Do China’s Urban–Environmental Quality and Economic Growth Conform to the Environmental Kuznets Curve?
Abstract
:1. Introduction
2. Literature Review
2.1. EKC on Different Scales
2.2. Measurement of Environmental Quality in EKC Research
2.3. EKC Research in China
2.4. Research Gap
3. Research Design
3.1. Sample Selection and Data Source
3.2. Model Specification
3.3. Variable Descriptions
3.3.1. Explained Variable: Urban–Environmental Quality
3.3.2. Explanatory Variables: Economic Growth
3.3.3. Control Variables
3.3.4. Descriptive Statistics
4. Empirical Results
4.1. Model Selection
4.2. Regression Results
4.3. Robustness Check
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Level | City |
---|---|
First-tier and new first-tier cities | Beijing, Shanghai, Tianjin, Chongqing, Chengdu, Hangzhou, Chongqing, Wuhan, Xi’an, Suzhou, Tianjin, Nanjing, Changsha, Zhengzhou, Dongguan, Qingdao, Shenyang, Ningbo, Kunming (19). |
Second-tier cities | Wuxi, Foshan, Hefei, Dalian, Fuzhou, Xiamen, Harbin, Jinan, Wenzhou, Nanning, Changchun, Shijiazhuang, Guiyang, Nanchang, Jinhua, Changzhou, Nantong, Jiaxing, Taiyuan, Xuzhou, Huizhou, Zhuhai, Zhongshan, Taizhou (Zhejiang), Lanzhou, Shaoxing, Haikou, Yangzhou (28). |
Third-tier and below cities | Qinhuangdao, Handan, Xingtai, Baoding, Zhangjiakou, Chengde, Cangzhou, Langfang, Hengshui, Tangshan, Hohhot, Lianyungang, Huai’an, Yancheng, Zhenjiang, Taizhou (Jiangsu), Suqian, Huzhou, Quzhou City, Lishui, Zhoushan, Zhaoqing, Jiangmen, Lhasa, Xining, Yinchuan, Urumqi (27). |
Appendix B
City | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | Mean | Rank |
Lhasa | 1.55 | 1.62 | 1.41 | 0.89 | 0.83 | 0.37 | 5.15 | 5.66 | 5.46 | 5.7 | 6.93 | 7.12 | 2.31 | 3.57 | 1 |
Haikou | 1.52 | 1.53 | 10.56 | 10.82 | 12.28 | 13.45 | 0.85 | 0.88 | 0.89 | 0.93 | 1.13 | 1.37 | 4.81 | 4.68 | 2 |
Zhoushan | 20.76 | 19.63 | 22.61 | 20.53 | 21.92 | 22.97 | 21.28 | 19.64 | 19.82 | 18.2 | 16.68 | 19.34 | 2.23 | 20.28 | 3 |
Lishui | 21.08 | 21.04 | 21.71 | 19.71 | 21.99 | 24.98 | 29.55 | 25.42 | 23.98 | 23.97 | 25.47 | 23.37 | 5.65 | 23.52 | 4 |
Xiamen | 46.22 | 46.58 | 34.33 | 36.17 | 35.13 | 44.58 | 19.35 | 16.3 | 15.57 | 12.88 | 14.45 | 14.5 | 8.5 | 28 | 5 |
Shenzhen | 37.01 | 36.84 | 57.47 | 44.95 | 38.74 | 27.98 | 27.37 | 24.36 | 15.61 | 13.36 | 10.23 | 13.35 | 107.14 | 28.94 | 6 |
Zhaoqing | 23.23 | 20.42 | 27.98 | 30.48 | 28.86 | 31.46 | 31.86 | 33.45 | 31.92 | 31.44 | 29.18 | 28.75 | 8.12 | 29.09 | 7 |
Quzhou | 29.26 | 28.5 | 28.43 | 28.52 | 31.18 | 28.51 | 35.37 | 31.24 | 31.13 | 36.07 | 32.86 | 31.9 | 6.72 | 31.06 | 8 |
Nanchang | 45.26 | 46.29 | 46 | 44.85 | 38.67 | 52.71 | 31.27 | 32 | 27.92 | 25.82 | 21.89 | 20.67 | 10.79 | 36.11 | 9 |
Suqian | 29.65 | 29.05 | 28.55 | 34.04 | 32.69 | 37.32 | 41.59 | 43.85 | 41.56 | 42.9 | 36.94 | 36.73 | 17.35 | 36.24 | 10 |
