Clogging and Water Quality Change Effects of Typical Metal Pollutants under Intermittent Managed Aquifer Recharge Using Urban Stormwater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filter Media and Recharge Water
2.2. Experimental Setups and Experimental Schemes
2.3. Hydraulic Conductivity
2.4. Transport of Pollutants in the Sand Column
3. Results and Discussion
3.1. Flow and Transport of Typical Metal Pollutants under Intermittent MAR
3.2. Retention of Typical Metal Pollutants under Intermittent MAR
3.3. Interaction of Clogging and Water Quality Change under Intermittent MAR
3.4. Changes of Environmental Factors in the Sand Column
3.5. Water Content
3.6. Redox Potential
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dillon, P.; Escalante, E.F.; Megdal, S.B.; Massmann, G. Managed aquifer recharge for water resilience. Water 2020, 12, 1846. [Google Scholar] [CrossRef]
- Shannak, S.A.; Jaber, F.H.; Lesikar, B.J. Modeling the effect of cistern size, soil type, and irrigation scheduling on rainwater harvesting as a stormwater control measure. Water Resour. Manag. 2014, 28, 4219–4235. [Google Scholar] [CrossRef]
- Dillon, P. Future management of aquifer recharge. Hydrogeol. J. 2005, 13, 313–316. [Google Scholar] [CrossRef]
- Song, Y.; Du, X.; Ye, X. Analysis of potential risks associated with urban stormwater quality for managed aquifer recharge. Int. J. Environ. Res. Public Health 2019, 16, 3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mankad, A.; Walton, A.; Alexander, K. Key dimensions of public acceptance for managed aquifer recharge of urban stormwater. J. Clean. Prod. 2015, 89, 214–223. [Google Scholar] [CrossRef]
- Dillon, P.; Toze, S.; Page, D.; Vanderzalm, J.; Bekele, E.; Sidhu, J.; Rinck-Pfeiffer, S. Managed aquifer recharge: Rediscovering nature as a leading edge technology. Water Sci. Technol. 2010, 62, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- Sakthivadivel, R. The groundwater recharge movement in India. In The Agricultural Groundwater Revolution: Opportunities and Threats to Development; International Water Management Institute: Colombo, Sri Lanka; CAB International: Wallingford, UK, 2007. [Google Scholar]
- Bari, N.; Hossain, I.; Miah, S.U. Development of stormwater pretreatment system for managed aquifer recharge in water-stressed Barind Tract. Arab. J. Geosci. 2021, 14, 1–11. [Google Scholar] [CrossRef]
- Pavelic, P.; Dillon, P.; Barry, K.; Herczeg, A.; Rattray, K.; Hekmeijer, P.; Gerges, N. Well clogging effects determined from mass balances and hydraulic response at a stormwater ASR site. In Proceedings of the Third International Symposium on Artificial Recharge of Groundwater, Amsterdam, The Netherlands, 21–25 September 1998; Balkema: Rotterdam, The Netherlands, 1998; pp. 61–66. [Google Scholar]
- Selvakumar, T.; Ganesan, M. Reclaimed water recharge: A review of water quality improvement during column studies of soil aquifer treatment (SAT). Indian J. Innov.Dev. 2014, 3, 35–44. [Google Scholar]
- Assmuth, T.; Simola, A.; Pitkänen, T.; Lyytimäki, J.; Huttula, T. Integrated frameworks for assessing and managing health risks in the context of managed aquifer recharge with river water. Integr. Environ. Assess. Manag. 2016, 12, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Du, X.; Yang, Y.; Ye, X. Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge. J. Environ. Sci. 2012, 24, 1418–1424. [Google Scholar] [CrossRef]
- Pavelic, P.; Dillon, P.J.; Barry, K.E.; Vanderzalm, J.L.; Correll, R.L.; Rinck-Pfeiffer, S.M. Water quality effects on clogging rates during reclaimed water ASR in a carbonate aquifer. J. Hydrol. 2007, 334, 1–16. [Google Scholar] [CrossRef]
