developed
in succession, showing a clear spatial aggregation trend. As a whole, there was a trend of
gradient increase from northwest to southeast.

D The 3rd Road Ring Boundary

o 1 2 4 5 8 Land Surface Temperature

. high : 449362
- low : 26.2288

Figure 3. Spatial distribution map of LST.
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Cold Spot - 90% Confidence
Not Significant
Hot Spot - 90% Confidence
.| Hot Spot - 95% Confidence
[ Hot Spot - 99% Confidence

Figure 4. Hot-spot analysis of LST.

The results of Gi* mean and standard deviation are shown in Figure 5. We represent
different circle layers by the distance from the urban center. For example, the first circle was
0.5 km from the center, and the 18th circle was 9 km in the study area. The average Gi* value
firstly increases and then decreases from inside to outside, indicating that a higher level of
urban activity is gathered near the urban center point with the continuous advancement
of urbanization. The maximum value occurs at 6 km from center, indicating the strongest
hot-spot clusters in this circle. The average value of Gi* tends to decrease at 1 km, 4 km,
and 5 km, since the circle contains large mountains with more cold-spot clusters. The
difference of mean Gi* values between adjacent circles was calculated to understand the
inter-circle differences, and the results were in the range of [-0.746, 0.548], implying that
the difference between adjacent circles is relatively obvious. The Gi* standard deviation
difference within 4 km from the center is smaller, indicating that there is less difference in
the directional distribution of LST within the circle. The difference is larger after 4 km, and
it suggests that the LST distribution in this range has significant directional difference.
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Figure 5. Gi* statistics of each buffer zone in the study area.

3.2. Impact of a Single Influence Factor on LST

The effects (g-Value) of 11 potential drivers on LST were analyzed using the ge-
ographical detector. As shown in Table 2, all 11 factors had a certain influence on
LST with P < 0.01. The road density was the exception with P < 0.05. An evaluation
of the single influence factor was ranked by the g-Value as SW (influence = 0.792) >
NDBI (influence = 0.732) > MNDWI (influence = 0.618) > NDVI (influence = 0.604)
> SB (influence = 0.565) > WD (influence = 0.326) > VD (influence = 0.236) > RDD
(influence = 0.191) > NL (influence = 0.144) > PPD (influence = 0.081) > PD (influ-
ence = 0.076). The results showed that soil wetness was the main constraint on the
spatial distribution of LST. The second is the building index. The transition from natural
surface to impervious surface is a significant feature of urbanization, indicating land
urbanization affects LST to some extent. MNDWI, NDVI, WD, and VD all have a high
influence on LST, which proves the importance of water bodies and vegetation in LST
regulation. Overall, natural geographic factors have more influence on LST than socio-
economic factors. In terms of socio-economic factors, the g-Value of road density and
nighttime light is greater than 10%, indicating a medium influence on LST. In addition,
the g value of population density and park density is less than 10%, indicating a low
influence on LST.

Table 2. Detection results of a single driving factor.

.. Level of Impact Significance Impact

Driving Factors (q-Value? gLevel Ordl(:ring
SW 0.792 0.01 1
NDBI 0.732 0.01 2
. MNDWI 0.618 0.01 3
Geographical NDVI 0.604 0.01 4
factor SB 0.565 0.01 5
WD 0.326 0.01 6
VD 0.236 0.01 7
RDD 0.191 0.01 8
Socio-economic NL 0.144 0.01 9
factor PPD 0.081 0.05 10
PD 0.076 0.01 11

3.3. Interaction of Driving Factors on LST

Factor interactions were probed using the Geographical Detector. In addition, the
results are shown in Table 3. The interaction between the factors is bi-factor enhance-
ment or non-linear enhancement. In descending order, the influence of interaction was
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“SW N MNDWI” (0.864) > “SW N NL” (0.862) > NDVI N SW (0.856) > SB N NDBI (0.853).
The influence of PPD N PD is the lowest, which is down to 0.215, followed by NL N PD
(0.273) < PPD N NL (0.292) < RDD N PD (0.296). These results showed that the interaction
between soil wetness and MNDWI had the most significant effect on the spatial distri-
bution of LST. The relationship between population density and park density had the
lowest. The interaction of any two factors on the change in LST is greater than the effect of
a single factor. In addition, the superposition of geographical factors is greater than that of
socio-economic factors.

Table 3. The interaction of multiple factors.

