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Abstract: In view of previous reports, it is important to determine the relationship between liver
function and the level of fluoride in the serum. The aim of this study was to investigate serum
concentrations of fluoride in 72 patients with alcoholic liver cirrhosis, living in the region of Lublin
(Eastern Poland) divided based on the severity of disease according to the Child-Turcotte-Pugh crite-
ria. Higher plasma fluoride concentrations were associated with changes in liver related parameters.
In all groups of analyzed patients with different stages of alcoholic liver cirrhosis, elevated levels of
plasma fluoride and increased activities of both alanine aminotransferase (ALT) and total bilirubin
concentration were shown.
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1. Introduction

Alcohol-induced liver disease is a common and sometimes fatal consequence of
chronic ethanol abuse in many countries and alcohol consumption is considered as the
third most significant health risk factor for the global population [1,2] Ethanol metabolism
may result in alcohol- induced liver disease, including hepatic steatosis (fatty liver), alcohol-
induced hepatitis, cirrhosis and cancer. The main toxic products in ethanol metabolism
include acetaldehyde and free radicals. At the beginning, the liver injury can be reversible:
the liver is enlarged, full of fat with collagen fibers, but still has regenerative potential
and activity. Then, changes become irreversible—destruction of normal liver architecture
and decreased blood flow cause loss of the liver function and hepatic failure (cirrhosis).
As a consequence, in patients with alcohol-induced liver disease (ALD) inappropriate
levels of drugs, xenobiotics and heavy metals are often observed, compared to healthy
individuals [3–5]. Alcoholic cirrhosis is defined by the occurrence of extensive fibrosis and
regenerative nodules. The Model of End-Stage Liver Disease (MELD) and Child-Pugh
Score are used to assess the severity of liver disease and timing for liver transplantation [6].

Fluoride (F) is a trace element which is naturally present in soil, water and food and
is also known as an important environmental toxicant, obtained from industrial sources.
Fluorides are normally used in low concentrations to reduce the incidence of caries and
proper bone mineralization, whereas chronic excessive fluoride exposure, resulting in
higher blood concentration and accumulation in different tissues, due to problems with
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its metabolism and body utilization can impair human health and even induce fluorosis.
Chronic excessive fluoride exposure impairs human health and damages the skeletal system
and teeth. This leads to simultaneous increase of osteocalcin and calcitonin levels in plasma
which may cause fluoride-dependent bone damage and dental fluorosis, characterized by
hypo-mineralization of enamel and dentine. Because of the high fluoride affinity to calcium
ions, calcification of tissues, vascular walls, synovial capsules and ligaments appears,
leading to persistent joint pain and limited join movement [7,8]. Studies based on animal
models have shown oxidative stress, DNA damage and apoptosis in liver as an effect of
fluorosis [9–11]. However, the mechanism of fluoride-induced hepatic toxicity has not
been definitely explained. Zhao et al. suggested that fluoride induced apoptosis and
autophagy in liver was caused by activating the IL-17 signaling pathway [12]. Girardi and
Merler indicated that a high cumulative internal dose of perfluorooctanoic acid showed
a statistically significant increase for mortality from liver cancer and liver cirrhosis in
male employees [13]. In view of the previous reports, it is important to determine the
relationship between stages of alcoholic liver cirrhosis and the level of fluoride in the
serum. The aim of this study was to investigate serum concentrations of fluoride in patients
with alcoholic liver cirrhosis living in the region of Lublin (Eastern Poland) according to
different cirrhosis stages.

2. Experimental Section
2.1. Patients

The study was conducted at the Department of Internal Medicine, Medical University
of Lublin, Poland, and included 72 patients with alcoholic liver cirrhosis from the region of
Lublin, (Eastern Poland). The study protocol was approved by the Bioethics Committee at
the Medical University of Lublin, Poland (agreement number KE-0254/349/2015).

All subjects gave their written informed consent for participation in the study. Ac-
cording to the World Health Organization (WHO) the optimal fluoride concentration
recommended in drinking water normally ranges between 0.5 and 1 mg/L and accounts
for approximately 40–70% of daily fluoride ingestion. In the Eastern Poland region, water
fluoride concentration was estimated by the Municipal Water and Sewerage Company in
Lublin (MPWiK) at around ≤0.5 mg/L [14].

