Training Using a Commercial Immersive Virtual Reality System on Hand–Eye Coordination and Reaction Time in Young Musicians: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Intervention
2.3. Measures
2.3.1. Reaction Time
2.3.2. Hand–Eye Coordination
2.3.3. Energy Expenditure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayer, A.B.; Caminiti, R. Parieto-frontal networks for eye-hand coordination and movements. Handb. Clin. Neurol. 2018, 151, 499–524. [Google Scholar] [CrossRef]
- Mayer, A.B.; Caminiti, R.; Lacquaniti, F.; Zago, M. Multiple levels of representation of reaching in the parieto-frontal network. Cereb. Cortex 2003, 13, 1009–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laby, D.M.; Kirschen, D.G.; Govindarajulu, U.; de Land, P. The Hand-eye Coordination of Professional Baseball Players: The Relationship to Batting. Optom. Vis. Sci. 2018, 95, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Gautam, Y.; Bade, M. Effect of Auditory Interference on Visual Simple Reaction Time. Kathmandu Univ. Med. J. 2017, 15, 329–331. [Google Scholar]
- Ball, K.; Edwards, J.D.; Ross, L.A. The impact of speed of processing training on cognitive and everyday functions. J. Gerontol. B Psychol. Sci. Soc. Sci. 2007, 62, 19–31. [Google Scholar] [CrossRef]
- Draheim, C.; Mashburn, C.A.; Martin, J.D.; Engle, R.W. Reaction time in differential and developmental research: A review and commentary on the problems and alternatives. Psychol. Bull. 2019, 145, 508–535. [Google Scholar] [CrossRef]
- Reybrouck, M.; Vuust, P.; Brattico, E. Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations. In Neuroplasticity Insights of Neural Reorganization; IntechOpen: London, UK, 2017. [Google Scholar]
- Králová, E.; Kołodziejski, M. Music and movement activities for preschool children as an incentive to foster relationships and the expression of movement. Elem. Educ. Theory Pract. 2016, 31, 185–205. [Google Scholar]
- Kraus, N.; Hornickel, J.; Strait, D.L.; Slater, J.; Thompson, E. Engagement in community music classes sparks neuroplasticity and language development in children from disadvantaged backgrounds. Front. Psychol. 2014, 5, 1403. [Google Scholar] [CrossRef] [Green Version]
- Fauvel, B.; Groussard, M.; Chetelat, G.; Fouquet, M.; Landeau, B.; Eustache, F.; Desgranges, B.; Platel, H. Morphological brain plasticity induced by musical expertise is accompanied by modulation of functional connectivity at rest. Neuroimage 2014, 90, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Trost, W.; Ethofer, T.; Zentner, M.; Vuilleumier, P. Mapping aesthetic musical emotions in the brain. Cereb. Cortex 2012, 22, 2769–2783. [Google Scholar] [CrossRef] [Green Version]
- Burunat, I.; Brattico, E.; Puolivali, T.; Ristaniemi, T.; Sams, M.; Toiviainen, P. Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening. PLoS ONE 2015, 10, e0138238. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.M.; Bhat, A.N. A review of “music and movement” therapies for children with autism: Embodied interventions for multisystem development. Front. Integr. Neurosci. 2013, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, P.; Kizony, R.; Feintuch, U.; Katz, N. Virtual Reality in Neurorehabilitation; Cambridge University Press: Cambridge, UK, 2006; pp. 182–197. [Google Scholar]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Rutkowska, A.; Rutkowski, S.; Gieracha, J.S. The use of total immersion in the rehabilitation process. Med. Rehabil. 2020, 24, 27–30. [Google Scholar] [CrossRef]
- Slater, M. Immersion and the illusion of presence in virtual reality. Br. J. Psychol. 2018, 109, 431–433. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Daghestani, L.F.; Ibrahim, L.F. Environments and System Types of Virtual Reality Technology in STEM: A Survey. Int. J. Adv. Comput. Sci. 2017, 8, 77–89. [Google Scholar]
- Middleton, K.K.; Hamilton, T.; Tsai, P.C.; Middleton, D.B.; Falcone, J.L.; Hamad, G. Improved nondominant hand performance on a laparoscopic virtual reality simulator after playing the Nintendo Wii. Surg. Endosc. 2013, 27, 4224–4231. [Google Scholar] [CrossRef]