Huizhou | 31.17 | 31.84 | 39.46 | 45.1 | 42.23 | 42.92 | 44.77 | 46.28 | 43.44 | 41.27 | 36.77 | 36.85 | 11.4 | 40.18 | 11 |
Nanning | 48.43 | 47.35 | 47.47 | 47.66 | 48.29 | 51.31 | 32.02 | 37.63 | 39.02 | 39.82 | 30.86 | 30.45 | 8.27 | 41.69 | 12 |
Jiangmen | 39.35 | 38.27 | 49.27 | 50.09 | 44.53 | 44.16 | 48.32 | 46.97 | 43.04 | 39.15 | 34.75 | 35.04 | 9.46 | 42.75 | 13 |
Zhuhai | 27.16 | 24.83 | 63.23 | 71.53 | 66.35 | 71.61 | 48.08 | 44.72 | 36.8 | 37.93 | 27.37 | 26.65 | 4.47 | 45.53 | 14 |
Zhongshan | 42.94 | 41.8 | 49.7 | 54.43 | 50.54 | 51.8 | 46.02 | 48.42 | 43.87 | 41.31 | 39.19 | 37.38 | 5.27 | 45.62 | 15 |
Lianyungang | 43.32 | 44.66 | 46.36 | 48.23 | 47.93 | 61.11 | 42.58 | 43.04 | 42.03 | 44.84 | 42.88 | 42.47 | 4.23 | 45.77 | 16 |
Huaian | 43.88 | 40.5 | 44.88 | 43.6 | 47.9 | 47.96 | 50.29 | 56.97 | 56.03 | 56.43 | 50.97 | 50.65 | 4.69 | 49.17 | 17 |
Wenzhou | 71.8 | 69.83 | 67.51 | 66.27 | 65.08 | 66.19 | 48.19 | 43.19 | 37.16 | 38.41 | 35.99 | 35.22 | 20.76 | 53.74 | 18 |
Jinhua | 50.74 | 52.93 | 57.37 | 53.29 | 57.15 | 57.85 | 62.11 | 55.71 | 53.57 | 52.27 | 46.21 | 47.85 | 8.18 | 53.92 | 19 |
Changsha | 68.83 | 65.34 | 70.93 | 75.64 | 70.62 | 76.54 | 43.88 | 44.42 | 38.91 | 37.51 | 34.4 | 34.57 | 13.96 | 55.14 | 20 |
Hefei | 31.51 | 32.92 | 28.05 | 26.59 | 29.41 | 52.4 | 93.53 | 91.24 | 80.56 | 76.27 | 67.19 | 62.69 | 11.71 | 56.03 | 21 |
Xining | 51.14 | 50.94 | 54.33 | 56.58 | 55.31 | 66.59 | 62.97 | 64.11 | 65.62 | 63.03 | 54.64 | 51.91 | 6.64 | 58.15 | 22 |
Shaoxing | 74.01 | 73.84 | 70.87 | 59.82 | 61.68 | 54.51 | 51.11 | 53.21 | 50.76 | 52.49 | 49.73 | 48.99 | 12.8 | 58.42 | 23 |
Yinchuan | 52.33 | 51.93 | 54.83 | 20.94 | 30.75 | 35.22 | 74.55 | 90.8 | 91.15 | 74.3 | 69.96 | 70.14 | 6.29 | 59.75 | 24 |
Kunming | 49.54 | 50.01 | 56.33 | 50.89 | 49.38 | 52.12 | 77.77 | 75.62 | 81.22 | 65.79 | 60.35 | 60.15 | 5.96 | 60.68 | 25 |
Baoding | 63.09 | 64.12 | 73.31 | 60.75 | 55.6 | 63.75 | 77.88 | 88.5 | 55.81 | 47.82 | 40.99 | 41.21 | 17.32 | 61.08 | 26 |
Changzhou | 52.28 | 54.32 | 64.62 | 54.64 | 56.29 | 45.81 | 77.88 | 71.89 | 67.95 | 63.81 | 62.87 | 62.86 | 3.84 | 61.27 | 27 |
Taizhou (Zhejiang) | 69.35 | 69.9 | 78.3 | 63.1 | 62.02 | 63.84 | 69.86 | 59.79 | 57.42 | 53.91 | 44.95 | 45.1 | 12.51 | 61.46 | 28 |
Taizhou (Jiangsu) | 52.24 | 51.14 | 54.3 | 60.77 | 63.76 | 64.73 | 68.06 | 72.58 | 65.2 | 67.9 | 58.9 | 58.49 | 12.21 | 61.51 | 29 |
Hengshui | 78.11 | 69.75 | 62.66 | 54.24 | 50.84 | 53.39 | 67.24 | 66.69 | 63.34 | 61.27 | 55.5 | 55.74 | 7.3 | 61.56 | 30 |
Xi’an | 69.56 | 69.72 | 71.28 | 74.21 | 74.74 | 72.44 | 69.02 | 63.54 | 54 | 51.1 | 40.48 | 38.53 | 5.61 | 62.38 | 31 |
Nantong | 63.1 | 61.53 | 59.39 | 61.65 | 70.46 | 76.62 | 70.2 | 70.14 | 60.1 | 60.76 | 54.2 | 54 | 26.07 | 63.51 | 32 |