Liver cirrhosis was diagnosed based on clinical features, history of heavy alcohol
consumption, laboratory tests and abdominal ultrasonography. Patients with alcoholic
hepatitis, hepatocellular carcinoma, viral and autoimmune diseases were excluded from
the study. Other exclusion criteria were type 2 diabetes, obesity, acute infections (e.g., pneu-
monia, spontaneous bacterial peritonitis), acute and chronic heart failure the New York
Heart Association classification (>NYHA I), acute and chronic respiratory disorders re-
sulting in respiratory insufficiency, acute kidney injury (AKI) and chronic kidney disease
(CKD > stage G2), and excessive exposure in the workplace or living environment to fluo-
ride. Both clinical assessment and laboratory tests were used to exclude underlying liver
diseases in the control group. The degree of liver cirrhosis was evaluated according to the
Pugh-Child criteria (Pugh-Child score). Based on this, patients were assigned to one of
three groups: Pugh-Child (P-Ch) A—21 with stage A, P-Ch B—23 with stage B and P-Ch
C—28 with stage C liver cirrhosis. The control group consisted of 22 healthy individuals
without liver disease who did not abuse alcohol. Clinical, biochemical and demographic
detailed characteristics of patients are presented in Tables 1 and 2.
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Table 1. Demographic and clinical characteristics of the study and control groups (mean ± SD).

Characteristics Control Group
Alcoholic Liver Cirrhosis

Pugh-Chile (P-Ch) A P-Ch B P-Ch C

Age (years) 44.6 ± 15.9 * 55.2 ± 12.6 * 54.4 ± 11.5 * 58.5 ± 7.6 *

Male (%) 64.3% 75% 67.5% 61.5%

Body mass (kg) 68.1 ± 9.8 68.4 ± 14.6 69.7 ± 11.9 70.8 ± 12.5

Time of alcohol
abuse (years) N/A 12.9 ± 4.8 † 14.6 ± 5.1 15.8 ± 5.5 †

Complications:

Esophageal
varices N/A 29.6% †,¥ 65% †,# 87.2% ¥,#

Ascites N/A 22.2% †,¥ 48.7% †,# 92.1% ¥,#

Encephalopathy N/A 18.5% †,¥ 51.3% †,# 84.6% ¥,#

* p < 0.05—statistically significant differences between control group and P-Ch subgroups; †,¥,#,- p < 0.05 statistically
significant differences between P-Ch subgroups.

Table 2. Biochemical characteristics of the study and control groups (mean ± SD).

Variables Control Group
Alcoholic Liver Cirrhosis

P-Ch A P-Ch B P-Ch C

Total bilirubin (mg/dL) 0.55 ± 0.28 * 3.9 ± 8.3 *,† 3.8 ± 2.9 *,¥ 8.2 ± 8.8 *,†,¥

Albumin (g/dL) - 3.25 ± 0.81 † 2.9 ± 0.39 2.49 ± 0.51 †

Total protein (g/dL) 6.3 ± 0.3 6.1 ± 0.9 5.9 ± 1 5.8 ± 0.9

Blood platelets (g/L) 235.7 ± 31.5 * 183.8 ± 77.4 †,¥ 138.1 ± 76.9 *,† 142 ± 77.7 *,†,¥

Mean Cell Volume
(MCV) (fl) 84.8 ± 3.8 * 91.3 ± 7.2 91.6 ± 10.9 95.8 ± 7.5 *

INR - 1.26 ± 0.33 †,¥ 1.45 ± 0.22 † 1.55 ± 0.34 ¥

ALT (U/L) 18.1 ± 6.8 * 92.1 ± 189.8 *,†,¥ 36.1 ± 25 *,†,¥ 41.7 ± 29.5 *,†,¥

AST (U/L) 18.1 ± 7.1 * 123.1 ± 202.3 *,†,¥ 82.3 ± 65.9 *,†,¥ 90.6 ± 62.4 *,†,¥

Urea (mg/dL) - 33.3 ± 19.9 †,¥ 22.6 ± 15.8 †,# 42.7 ± 35.9 ¥,#

Sodium (mmol/L) 139.8 ± 3.7 133.7 ± 5.7 135 ± 3.4 134.1 ± 5.7

Potassium (mmol/L) 4.44 ± 0.42 * 4 ± 0.6 * 4 ± 0.63 * 3.9 ± 0.6 *

C-reactive protein
(mg/L) 2.17 ± 1.86 * 14.7 ± 17.2 *,†,¥ 29.2 ± 51.6 *,† 25.7 ± 20.1 *,¥

* p < 0.05—statistically significant differences between control group and P-Ch subgroups; †,¥,#,- p < 0.05 statistically
significant differences between P-Ch subgroups.