- Zaidi, M.; Ahfir, N.-D.; Alem, A.; El Mansouri, B.; Wang, H.; Taibi, S.; Duchemin, B.; Merzouk, A. Assessment of clogging of managed aquifer recharge in a semi-arid region. Sci. Total Environ. 2020, 730, 139107. [Google Scholar] [CrossRef]
- Maliva, R.G. Managed aquifer recharge: State-of-the-art and opportunities. Water Supply 2015, 15, 578–588. [Google Scholar] [CrossRef]
- Du, X.; Wang, Z.; Ye, X. Potential clogging and dissolution effects during artificial recharge of groundwater using potable water. Water Resour. Manag. 2013, 27, 3573–3583. [Google Scholar] [CrossRef]
- Ye, X.; Cui, R.; Du, X.; Ma, S.; Zhao, J.; Lu, Y.; Wan, Y. Mechanism of suspended kaolinite particle clogging in porous media during managed aquifer recharge. Ground Water 2019, 57, 764–771. [Google Scholar] [CrossRef]
- Cui, R. Study on Clogging Mechanism of Porous Media in Groundwater Artificial Recharged Based on Model Microorganism of Pseudomonas Aeruginosa. Ph.D. Thesis, Jilin University, Changchun, China, 2020. (In Chinese). [Google Scholar]
- Zhang, H.; Ye, X.; Du, X. Laws and mechanism of the Fe (III) clogging of porous media in managed aquifer recharge. Water 2021, 13, 284. [Google Scholar] [CrossRef]
- Robert, P.; Shirley, C.; Richard, F. Groundwater contamination potential from stormwater infiltration practices. Urban Water 1999, 1, 217–236. [Google Scholar]
- Ozutsumi, T.; Kogure, M.; Niibori, Y.; Chida, T. Fundamental study on transport model for radionuclides under unsaturated condition around near-surface underground. MRS Adv. 2020, 5, 223–232. [Google Scholar] [CrossRef]
- Xia, L.; Zheng, X.; Shao, H.; Xin, J.; Peng, T. Influences of environmental factors on bacterial extracellular polymeric substances production in porous media. J. Hydrol. 2014, 519, 3153–3162. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, J.; Zhang, L.; Yu, G. Temperature effect mechanism and compensation method of EC-5 soil moisture sensor. Trans. Chin. Soc. Agric. Mach. 2010, 41, 168–172. [Google Scholar]
- Zhang, W.; Brown, G.O.; Storm, D.E. Enhacement of heavy metals retention in sandy soil by amendment with fly ash. Trans. ASABE 2008, 51, 1247–1254. [Google Scholar] [CrossRef]
- Ding, Z.; Hu, X.; Morales, V.L.; Gao, B. Filtration and transport of heavy metals in graphene oxide enabled sand columns. Chem. Eng. J. 2014, 257, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Acheampong, M.A.; Lens, P.N. Treatment of gold mining effluent in pilot fixed bed sorption system. Hydrometallurgy 2014, 141, 1–7. [Google Scholar] [CrossRef]
- Naz, S.; Anjum, M.A.; Ejaz, S.; Ali, S.; Saddiq, B.; Sardar, H.; Haider, S.T.-A. Sewage wastewater reclamation with sand column filter and reduction of heavy metal accumulation in tomato and okra. Environ. Sci. Pollut. Res. 2021, 28, 45962–45970. [Google Scholar] [CrossRef] [PubMed]
- Page, D.; Ayuso-Gabella, M.N.; Kopac, I.; Bixio, D.; Dillon, P.; de-Marcay, M.S.; Genthe, B. Risk assessment and risk management in managed aquifer recharge. Water Reclam. Technol. Safe AquiferRecharg. 2012, 6, 351–374. [Google Scholar]
- Martin, R. Introduction. In Clogging Issues Associated with Managed Aquifer Recharge Methods; IAH Commission on Managing Aquifer Recharge: Adelaide, Australia, 2013. [Google Scholar]
- Dillon, P. Ground water replenishment with recycled water. Ground Water 2009, 47, 492–495. [Google Scholar] [CrossRef]
- Vanderzalm, J.L.; Page, D.W.; Barry, K.E.; Scheiderich, K.; Gonzalez, D.; Dillon, P.J. Probabilistic approach to evaluation of metal/loid fate during stormwater aquifer storage and recovery (ASR). Clean—Soil Air Water 2016, 44, 1599–1766. [Google Scholar] [CrossRef]
- Anwar, A.; Sembiring, A.; Irawan, A.P. Analysis of the potential of crust formation and corrosiveness in the Way Rilau PDAM lampung distribution network using the Langelier Saturation Index method. IOP Conf. Ser. Mater. Sci. Eng. 2020, 852, 012040. [Google Scholar] [CrossRef]