- Harrington, C.M.; Chaitanya, V.; Dicker, P.; Traynor, O.; Kavanagh, D.O. Playing to your skills: A randomised controlled trial evaluating a dedicated video game for minimally invasive surgery. Surg. Endosc. 2018, 32, 3813–3821. [Google Scholar] [CrossRef]
- A World Medical. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Tsigilis, N.; Douda, H.; Tokmakidis, S.P. Test-retest reliability of the Eurofit test battery administered to university students. Percept. Mot. Ski. 2002, 95, 1295–1300. [Google Scholar] [CrossRef]
- Dianzenza, E.S.; Maszczyk, L. The impact of fatigue on agility and responsiveness in boxing. Biomed. Hum. Kinet. 2019, 11, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, B.M.; Shergill, S.S. How effective is the Trail Making Test (Parts A and B) in identifying cognitively impaired drivers? Age Ageing 2013, 42, 577–581. [Google Scholar] [CrossRef] [Green Version]
- Fruin, M.L.; Rankin, J.W. Validity of a multi-sensor armband in estimating rest and exercise energy expenditure. Med. Sci. Sports Exerc. 2004, 36, 1063–1069. [Google Scholar] [CrossRef]
- Pourazar, M.; Mirakhori, F.; Hemayattalab, R.; Bagherzadeh, F. Use of virtual reality intervention to improve reaction time in children with cerebral palsy: A randomized controlled trial. Dev. Neurorehabil. 2018, 21, 515–520. [Google Scholar] [CrossRef]
- Schlaug, G. Musicians and music making as a model for the study of brain plasticity. Music Neurol. Neurosci. Evol. Musical Brain Med. Cond. Ther. 2015, 217, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Alluri, V.; Toiviainen, P.; Burunat, I.; Kliuchko, M.; Vuust, P.; Brattico, E. Connectivity patterns during music listening: Evidence for action-based processing in musicians. Hum. Brain Mapp. 2017, 38, 2955–2970. [Google Scholar] [CrossRef] [Green Version]
- Janata, P.; Tillmann, B.; Bharucha, J.J. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2002, 2, 121–140. [Google Scholar] [CrossRef] [Green Version]
- Bissonnette, J.; Dube, F.; Provencher, M.D.; Sala, M.T.M. Virtual Reality Exposure Training for Musicians: Its Effect on Performance Anxiety and Quality. Med. Probl. Perform. Art. 2015, 30, 169–177. [Google Scholar] [CrossRef]
- Williamon, A.; Aufegger, L.; Eiholzer, H. Simulating and stimulating performance: Introducing distributed simulation to enhance musical learning and performance. Front. Psychol. 2014, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- You, S.H.; Jang, S.H.; Kim, Y.H.; Kwon, Y.H.; Barrow, I.; Hallett, M. Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev. Med. Child. Neurol. 2005, 47, 628–635. [Google Scholar] [CrossRef]
- Gomez, M.M.; de Icco, R.; Avenali, M.; Balsamo, F. Multisensory integration techniques in neurorehabilitation: The use of virtual reality as a rehabilitation tool. Confin. Cephalalgica 2018, 28, 81–85. [Google Scholar]
- Gomez, M.M.; Malighetti, C.; Cipresso, P.; Pedroli, E.; Realdon, O.; Mantovani, F.; Riva, G. Changing Body Representation Through Full Body Ownership Illusions Might Foster Motor Rehabilitation Outcome in Patients With Stroke. Front. Psychol. 2020, 11, 1962. [Google Scholar] [CrossRef]
- Patel, A.V.; Friedenreich, C.M.; Moore, S.C.; Hayes, S.C.; Silver, J.K.; Campbell, K.L.; Stone, K.W.; Gerber, L.H.; George, S.M.; Fulton, J.E.; et al. American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. Med. Sci. Sports Exerc. 2019, 51, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Jancke, L.; Schlaug, G.; Steinmetz, H. Hand skill asymmetry in professional musicians. Brain Cogn. 1997, 34, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Correa, A.G.D.; de Assis, G.A.; do Nascimento, M.; de Deus Lopes, R. Perceptions of clinical utility of an Augmented Reality musical software among health care professionals. Disabil. Rehabil. Assist. Technol. 2017, 12, 205–216. [Google Scholar] [CrossRef]
- Burdea, G.; Polistico, K.; Krishnamoorthy, A.; House, G.; Rethage, D.; Hundal, J.; Damiani, F.; Pollack, S. Feasibility study of the BrightBrainer (TM) integrative cognitive rehabilitation system for elderly with dementia. Disabil. Rehabil. Assist. 2015, 10, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Sharma, G.; Salam, A.; Jha, D.; Mittal, A. Playing Action Video Games a Key to Cognitive Enhancement. Procedia Comput. Sci. 2016, 84, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Bisoglio, J.; Michaels, T.I.; Mervis, J.E.; Ashinoff, B.K. Cognitive enhancement through action video game training: Great expectations require greater evidence. Front. Psychol. 2014, 5, 136. [Google Scholar] [CrossRef] [Green Version]