Yangzhou | 78.11 | 76.55 | 75.58 | 71.59 | 70.5 | 59.08 | 70.16 | 62.93 | 59.56 | 52.2 | 46.86 | 45.9 | 4.44 | 64.09 | 33 |
Yancheng | 58.64 | 58.97 | 59.58 | 55.32 | 59.95 | 63.38 | 66.26 | 75.23 | 75.09 | 74.3 | 64.23 | 63.51 | 4.52 | 64.54 | 34 |
Zhenjiang | 65.52 | 64.22 | 64.82 | 58.69 | 60.12 | 62.58 | 74.34 | 76.24 | 71.1 | 69.82 | 55.55 | 53.66 | 2.78 | 64.72 | 35 |
Huzhou | 72.89 | 72.9 | 87.47 | 78 | 95.61 | 93.62 | 55.12 | 51.62 | 45.77 | 46.79 | 44.62 | 44.04 | 7.69 | 65.7 | 36 |
Chengdu | 84.01 | 79.33 | 77.1 | 91.95 | 88.19 | 60.52 | 60.64 | 62.04 | 52.7 | 53.47 | 41.91 | 43.09 | 14.79 | 66.26 | 37 |
Guiyang | 112.62 | 87.06 | 68.33 | 70.71 | 72.87 | 74.43 | 59.13 | 51.23 | 54.57 | 53.52 | 51.32 | 53.21 | 7.59 | 67.42 | 38 |
Lanzhou | 51.65 | 57.4 | 58.32 | 58.19 | 63.59 | 71.65 | 92.36 | 87.57 | 85.37 | 77.46 | 64.46 | 58.51 | 3.79 | 68.88 | 39 |
Qinhuangdao | 53.98 | 55.99 | 60.46 | 56.99 | 59.41 | 74.66 | 91.22 | 123.99 | 83.82 | 84.97 | 61.54 | 52.82 | 8.05 | 71.66 | 40 |
Jiaxing | 73.01 | 79.21 | 84.04 | 79.38 | 82.46 | 75.16 | 80.24 | 72.66 | 69.42 | 70.53 | 59.56 | 59.22 | 11.17 | 73.75 | 41 |
Fuzhou | 65.05 | 65.45 | 66.77 | 62.24 | 71.75 | 112.15 | 101.29 | 88.69 | 81.03 | 78.23 | 70.17 | 67.78 | 17.29 | 77.55 | 42 |
Changchun | 61.23 | 61.11 | 65.25 | 65.16 | 71.62 | 126.65 | 94.68 | 92.99 | 89.65 | 90.46 | 83.31 | 95.17 | 8.33 | 83.11 | 43 |
Chengde | 76.27 | 71.72 | 84.45 | 84.51 | 74.03 | 79.12 | 106.8 | 112.87 | 96.81 | 86.33 | 70.12 | 69.12 | 3.75 | 84.34 | 44 |
Langfang | 76.83 | 71.97 | 76.84 | 68.84 | 65.33 | 68.85 | 102.24 | 102.61 | 101.83 | 104.12 | 94.17 | 95.1 | 1.92 | 85.73 | 45 |
Shenyang | 53.46 | 61.7 | 87.15 | 88.35 | 101.86 | 104.7 | 93 | 97.53 | 107.95 | 105.9 | 87.95 | 93.49 | 19.51 | 90.24 | 46 |
Hangzhou | 110.61 | 109.31 | 110.88 | 99.2 | 106.3 | 113.97 | 90.94 | 83.07 | 77.29 | 75.89 | 66.4 | 62.94 | 14.09 | 92.23 | 47 |
Jinan | 82.77 | 82.7 | 86.85 | 93.15 | 95.04 | 96.52 | 110.23 | 105.67 | 94.43 | 90.72 | 88.52 | 89.04 | 8.76 | 92.97 | 48 |
Qingdao | 113.85 | 109.96 | 102.89 | 101.89 | 105.35 | 96.34 | 93.85 | 94.76 | 83.42 | 78.47 | 79.61 | 79.53 | 5.7 | 94.99 | 49 |
Harbin | 71.18 | 73.92 | 82.46 | 94 | 94.21 | 94.58 | 113.69 | 149.58 | 104.58 | 108.3 | 94.63 | 100.65 | 22.25 | 98.48 | 50 |
Guangzhou | 151.85 | 145.35 | 161.19 | 179.29 | 94.73 | 90.73 | 76.75 | 64.91 | 63.97 | 59.08 | 48.7 | 49.36 | 32.09 | 98.82 | 51 |
Zhangjiakou | 105.29 | 100.66 | 107.68 | 105.51 | 99.09 | 97.12 | 113.93 | 109.93 | 104.4 | 103.33 | 90.08 | 88.99 | 3.29 | 102.17 | 52 |
Urumqi | 94.02 | 100.05 | 105.86 | 106.02 | 99.91 | 125.58 | 125.61 | 129.1 | 112.15 | 96.8 | 74.37 | 70.91 | 9.25 | 103.37 | 53 |
Dalian | 122.44 | 123.37 | 89.9 | 99.43 | 102.42 | 100.19 | 120.55 | 124.43 | 105.21 | 100.38 | 92.09 | 95.66 | 19.58 | 106.34 | 54 |