TCB MNDWI NDBI  NDVI TCW RDD PPD VD WD NL PD
TCB 0.565
MNDWI 0.826 P 0.618
NDBI 0.853b 0.831b 0.733
NDVI 0.836° 0764  0.828P 0.604
TCW 0.809° 0864 0848 0.856° 0.792
RDD 0.731P 0681 0.800° 0674 0851P 0.191
PPD 0.699™ 0683 0779P  0647P  0819° 0.335" 0.081
VD 0.807™ 0730 0.799P  0707P  0.849°  0488™  0.356™ 0.236
WD 0590°P 0726  0827P 079" 0817° 0458  0395P  0.697" 0.327
NL 0770™ 0679 0777 0668P 0862  0399™  0.202™  0434™  0.503" 0.145
PD 0579 0665 0739P  0661° 0802° 0296™ 0215™ 0365" 0357P 0273 0.076

Superscript letters mean the type of interaction. “b” denotes bi-factor enhancement (Pp, i (X1 N X») > Pp, g(X1) and Pp, y(X2)), “n”
denotes non-linear enhancement (Pp, g (X1 N X2) > Pp, g(X1) + Pp, g (X2)).

4. Discussion and Prospect
4.1. The Spatial Pattern Analysis of LST

The spatial distribution of LST in the major urban areas of Fuzhou was analyzed using
hot-spot analysis, and it was concluded that the LST distribution pattern was high in the
southeast and low in the northwest. The significant temperature gradient relationship of
UHI effect was basically consistent with previous studies [73]. The standard deviation
of Gi* is similar at 4 km and then rises, indicating that the LST phenomenon between
circles is small within 4 km from the urban center. LST is largely influenced by urban
functions and activities, so the urbanization level in this range is similar. The large standard
deviation of Gi* within the circles indicates that the UHI effect varies widely in different
directions, in line with the trend of the city developing to the south and east. There are few
studies using hot-spot analysis combined with circle analysis to study urban development
directions and UHI effects, which is available to multi-core cities or multi-cities researches
in the future. In addition, this study only investigated the UHI effect in autumn 2019,
lacking consideration of seasonality and spatio-temporality [74]. The spatial distribution
and driving differences of urban heat islands can be compared using multi-period remote
sensing data in the future.

Most of the hot-spot clusters are industrial zones, which indicate that urban indus-
trialization might exert a more significant impact on LST. Generally speaking, given the
ongoing trends of intensive industrial activities and the goal of industrial clusters, it is
predictable that future industrial parks and high-tech parks may be further developed
in succession, which will bring a greater test to the urban thermal environment [75]. In
addition, the sub-hot-spots are mainly located around the hot-pots with a less fragmented
distribution. They are high-density residential areas and large commercial complexes,
which means that the lives of urban residents are also closely related to the UHI effect. The
contiguity of hot-spots and sub-hot-spots indicates the intensification and centralization of
the UHI phenomenon. Compared with hot-spots, the distribution of cold-spots is more
affected by the urban geographical environment, mainly around water bodies and urban
parks, and the spatial structure is a combination of belt and block. The results are consistent
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with the previous references, i.e., large green spaces and water areas are essential sources
of cooling sources in cities [76].

4.2. The Impact of a Single Factor on LST

The results of single-factor influence on LST show that UHI effect is significantly spa-
tially associated with urban built-up areas and spatial exclusion from urban green spaces
and water bodies. It is consistent with previous studies concluding that LST was negatively
correlated with green space and water bodies, while positively correlated with NDBI [77,78].
Soil wetness had the greatest influence on LST among single factor (influence = 0.792),
supporting the theory that soil moisture is an important factor influencing microclimate
which is verified through numerous experiments [79,80]. Soil wetness alters the evapotran-
spiration, albedo, and thermal conductivity of soil, thus affecting the local energy balance
at the surface [81].

MNDWTI has a stronger influence on LST than NDVI, which is contrary to Tan and Li’s
conclusion from studying the LST in Beijing [82], where the cold island effect of vegetation
is better than water bodies. This may be because the local background climate has a strong
promotion effect on the cooling effect of urban green vegetation [83,84], while Fuzhou is
rich in water resources with has a stronger constraint effect.