- McDermott, A.F.; Bavelier, D.; Green, C.S. Memory abilities in action video game players. Comput. Hum. Behav. 2014, 34, 69–78. [Google Scholar] [CrossRef]
- Bavelier, D.; Green, C.S.; Pouget, A.; Schrater, P. Brain plasticity through the life span: Learning to learn and action video games. Annu. Rev. Neurosci. 2012, 35, 391–416. [Google Scholar] [CrossRef] [Green Version]
- Glueck, A.C.; Han, D.Y. Improvement potentials in balance and visuo-motor reaction time after mixed reality action game play: A pilot study. Virtual Real Lond. 2020, 24, 223–229. [Google Scholar] [CrossRef]
- Rutkowski, S.; Kiper, P.; Cacciante, L.; Cieslik, B.; Mazurek, J.; Turolla, A.; Gieracha, J.S. Use of virtual reality-based training in different fields of rehabilitation: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, jrm00121. [Google Scholar] [CrossRef]
- Shin, J.W.; Song, G.B.; Hwangbo, G. Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Ther. Sci. 2015, 27, 2151–2154. [Google Scholar] [CrossRef] [Green Version]
- Straker, L.M.; Campbell, A.C.; Jensen, L.M.; Metcalf, D.R.; Smith, A.J.; Abbott, R.A.; Pollock, C.M.; Piek, J.P. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder. BMC Public Health 2011, 11, 654. [Google Scholar] [CrossRef] [Green Version]
- Erhardsson, M.; Murphy, M.A.; Sunnerhagen, K.S. Commercial head-mounted display virtual reality for upper extremity rehabilitation in chronic stroke: A single-case design study. J. Neuroeng. Rehabil. 2020, 17, 154. [Google Scholar] [CrossRef]
- Szpak, A.; Michalski, S.C.; Loetscher, T. Exergaming With Beat Saber: An Investigation of Virtual Reality Aftereffects. J. Med. Internet Res. 2020, 22, e19840. [Google Scholar] [CrossRef]
Variable | Test | Value | p |
---|---|---|---|
Hand–eye coordination (s) | TMT A pre- | 19.2 ± 7.2 | 0.002 a |
TMT A post- | 14.4 ± 3.9 | ||
TMT B pre- | 29.4 (23.2–32.1) | 0.001 b | |
TMT B post- | 19.7 (18.5–26.4) | ||
Reaction time (s) | PTT pre- | 12.6 ± 1.7 | 0.0001 a |
PTT post- | 10.8 ± 1.2 | ||
Reaction time (cm) | Ditrich’s right hand pre- | 17.0 ± 5.9 | 0.847 a |
Ditrich’s right hand post- | 16.9 ± 5.4 | ||
Ditrich’s left hand pre- | 16.6 ± 5.3 | 0.025 a | |
Ditrich’s left hand post- | 15.6 ± 5.7 | ||
Energy expenditure (kcal) | Day 1 * | 80.2 ± 28.7 | 0.011 c |
Day 2 | 68.6 ± 20.6 | ||
Day 3 | 62.6 ± 18.6 | ||
Day 4 | 57.6 ± 18.9 | ||
Day 5 * | 51.2 ± 21.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutkowski, S.; Adamczyk, M.; Pastuła, A.; Gos, E.; Luque-Moreno, C.; Rutkowska, A. Training Using a Commercial Immersive Virtual Reality System on Hand–Eye Coordination and Reaction Time in Young Musicians: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 1297. https://doi.org/10.3390/ijerph18031297
Rutkowski S, Adamczyk M, Pastuła A, Gos E, Luque-Moreno C, Rutkowska A. Training Using a Commercial Immersive Virtual Reality System on Hand–Eye Coordination and Reaction Time in Young Musicians: A Pilot Study. International Journal of Environmental Research and Public Health. 2021; 18(3):1297. https://doi.org/10.3390/ijerph18031297
Chicago/Turabian StyleRutkowski, Sebastian, Mateusz Adamczyk, Agnieszka Pastuła, Edyta Gos, Carlos Luque-Moreno, and Anna Rutkowska. 2021. "Training Using a Commercial Immersive Virtual Reality System on Hand–Eye Coordination and Reaction Time in Young Musicians: A Pilot Study" International Journal of Environmental Research and Public Health 18, no. 3: 1297. https://doi.org/10.3390/ijerph18031297
APA StyleRutkowski, S., Adamczyk, M., Pastuła, A., Gos, E., Luque-Moreno, C., & Rutkowska, A. (2021). Training Using a Commercial Immersive Virtual Reality System on Hand–Eye Coordination and Reaction Time in Young Musicians: A Pilot Study. International Journal of Environmental Research and Public Health, 18(3), 1297. https://doi.org/10.3390/ijerph18031297