Dongguan | 125.41 | 113.84 | 125.26 | 128.36 | 107.46 | 107.57 | 117.43 | 112.44 | 105.4 | 98.53 | 84.48 | 82.97 | 10.66 | 109.09 | 55 |
Xingtai | 103.69 | 106.38 | 106.95 | 95.58 | 97.91 | 102.35 | 135.38 | 133.94 | 134.31 | 145.32 | 104.43 | 111.08 | 4.41 | 114.75 | 56 |
Hohhot | 125.19 | 127.63 | 116.13 | 100.29 | 95.19 | 117.18 | 162.04 | 149 | 125.84 | 112.09 | 94.68 | 87.25 | 8.28 | 117.71 | 57 |
Cangzhou | 100.97 | 107.65 | 111.82 | 86.41 | 86.42 | 102.25 | 158.54 | 145.47 | 141.41 | 135.3 | 118.54 | 129.18 | 3.72 | 118.67 | 58 |
Foshan | 128.62 | 123.07 | 145.09 | 150.25 | 132.57 | 133.16 | 126.19 | 126.13 | 111.84 | 105.92 | 95.14 | 93.09 | 13.42 | 122.59 | 59 |
Taiyuan | 120.78 | 114.34 | 112.61 | 115.01 | 107.56 | 127.18 | 154.66 | 154.57 | 129.05 | 123.98 | 110.42 | 107.98 | 8.46 | 123.18 | 60 |
Xuzhou | 128.69 | 111.28 | 103.07 | 117.56 | 108.54 | 163.88 | 168.5 | 179.2 | 157.89 | 139.74 | 108.47 | 107.6 | 4.56 | 132.87 | 61 |
Zhengzhou | 141.88 | 137.46 | 167.24 | 138.45 | 129.92 | 144.59 | 157.92 | 153.89 | 138.39 | 122.17 | 107.35 | 107.51 | 15 | 137.23 | 62 |
Wuhan | 178.53 | 177.38 | 169.93 | 170.1 | 164.8 | 154.16 | 127.83 | 120.83 | 109.11 | 104.37 | 93.97 | 92.78 | 24.15 | 138.65 | 63 |
Nanjing | 153.69 | 150.93 | 146.2 | 148.51 | 146.91 | 158.55 | 157.8 | 136.56 | 128.88 | 125.73 | 114.28 | 109.34 | 20.16 | 139.78 | 64 |
Wuxi | 195.72 | 192.59 | 221.23 | 179.36 | 177.87 | 161.18 | 137.59 | 125.25 | 115.39 | 109.47 | 100.67 | 98.87 | 10.05 | 151.27 | 65 |
Beijing | 196.63 | 209.92 | 219.65 | 164.4 | 166.57 | 192.84 | 163.86 | 155.96 | 146.39 | 134.16 | 118.97 | 80.67 | 14.92 | 162.5 | 66 |
Shijiazhuang | 107.52 | 192.77 | 188.69 | 148.37 | 143.2 | 176.35 | 217.52 | 201.6 | 203.74 | 174.31 | 141.39 | 134.31 | 19.4 | 169.15 | 67 |
Ningbo | 151.51 | 153.53 | 184.31 | 159.48 | 188.66 | 222.85 | 223.75 | 207.99 | 191.21 | 154.22 | 130.07 | 128.52 | 16.48 | 174.68 | 68 |
Handan | 151.64 | 151.45 | 274.32 | 164.2 | 167.72 | 177.95 | 239.98 | 224.91 | 216.96 | 198.37 | 170.2 | 156.05 | 7.12 | 191.14 | 69 |
Tianjin | 195.82 | 194.98 | 218.78 | 213.37 | 226.24 | 249.15 | 320.09 | 303.95 | 287.56 | 266.69 | 233.56 | 134.87 | 29.64 | 237.09 | 70 |
Suzhou | 288.83 | 279.68 | 298.62 | 289.84 | 257.24 | 332.67 | 234.92 | 217.72 | 198.47 | 191.93 | 168.78 | 169.81 | 9.58 | 244.04 | 71 |
Shanghai | 482 | 478.94 | 474.55 | 463.59 | 407.09 | 422.84 | 380.73 | 352.91 | 333.67 | 297.81 | 270.78 | 155.59 | 17.68 | 376.72 | 72 |
Tangshan | 274.47 | 340.17 | 397.96 | 397.05 | 392.54 | 406.84 | 458.21 | 447.29 | 425.59 | 401.84 | 377.26 | 360.89 | 33.48 | 390.01 | 73 |
Chongqing | 377.84 | 419.74 | 423.32 | 394.8 | 395.73 | 430.59 | 457.02 | 436.96 | 418.92 | 409.58 | 377.12 | 252.34 | 65.03 | 399.51 | 74 |
References
- Dinda, S. Environmental Kuznets curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef] [Green Version]