Furthermore, WD and VD have much lower explanatory power for LST than MNDWI
and NDVI [85]. It was demonstrated that the cooling effect of water bodies and veg-
etation is related to the density. However, meanwhile, other internal factors, such as
three-dimensional green quantity and vegetation structure, also influence the cooling effect
of LST [86]. It is worth noting that parks have less impact on LST. The result was probably
decreased due to the limited precision of the data source, with some portions of street
parks failing to be fully extracted. On the other hand, it shows that the cooling effect of the
park is still limited at the urban scale, with a cooling range of about 500 m [87].

In addition, the accuracy of data sources limited by socio-economic factors, such as
the lack of data on some feeder roads and subtle lights, also reduces the influence of socio-
economic factors to some extent. With the rise of big data, the number of available points of
interest (POIs) can reflect the intensity and types of surface anthropogenic heat sources at an
appropriate grid size [88,89] and, thus, has the potential to be useful data for studying the
driving mechanisms of UHI effect. It also offers new possibilities for describing processes
and patterns of human-environment interactions at the microenvironment scale.

4.3. Interaction of LST Drivers

The results of factors interaction detection show that the factor interactions are bi-
factor enhancements or non-linear enhancements. The interactions of socio-economic
factors mostly non-linearly enhanced, such as “Park Density N Nighttime Light”, “Road
Density N Population Density”, and “Nighttime Light N Population Density”. In the
study of the influence of single factor on LST, the natural geographical factor is stronger
than the socio-economic factor. However, the type of interaction relationship between
factors is also noteworthy. The socio-economic self-interactions are mostly non-linearly
enhanced, and its influence on UHI phenomenon increases exponentially. The single-factor
effects of Population Density and Road Density are, respectively, 0.191 and 0.081, and
their interaction is 0.335, which is about 1.7~4 times of the single-factor effect. In order to
mitigate the UHI phenomenon, it is necessary to control the density of urban development
and the superimposed effects of large-scale socio-economic factors.

The influence of the interaction between Water Density and Vegetation Density on
LST is 2~3 times higher than that of the single factor. The maximizing the superposition
of blue and green spaces can co-promote the development of cold islands and integrate
cold island resources for cold island networks. In conclusion, we should attach impor-
tance to multifactor coupling analysis to promote and strengthen the research on urban
cooling effects.



Int. J. Environ. Res. Public Health 2021, 18, 13088 14 of 19

This study examined the relationship between LST and its influences at a single scale,
but its spatial distribution and interactions are scale-dependent. UHI impact detection
based on scale effects is necessary in the future study. Meanwhile, inconsistent results
of LST-greenland relationship studies emerged in previous studies with differences in
statistical methods and geographical scales. For example, Zhou et al. reported that the
impact of green space coverage on may be greater in larger geographic units [90], but Kong
et al. suggested the opposite. Therefore, it is necessary to assess how these effects vary at
different grid scales [91].

5. Conclusions

This study used numerical index modeling, hot-spot analysis, geographical detec-
tors, and other methods to analyze the spatial characteristics, circle structure, and the
independent and superimposed effects of multiple driving forces of the UHI effect in
Fuzhou central area. In addition, the corresponding driving mechanisms and superim-
posed relationships through the spatialization of indicators were also analyzed based on
remote sensing data, high-precision vector data, and other multi-source spatial data. The
conclusions are as follows.

The spatial heterogeneity of LST is remarkable, showing a spatial distribution pattern
of low in the northwest and high in the southeast. The spatial distribution of UHI is
closely related to the production and life of urban residents. The hot-spots appeared in
clusters, mostly in industrial zones. The sub-hot-spots were high-density residential areas
and commercial complexes. In addition, the cold-spots were mainly large urban green
areas and water bodies. LST is greatly influenced by urban functions and activities. The
stratification analysis reveals the relationship between urban development and the UHI
phenomenon. Heat island differences between adjacent circles reflect the spatial structure of
the urbanized circles. The differences in the central circles (within 4 km of the urban center)
suggest that contiguous urban expansion is likely to be accompanied by contiguous UHI
development, resulting in the homogenization of heat island patches. The difference of UHI
within the circle reflects the difference of urban development direction, which indicates that
the connectivity and sprawl of heat island patches are closely related to urban development
direction. Therefore, we suggest that urban development density should be controlled to
avoid large-scale contiguous construction of residential and commercial areas. In addition,
adding “cold-spots” in the central area and placing isolation zones at the boundaries of
each functional group could disperse the heat island areas and indirectly adjust human
activities from individual areas to multiple areas.