2.2. Instrumentation and Reagents

The determination of fluoride in studied samples was carried out by ion chromatogra-
phy (IC) with a suppressed conductometric detection (Dionex DX 500 system consisting
of: GP40 Gradient Pump, CD20 Conductivity Detector, and Chromeleon Chromatography
Workstation, Dionex, Sunnyvale, CA, USA). The IC method is routinely used in the analysis
of fluorides in waters (Chemical Suppression of Eluent Conductivity Method (Environ-
mental Protection Agency—EPA 300.0, ASTM D4327-91 and Standard Methods 4110B, ISO
10359-1); however, plasma samples present a complicated matrix for IC (samples which
contain organic material are capable of fouling an ion-exchange column). Therefore, before
the analysis each sample underwent an acetonitrile deproteinization procedure (0.5 mL
of serum was mixed with an equal volume of acetonitrile, then centrifuged at 5000× g for
8 min. Then 0.1 mL of the supernatant was diluted with 1.0 mL deionized water (resistivity
of 18.18 mΩ·cm at 25 ◦C). Samples of serum were spiked with fluoride standard solution,
at concentration levels of 0.5, 1.0, and 2.0 ppm (recoveries ranged between 96.9–99.0%).
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Stock standard solution (1000 mg/L) of fluoride was prepared by dissolving an appro-
priate amount of analytical reagent grade sodium salt (Merck (Darmstadt, Germany)) in
deionized water.

Chromatographic determinations were carried out according to the manufacturer’s
guidelines with the use of IonPac®AS22 Analytical and IonPac AG22 Guard columns
dedicated to the analysis of inorganic anions. A mobile phase consisted of 4.5 mMNaHCO3
and 1.4 mM Na2CO3. Flow rate of 1.2 mL/min and injection volume of 25 µL were applied.

Linearity was in the range of 0.01–2.0 mg/L with a correlation coefficient of 0.9996.
The limit of detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 10) were
3.80 µg/L and 11.40 µg/L, respectively. The relative standard deviations of peak area and
peak height were all less than 6.56%.

2.3. Statistical Analysis

STATISTICA 13.3 (TIBCO Software Inc., Palo Alto, CA, USA) was used for data
analysis. Continuous variables were expressed as the mean ± standard deviation (SD).
Before calculations, variables were checked for normality using the Shapiro-Wilk test. The
Levene’s test was applied to test equality of variances. To compare the results between
more than two groups, one-way ANOVA test was used. The Scheffe’s test was applied
for post hoc analysis. Correlations among variables were performed using the Pearson’s
correlation test. Qualitative variables are shown as indicators of structure (percentage);
for intergroup comparisons the χ2 test was used. For all tests, p < 0.05 was considered as
statistically significant.

3. Results

The clinical and demographic characteristics of the control and alcoholic liver cirrhosis
groups are presented in Tables 1 and 2.

The study findings demonstrated that the serum fluoride level was least statistically
significant in the control group: 25.5 ± 17.7 µg/L (ppb) (Table 3 and Figure 1). The serum
fluoride concentration increased in the subsequent stages of alcoholic liver cirrhosis to
36.3 ± 10.2 µg/L in P-Ch A, to 41.6 ± 15.6 µg/L in P-Ch B and to 40.6 ± 20.5 µg/L in P-Ch
C. Statistically significantly differences in this aspect were indicated between the control
group and the subgroup of P-Ch B (p = 0.02) and the subgroup of P-Ch C (p = 0.04).

Correlations between serum fluoride concentrations versus selected laboratory param-
eters were also analyzed. Positive correlations were found between level of serum fluoride
versus the level of total bilirubin (r = 0.21; p = 0.02), mean cell volume (MCV) (r = 0.25;
p = 0.01) and ALT (r = 0.19; p = 0.045) (Table 4).

There were no statistically significant differences in serum fluoride level depending
on sex (p = 0.74). The presence of complications from liver cirrhosis was not associated
with significant differences in the concentration of fluoride (p = 0.49 in the case of ascites,
p = 0.31 in the case of encephalopathy, or p = 0.21 in the case of esophageal varices).

Table 3. Serum fluoride concentrations in Patients with Alcoholic Liver Cirrhosis Compared to the
Control Group.