- Ekins, P. The Kuznets curve for the environment and economic growth: Examining the evidence. Environ. Plan. A 1997, 29, 805–830. [Google Scholar] [CrossRef] [Green Version]
- Mukhebi, A.W. Sustainable Development: Economics and Environment in the Third World. Agric. Syst. 1990, 38, 216–217. [Google Scholar] [CrossRef]
- Hueting, R. Correcting national income for environmental losses: A practical solution for a theoretical dilemma. In National Income and Nature: Externalities, Growth and Steady State; Springer: Berlin/Heidelberg, Germany, 1992; pp. 23–47. [Google Scholar]
- Blampied, N. Economic growth, environmental constraints and convergence: The declining growth premium for developing economies. Ecol. Econ. 2021, 181, 106919. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of a North American free trade agreement. Natl. Bur. Econ. Res. 1991. [Google Scholar] [CrossRef]
- Shafik, N.; Bandyopadhyay, S. Economic Growth and Environmental Quality: Time-Series and Cross-Country Evidence; World Bank Publications: Office of the Vice President, Development Economics: Washington, DC, USA, 1992; Volume 904. [Google Scholar]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Sconomic Development; International Labour Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Selden, T.M.; Song, D. Environmental quality and development: Is there a Kuznets curve for air pollution emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Weng-Wai, C.; Sheau-Ting, L.; Mohammed, A.H. Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecol. Indic. 2015, 48, 315–323. [Google Scholar] [CrossRef]
- Işık, C.; Ongan, S.; Özdemir, D. Testing the EKC hypothesis for ten US states: An application of heterogeneous panel estimation method. Environ. Sci. Pollut. Res. 2019, 26, 10846–10853. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef]
- Destek, M.A.; Sarkodie, S.A. Investigation of Environmental Kuznets Curve for Ecological Footprint: The Role of Energy and Financial Development. Sci. Total Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef]
- Torras, M.; Boyce, J.K. Income, inequality, and pollution: A reassessment of the environmental Kuznets curve. Ecol. Econ. 1998, 25, 147–160. [Google Scholar] [CrossRef]
- Galeotti, M.; Lanza, A.; Pauli, F. Reassessing the environmental Kuznets curve for CO2 emissions: A robustness exercise. Ecol. Econ. 2006, 57, 152–163. [Google Scholar] [CrossRef]
- Stern, D.I. Between estimates of the emissions-income elasticity. Ecol. Econ. 2010, 69, 2173–2182. [Google Scholar] [CrossRef]
- Pu, Z. Time-spatial convergence of air pollution and regional economic growth in China. Sustainability 2017, 9, 1284. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Sakhare, S.R.; Kaur, M. Impact of industrial 4.0 on environment along with correlation between economic growth and carbon emissions. Int. J. Syst. Assur. Eng. Manag. 2021, 1–9. [Google Scholar] [CrossRef]