Both the natural geographic factors and socio-economic factors selected in this study
exert a certain influence on the UHI effect. In addition, the influence of natural geographic
factors is generally greater than socio-economic factors, among which the top four factors
are: soil wetness (influence = 0.792) > NDBI (influence = 0.732) > MNDWI (influence = 0.618)
> NDVI (influence = 0.604). It was concluded that mitigation of the heat island effect can
be achieved by increasing urban vegetation coverage and soil moisture. With the limitation
of urban land, it is difficult to add large green areas and water bodies. Therefore, more
attention should be paid to the conservation of existing urban cold sources.

The interaction between factors are bi-factor enhancement or non-linear enhancement,
and superimposed influence (4-Value) is within the range of [0.215, 0.864]. The interaction
of socioeconomic factors increases non-linearly. The socio-economic factors are human
disturbance to urban base environment, especially in Fuzhou, with a complex spatial
pattern of hills and water. It is, therefore, recommended that the superposition of factors be
taken into account in planning: integrating blue and green resources to form a composite
cold island. The degree of urban development next to the cold islands should be controlled,
and green areas cooling corridors should be built to maximize the efficiency of the cold
islands and eventually form a cooling network.

Compared with the single factor correlation analysis, the analysis of the urban heat
island effect and the superimposed effect of the “natural geographical + socio-economic”
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multi-drivers, with the spatial heterogeneity, offers systemic and scaling implications are
taken into account. Quantifying influence of each important factor on the urban heat
island effect at the urban scale and exploring its interaction are of practical significance
and guidance to explain the mechanism of the urban heat island effect and to adjust the
technical strategies of urban planning. The superimposed effect of multiple driving factors
can be applied to urban planning and management. According to the positive and negative
effects of the factors on LST, the combination of abatement and enhancement can be used
to systematically mitigate the urban heat island effect.
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Appendix A. Optimal Scale Pre-Experiment

Table A1. Single-Factor optimal scale detection.

Geographical Factor Socio-Economic Factor

Net Size NDBI MNDWI NDVI RDD PPD NL

X1 X2 X3 X4 X5 X6
100 m x 100 m g-Value 0.571 0.540 0.557 0.169 0.030  0.113
p-Value 0.000 0.000 0.000 0.000 0.000 0.000
200 m x 200 m g-Value 0.571 0.584 0.596 0.173 0.032  0.123
p-Value 0.000 0.000 0.000 0.000 0.000  0.000
300 m x 300 m g-Value 0.681 0.645 0.641 0.176 0.039 0.136
p-Value 0.000 0.000 0.000 0.000 0.000  0.000
400 m x 400 m g-Value 0.653 0.615 0.634 0.179 0.041 0.135
p-Value 0.000 0.000 0.000 0.000 0.004 0.000
500 m x 500 m g-Value 0.728 0.658 0.642 0.185 0.057  0.137

p-Value 0.000 0.000 0.000 0.000 0.041 0.000
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Table A2. Optimal scale detection of factor interactions.

Geographical Factor Socio-Economic Factor
Net Size NDBI MNDWI  NDVI RDD PPD NL
X1 X2 X3 X4 X5 X6
X1 0.571
X2 0.683 0.540
X3 0.681 0.617 0.557
100m x100m 0.650 0.682 0.630 0.169
X5 0.624 0.681 0.601 0.358 0.030
X6 0.617 0.678 0.605 0.384 0.105 0.113
X1 0.571
X2 0.671 0.584
X3 0.675 0.659 0.596
200m x 200m ., 0.640 0.617 0.716 0.173
X5 0.626 0.605 0.664 0.348 0.032
X6 0.622 0.609 0.683 0.378 0.108 0.123
X1 0.681
X2 0.775 0.645
X3 0.770 0.710 0.641
300m x 300m ., 0.744 0.654 0.728 0.176
X5 0.696 0.665 0.670 0.345 0.039
X6 0.704 0.660 0.698 0.381 0.116 0.136
X1 0.653
X2 0.747 0.615
X3 0.749 0.694 0.634
400m x 400m ., 0.704 0.621 0.717 0.179
X5 0.681 0.625 0.654 0.358 0.041
X6 0.682 0.620 0.686 0.380 0.110 0.135
X1 0.728
X2 0.815 0.658
X3 0.813 0.758 0.642
500m x 500m 0.778 0.664 0.736 0.185
X5 0.732 0.667 0.674 0.354 0.057
X6 0.731 0.658 0.706 0.388 0.117 0.137
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