Control Group
(n = 15)

Alcoholic Liver Cirrhosis (n = 72)
p

P-Ch A (n = 21) P-Ch B (n = 23) P-Ch C (n = 28)

(F-[ppb = µg/L) 25.5 ± 17.7 * 36.3 ± 10.2 41.6 ± 15.6 * 40.6 ± 20.5 * 0.01
* p < 0.05—statistically significant differences between control group and P-Ch subgroups.
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Figure 1. Serum fluoride concentrations in patients with Alcoholic Liver Cirrhosis. *: p = 0.02, **: p = 0.04.

Table 4. Correlation between serum fluoride concentration and total bilirubin, MCV, ALT.

Variables Correlation Coefficient p-Value

Fluoride [ppb = µg/L]

Total bilirubin (mg/dL)
r = 0.21

p = 0.02

Mean cell volume (MCV)
r = 0.25

p = 0.01

Alanine aminotransferase (ALT)
r = 0.19

p = 0.045

4. Discussion

Fluoride absorption is mainly due to passive diffusion without any specific trans-
porters, however, recently protein-based channels in phospholipid membranes with high
selectivity for F- were found, but their role for mammals is still not clear [15,16]. Insoluble
complexes formed by fluoride and Ca+2, Mg+2, Al+3 obtained from the food can decrease
fluoride absorption, which explains the treatment of acute fluoride toxicity using calcium-
containing solutions [17]; in contrast, the addition of phosphates, sulfates and molybdenum
increases its absorption [18]. Following absorption from the stomach and small intestine,
approximately 50% of the absorbed F- is quickly incorporated in calcified tissues—mainly
in teeth and bones, as fluoro-hydroxyapatite, where it increases osteoblast proliferation
and stimulates bone formation. A minor portion of fluoride is absorbed by soft tissues
like kidney, liver, lung, muscle, spleen, reproductive and endocrine glands. Non-absorbed
fluoride is rapidly removed through renal excretion and excreted in feces [19,20].

It is known that proper kidney glomerular filtration and excretion means a proper
plasma fluoride level and different factors causing disturbances in the acid-base balance
such as metabolic disorders, respiratory diseases, drugs, toxic substances, and physical
activity can change this situation. In this case urine pH is also changed which creates a
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different level of ionic fluoride F—reabsorption back to systemic circulation from 10% up
to 90%. [20,21].

The stage of liver cirrhosis correlates with failure of kidney function. This may show
the hepatorenal syndrome form that is difficult to diagnose in the early stage. For this
reason, creatinine level is not a good indicator of kidney function in these patients. Yoo et al.
indicate that reduced muscle mass has a great impact on overestimation of kidney function
in patients with cirrhosis [22]. In order to eliminate the influence of renal dysfunction
on the level of fluoride in the blood, we excluded patients with chronic kidney disease
(CKD > G2) and acute kidney disease (AKI) from the study.

Fluoride may be significantly dangerous to the human nervous system and have been
known to penetrate the blood-brain barrier, where, through generation of free radicals,
oxidative stress conditions are promoted, causing impaired function of myelin, neurons and
neurotransmitters, associated with lower IQ scores, depression, disturbances in learning
processes and psychomotor skills [7,23–25]. Several studies have reported that fluoride
can be toxic to the reproductive system causing decreased fertility [26,27] Recently, reports
have indicated fluoride toxicity during immune and inflammatory responses and impaired
glucose tolerance with insulin resistance in peripheral tissues [7]. Stomach pains, loss of
appetite, polyuria, polydipsia, muscle weakness, and constipation followed by diarrhea
are found to be important diagnostic criteria of non-skeletal fluorosis [28].

In our study higher serum fluoride concentrations were associated with changes in
liver related parameters. In all Pugh-Child score groups of analyzed patients with different
stages of alcoholic liver cirrhosis, elevated levels of plasma fluoride, increased activities
of both hepatic aminotransferases, ALT and AST, and total bilirubin concentration were
shown. The risk of serious complications like esophageal varices, ascites and encephalopa-
thy was highest in the most advanced stage of cirrhosis (P-Ch C), which determines that
these two toxic agents, alcohol and fluoride, might act synergistically in the liver damage
process. The time of alcohol consumption in this group was also the longest.