- Balin, B.E.; Akan, D.M. EKC hypothesis and the effect of innovation: A panel data analysis. J. Bus. Econ. Financ. 2015, 4, 81. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A.; Rej, S. Can nuclear energy fuel an environmentally sustainable economic growth? Revisiting the EKC hypothesis for India. Environ. Sci. Pollut. Res. 2021, 28, 63065–63086. [Google Scholar] [CrossRef]
- Gill, A.R.; Viswanathan, K.K.; Hassan, S. The Environmental Kuznets Curve (EKC) and the environmental problem of the day. Renew. Sustain. Energy Rev. 2018, 81, 1636–1642. [Google Scholar] [CrossRef]
- Li, Q.S.; Kang, K.; Zhu, J.W.; Meng, Q.X.; Deng, S.J. Study on the Relationship between the Economics and Environment of Puyang City Based on Environmental Kuznets Curve. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; pp. 773–782. [Google Scholar]
- Khajuria, A.; Matsui, T.; Machimura, T. Economic growth decoupling municipal solid waste loads in terms of environmental Kuznets curve: Symptom of the decoupling in India. J. Sustain. Dev. 2011, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Bhattacharya, J. Estimation of environmental Kuznets curve for SO2 emission: A case of Indian cities. Ecol. Indic. 2017, 72, 881–894. [Google Scholar] [CrossRef]
- Adeel-Farooq, R.M.; Raji, J.O.; Adeleye, B.N. Economic growth and methane emission: Testing the EKC hypothesis in ASEAN economies. Manag. Environ. Qual. Int. J. 2020, 32, 277–289. [Google Scholar] [CrossRef]
- Lu, X.; Lei, S.; Weili, Y. Water Pollution and Economic Growth in Western China. Environ. Resour. Econ. Rev. 2007, 16, 629–641. [Google Scholar]
- Trujillo Lora, J.C.; Carrillo Bermúdez, B.; Charris Vizcaíno, C.A.; Iglesias Pinedo, W.J. The Environmental Kuznets Curve (EKC): An analysis landfilled solid waste in Colombia. Rev. Fac. Cienc. Econ. Investig. Reflex. 2013, 21, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Zambrano-Monserrate, M.A.; Silva-Zambrano, C.A.; Davalos-Penafiel, J.L.; Zambrano-Monserrate, A.; Ruano, M.A. Testing environmental Kuznets curve hypothesis in Peru: The role of renewable electricity, petroleum and dry natural gas. Renew. Sustain. Energy Rev. 2018, 82, 4170–4178. [Google Scholar] [CrossRef]
- Tao, S.; Zheng, T.; Lianjun, T. An empirical test of the environmental Kuznets curve in China: A panel cointegration approach. China Econ. Rev. 2008, 19, 381–392. [Google Scholar]
- Zhou, S.Q. An Empirical Analysis on the Relationship between Industrial Economic Growth and Environmental Pollution-Taking the Chongqing of China as an Example. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2013; pp. 732–735. Available online: https://www.scientific.net/AMR.807-809.732 (accessed on 10 November 2021).