- Kohfahl, C.; Massmann, G.; Pekdeger, A. Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany. Hydrogeol. J. 2009, 17, 571–573. [Google Scholar] [CrossRef]
- Massmann, G.; Dünnbier, U.; Heberer, T.; Taute, T. Behaviour and redox sensitivity of pharmaceutical residues during bank filtration—Investigation of residues of phenazone-type analgesics. Chemosphere 2008, 71, 1476–1485. [Google Scholar] [CrossRef]
Mineral Name | Chemical Formula | Content (%) |
---|---|---|
Quartz | SiO2 | 21 |
Potash (alkaline) feldspar | KAlSi3O8 | 22 |
Plagioclase | Na[AlSi3O8]-Ca[Al2Si2O8] | 52 |
Biotite | K(Mg,Fe)3AlSi3O10(F,OH)2 | 5 |
Component | HCO3− | CO32− | Cl− | SO42− | NO3− | K+ | Na+ | Ca2+ | Mg2+ |
---|---|---|---|---|---|---|---|---|---|
Concentration(mg/L) | 75.4 | 0.0 | 22.9 | 26.9 | 10.0 | 5.5 | 9.1 | 13.8 | 5.3 |
Group | Pollutant | Concentration (mg/L) | Medium | Hydraulic Gradient | Intermittent Time (d) |
---|---|---|---|---|---|
E1 | Fe | 3 | Fine sand | 1 | 3 |
E2 | Fe | 3 | Medium sand | 1 | 3 |
E3 | Zn | 1 | Fine sand | 1 | 3 |
E4 | Zn | 1 | Medium sand | 1 | 3 |
E5 | Pb | 2 | Fine sand | 1 | 3 |
E6 | Pb | 2 | Medium sand | 1 | 3 |
No. | MIn (mg) | MBTC (mg) | MRet (mg) | ||||
---|---|---|---|---|---|---|---|
Recharge Stage | Recharge Stage | ||||||
1st | 2nd | 3rd | 1st | 2nd | 3rd | ||
E1 | 165.0 | 60.0 | 40.5 | 2.5 | 3.3 | 0.8 | 251.8 |
E2 | 184.5 | 105.0 | 60.0 | 9.2 | 7.0 | 2.2 | 325.8 |
E3 | 160.0 | 136.0 | 137.0 | 0.7 | 0.6 | 0.5 | 430.7 |
E4 | 815.0 | 380.0 | 425.0 | 13.7 | 7.1 | 9.7 | 1588.1 |
E5 | 296.0 | 267.0 | 269.0 | 66.2 | 28.7 | 60.6 | 675.7 |
E6 | 996.0 | 872.0 | 710.0 | 27.1 | 8.4 | 24.2 | 2509.1 |
Recharge Stage | E1 | E2 | E3 | E4 | E5 | E6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Start | End | Start | End | Start | End | Start | End | Start | End | Start | End | ||
1st recharge | C/C0 | 0 | 0.35 | 0 | 0.48 | 0 | 0.03 | 0 | 0.34 | 0 | 0.0008 | 0 | 0.26 |
K/K0 | 1 | 0.08 | 1 | 0.02 | 1 | 0.06 | 1 | 0.03 | 1 | 0.45 | 1 | 0.28 | |
2nd recharge | C/C0 | 0.57 | 0.30 | 0.80 | 0.46 | 0.71 | 0.04 | 0.58 | 0.17 | 0.0019 | 0.0003 | 0.41 | 0.07 |
K/K0 | 0.09 | 0.03 | 0.17 | 0.02 | 0.25 | 0.07 | 0.18 | 0.01 | 0.79 | 0.43 | 0.63 | 0.28 | |
3rd recharge | C/C0 | 0.49 | 0.32 | 0.50 | 0.45 | 0.08 | 0.03 | 0.77 | 0.20 | 0.0013 | 0.0007 | 0.17 | 0.14 |
K/K0 | 0.05 | 0.03 | 0.04 | 0.02 | 0.16 | 0.07 | 0.10 | 0.02 | 0.73 | 0.37 | 0.50 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Song, Y.; Ye, X.; Du, X.; Ma, J. Clogging and Water Quality Change Effects of Typical Metal Pollutants under Intermittent Managed Aquifer Recharge Using Urban Stormwater. Int. J. Environ. Res. Public Health 2021, 18, 13272. https://doi.org/10.3390/ijerph182413272
Ma S, Song Y, Ye X, Du X, Ma J. Clogging and Water Quality Change Effects of Typical Metal Pollutants under Intermittent Managed Aquifer Recharge Using Urban Stormwater. International Journal of Environmental Research and Public Health. 2021; 18(24):13272. https://doi.org/10.3390/ijerph182413272
Chicago/Turabian StyleMa, Siyao, Yalin Song, Xueyan Ye, Xinqiang Du, and Jingjia Ma. 2021. "Clogging and Water Quality Change Effects of Typical Metal Pollutants under Intermittent Managed Aquifer Recharge Using Urban Stormwater" International Journal of Environmental Research and Public Health 18, no. 24: 13272. https://doi.org/10.3390/ijerph182413272
APA StyleMa, S., Song, Y., Ye, X., Du, X., & Ma, J. (2021). Clogging and Water Quality Change Effects of Typical Metal Pollutants under Intermittent Managed Aquifer Recharge Using Urban Stormwater. International Journal of Environmental Research and Public Health, 18(24), 13272. https://doi.org/10.3390/ijerph182413272