Blood fluoride content (serum fluoride level) can reflect the external environmental
exposure level of an organism to this element. In our study all patients (control and study
groups) were from the Eastern region of Poland where the drinking water fluoride concen-
tration range was below 0.5 mg/L (below 500 ppb) in the period January 2018–December
2019, according to information given by the Municipal Water and Sewerage Company in
Lublin (MPWiK) responsible for communal water distribution in the region [14]. However,
when designing nationwide population biobanking for scientific studies, the possibility of
the common determination of heavy metals and fluoride in the serum of biobank’s blood
donors should be considered as a reliable assessment of environmental exposure [29,30].

Taves indicated that the average serum fluoride concentration of sixteen individ-
uals was 0.013 ppm (13 ppb) [31]. In our study, this level was 0.0255 ± 0.0177 ppm
(25.5 ± 17.7 ppb) in the control group. According to Singer and Armstrong there was
plasma fluoride content within the range 0.14–0.26 ppm (140–260 ppb) [32]. They con-
ducted their research in three American States (Minnesota, Michigan, South Dakota) in the
period 1958–1959 where fluoride levels in water were in the range from 0.15 to 5.4 ppm
(150–5400 ppb). The highest fluoride level was observed among individuals from Lake
Preston (South Dakota)—0.26 ± 0.0124 ppm (260 ± 12.4 ppb), where the fluoride level of
communal showed the highest level at 5.4 ppm (5400 ppb) [32]. It is worth noticing that
the average plasma fluoride level which observed in Singer and Armstrong’s study in this
American region was ten times higher than the average level in our study’s control group.
However, the level of fluoride in communal water in Lake Preston fifty years ago was also
more than ten times higher than the municipal water that patients drank in the Lublin
region in 2018–2019 [14].

The main source of fluoride is water. However, it can be found in other beverages and
foods. Alcoholic beverages can be an important source of fluoride, especially in the group
of ALD patients. Paz et al. identified the fluoride concentration of 53 samples of organic
and non-organic wines (the Canary Islands and mainland Spain) within the range of 0.03 to
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0.70 mg/L [33]. In a previous study, two decades earlier, Martinez et al. stated that the mean
concentration of fluoride in 70 samples of wine (the Canary Islands) from a region with a
high concentration of fluoride in drinking water was significantly higher than the mean
concentration in other samples [34]. In the Lublin region, beer is consumed much more
often than wine. Therefore, the research carried out by Styburski et al. was important [35].
They compared the fluoride concentration in different beer samples: Thailand (0.260 ppm),
Italy (0.238 ppm), Mexico (0.210 ppm), China (0.203 ppm) and Polish beers (0.089 ppm).
Goschorska et al. compared the fluoride concentration in 48 types of drink with low,
medium, and high alcohol content available in Poland, both Polish and foreign [36]. They
stated that the highest fluoride levels were determined in beers and wines, while the lowest
levels were identified in vodkas.

The production of ethanol oxidation-acetaldehyde can enhance free-radical damage
by binding to glutathione and other free-radical defense enzymes in liver tissue. Fluoride
is also known to destroy biomolecules through generation of reactive oxygen species
(ROS) and to augment the oxidative stress condition due to inhibition or interaction with
antioxidative enzymes which makes the liver tissue more susceptible to biochemical injury
by other toxicant molecules [37].

Recent evidence has reported that fluoride can also augment the oxidative stress
condition in kidneys by increasing the concentration of ROS in kidney tissue with decreased
levels of glutathione (GSH), accompanied by decreased GST activity in kidney tissue [37].
Once again, the imbalanced pro-oxidant/antioxidant status, leading to the generation of
oxidative stress conditions, is shown as a result of fluoride toxicity. The results suggest that
higher circulating fluoride levels are the results of liver dysfunction. However, it would be
worth assessing the content of fluoride in liver biopsies in further research.

Our study has some limitations: a small number of subjects and voluntary selection,
difficulties in assessing actual renal function, no assessment of fluoride concentration in
liver bioptates and omitting, in the protocol of our study, the consumption of alcoholic
beverages (amount and type of drink).

However, this is the first attempt to assess the relationship between serum concen-
tration of fluoride and the stages in alcoholic liver cirrhosis. We tried to show that higher
serum fluoride concentrations are associated with changes in liver related parameters
and stages of cirrhosis. This study contributes to further research, e.g., observational,
multi-center studies on the relationship between serum concentration of fluoride and the
development of ALD and the consumption of alcoholic beverages. We also suggest the need
of experimental studies to elucidate the molecular mechanisms of fluoride during ALD.
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