- Jiang, Y.; Lin, T.; Zhuang, J. Environmental Kuznets Curves in the People’s Republic of China: Turning points and regional differences. Adb Econ. 2008, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; An, Y. The government capacity on industrial pollution management in Shanxi province: A response impulse analysis. J. Environ. Manag. 2018, 223, 1037–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riti, J.S.; Song, D.; Shu, Y.; Kamah, M. Decoupling CO2 emission and economic growth in China: Is there consistency in estimation results in analyzing environmental Kuznets curve? J. Clean. Prod. 2017, 166, 1448–1461. [Google Scholar] [CrossRef]
- Fan, C.; Zheng, X. An empirical study of the environmental Kuznets curve in Sichuan Province, China. Environ. Pollut. 2013, 2, 107. [Google Scholar] [CrossRef]
- Li, S.; Shi, J.; Wu, Q. Environmental Kuznets Curve: Empirical Relationship between Energy Consumption and Economic Growth in Upper-Middle-Income Regions of China. Int. J. Environ. Res. Public Health 2020, 17, 6971. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, R.; Wang, S. How technological progress affects the carbon emission efficiency? Evidence from national panel quantile regression. J. Clean. Prod. 2021, 307, 127133. [Google Scholar] [CrossRef]
- Orishimo, I. Urbanization and Environmental Quality; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 21. [Google Scholar]
- Wu, T.; Peng, Y.; Lv, K. Research of Relationship between Shanghai Industrial Structure and Environmental Pollution. Int. J. Adv. Manag. Sci. 2013, 2, 127–132. [Google Scholar]
- Zafar, M.W.; Qin, Q.; Zaidi, S.A.H. Foreign direct investment and education as determinants of environmental quality: The importance of post Paris Agreement (COP21). J. Environ. Manag. 2020, 270, 110827. [Google Scholar] [CrossRef]
- Hsiao, C. Panel data analysis—Advantages and challenges. Test 2007, 16, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Sadik-Zada, E.R.; Loewenstein, W. Drivers of CO2-Emissions in Fossil Fuel abundant settings:(Pooled) mean group and nonparametric panel analyses. Energies 2020, 13, 3956. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Gao, J. Non-parametric time-varying coefficient panel data models with fixed effects. Econom. J. 2011, 14, 387–408. [Google Scholar] [CrossRef]
- Lee, J.; Robinson, P.M. Panel nonparametric regression with fixed effects. J. Econom. 2015, 188, 346–362. [Google Scholar] [CrossRef] [Green Version]
Sub-Index | Pollution Receptor | Sub-Indicator | Index Unit | Time Interval | Indicator Attributes |
---|---|---|---|---|---|
Environmental pollution | Atmosphere | Total nitrogen oxide emissions | Ten thousand tons | 2005–2017 | Negative |
Total sulfur dioxide emissions | Ten thousand tons | 2005–2017 | Negative | ||
Total smoke (dust) emissions | Ten thousand tons | 2005–2017 | Negative | ||
Carbon dioxide emissions | Billion tons | 2005–2017 | Negative | ||
Soil | Solid waste generation | Ten thousand tons | 2005–2017 | Negative | |
Domestic garbage removal volume | Ten thousand tons | 2005–2017 | Negative | ||
Chemical fertilizer application rate | Ten thousand tons | 2005–2017 | Negative | ||
Pesticide usage | Ton | 2005–2017 | Negative | ||
Water body | Chemical oxygen demand | Ten thousand tons | 2005–2017 | Negative | |
Ammonia nitrogen emissions | Ten thousand tons | 2005–2017 | Negative |
8 | Purify Receptor | Sub-Indicator | Index Unit | Time Interval | Indicator Attributes |
---|---|---|---|---|---|
Environmental absorption | Atmosphere, Soil, Water body | Urban green area | Hectares | 2005–2017 | Positive |
Average relative humidity of major cities | Percentage | 2005–2017 | Positive | ||
Annual precipitation | Millimeter | 2005–2017 | Positive | ||
Total water resources | One hundred million cubic meters | 2005–2017 | Positive | ||
Wetland area | Thousand hectares | 2005–2017 | Positive | ||
Forest area | Ten thousand hectares | 2005–2017 | Positive |
Variable | Obs | Mean | St.d. | Min | Max |
---|---|---|---|---|---|
EQ | 962 | 4.2916 | 0.6400 | 3.0330 | 5.5500 |
PGDP | 962 | 10.7412 | 0.5470 | 9.6640 | 11.5927 |
Edu | 962 | 3.9330 | 0.8603 | 2.2965 | 5.4603 |
Tech | 962 | 1.8098 | 1.1874 | −0.2689 | 4.0972 |
Urban | 962 | 59.4090 | 15.6099 | 34.5600 | 88.7000 |
Stru | 962 | 48.0312 | 7.1854 | 31.8000 | 58.8000 |
Variable | Total Sample | First-Tier and New First-Tier Cities | Second-Tier Cities | Third-Tier and Below Cities |
---|---|---|---|---|
PGDP | −70.7346 *** | −122.6499 *** | −117.4796 *** | 7.5731 |
(−5.07) | (−4.16) | (−4.12) | (0.34) | |
PGDP2 | 6.8570 *** | 11.7356 *** | 11.1052 *** | −0.6571 |
(5.22) | (4.27) | (4.17) | (−0.31) | |
PGDP3 | −0.2212 *** | −0.3740 *** | −0.3495 *** | 0.0188 |
(−5.37) | (−4.38) | (−4.21) | (0.28) | |
Edu | −0.0617 ** | −0.1929 *** | −0.0219 | −0.0130 |
(−2.48) | (−3.58) | (−0.47) | (−0.36) | |
Tech | 0.0512 *** | 0.1191 *** | 0.0409 * | 0.0359 * |
(3.47) | (4.09) | (1.74) | (1.88) | |
Urban | 0.0043 *** | 0.0048 ** | 0.0055 ** | 0.0034 |
(2.91) | (2.07) | (2.29) | (1.25) | |
Stru | 0.0163 *** | 0.0067 | 0.0327 *** | 0.0150 *** |
(7.01) | (1.65) | (7.42) | (4.40) | |
Cons | 246.2057 *** | 431.6935 *** | 416.0340 *** | −25.6340 |
(4.99) | (4.11) | (4.11) | (−0.33) | |
City effect | Yes | Yes | Yes | Yes |
F-statistic | 36.45 | 29.92 | 16.40 | 7.03 |
Within_R2 | 0.2402 | 0.5091 | 0.2761 | 0.1452 |
N | 962 | 247 | 364 | 351 |
Variable | Total Sample | First-Tier and New First-Tier Cities | Second-Tier Cities | Third-Tier and Below Cities |
---|---|---|---|---|
PGDP | −61.3897 *** | −123.7944 *** | −96.4978 *** | −5.5735 |
(−4.39) | (−4.59) | (−2.83) | (−0.32) | |
PGDP2 | 5.9490 *** | 11.8347 *** | 9.1519 *** | −0.4767 |
(4.52) | (4.69) | (2.87) | (−0.29) | |
PGDP3 | −0.1918 *** | −0.3769 *** | −0.2889 *** | 0.0135 |
(−4.64) | (−4.80) | (−2.92) | (0.26) | |
Edu | −0.0471 * | −0.0893 * | −0.0057 | −0.0135 |
(−1.69) | (−1.82) | (−0.18) | (−0.33) | |
Tech | 0.0369 ** | 0.0596 *** | 0.0192 * | 0.0489 * |
(2.03) | (2.71) | (1.62) | (1.71) | |
Urban | 0.0031 * | 0.0033 * | 0.0052 * | 0.0002 |
(1.69) | (1.75) | (1.97) | (0.05) | |
Stru | 0.0153 *** | 0.0085 | 0.0265 *** | 0.0132 *** |
(4.71) | (1.64) | (5.83) | (2.84) | |
Cons | 215.6289 *** | 436.6523 *** | 340.7910 *** | −19.0294 |
(4.37) | (4.54) | (2.80) | (−0.31) | |
City effect | Yes | Yes | Yes | Yes |
Wald-statistic | 5256.74 | 74,703.11 | 4682.38 | 16,097.97 |
R2 | 0.9444 | 0.9579 | 0.9258 | 0.9446 |
N | 962 | 247 | 364 | 351 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Ye, C.; Liu, Y.; Cheng, W. Do China’s Urban–Environmental Quality and Economic Growth Conform to the Environmental Kuznets Curve? Int. J. Environ. Res. Public Health 2021, 18, 13420. https://doi.org/10.3390/ijerph182413420
Song W, Ye C, Liu Y, Cheng W. Do China’s Urban–Environmental Quality and Economic Growth Conform to the Environmental Kuznets Curve? International Journal of Environmental Research and Public Health. 2021; 18(24):13420. https://doi.org/10.3390/ijerph182413420
Chicago/Turabian StyleSong, Wenhao, Chunhui Ye, Yuheng Liu, and Weisong Cheng. 2021. "Do China’s Urban–Environmental Quality and Economic Growth Conform to the Environmental Kuznets Curve?" International Journal of Environmental Research and Public Health 18, no. 24: 13420. https://doi.org/10.3390/ijerph182413420
APA StyleSong, W., Ye, C., Liu, Y., & Cheng, W. (2021). Do China’s Urban–Environmental Quality and Economic Growth Conform to the Environmental Kuznets Curve? International Journal of Environmental Research and Public Health, 18(24), 13420. https://doi.org/10.3390/ijerph182413420