Speciation Variation and Bio-Activation of Soil Heavy Metals (Cd and Cr) in Rice-Rape Rotation Lands in Karst Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Experimental Design
2.3. Analytical Procedure
3. Results and Analysis
3.1. Characteristics of Soil Cr and Cd in Rice-Rape Rotation Lands
3.2. Variation in Heavy Metal Speciation during the Rice-Rape Rotation Process
3.3. Transport of Heavy Metals
3.4. Activation of Soil Heavy Metals in the Rape-Rice Rotation Mode
3.5. Effecting Factors of Soil Heavy Metal Activity
3.6. Correlations between Heavy Metal Activity and Soil Physical-Chemical Properties
4. Discussions
4.1. Changes in Soil Heavy Metal Speciation in the Rape-Rice Rotation Mode
4.2. Factors Affecting Soil Heavy Metals during the Rape-Rice Rotation Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.M.; Zhou, Y.C.; Huang, X.F. Factors Influencing the Evolution of Human-driven Rocky Desertification in Karst Areas. Land Degrad. Dev. 2020, 31, 2506–2513. [Google Scholar] [CrossRef]
- Ying, B.; Xiao, S.Z.; Xiong, K.N.; Cheng, Q.W.; Luo, J.S. Comparative studies of the distribution characteristics of rocky desertification and land use/land cover classes in typical areas of Guizhou province, China. Environ. Earth Sci. 2012, 71, 631–645. [Google Scholar] [CrossRef]
- Manouchehri, N.; Nguyen, T.M.L.; Besancon, S.; Le, L.A.; Bermond, A. Use of sequential, single and kinetic extractive schemes to assess cadmium (Cd) and lead (Pb) availability in Vietnamese urban soils. Am. J. Anal. Chem. 2014, 5, 1214–1227. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhou, Y. Evaluation of the extraction efficiency of heavy metals (Pb, Cd, Cu) in soil-bayberry system. Soil Sediment Contam. 2020, 29, 246–255. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Chen, Y.; Li, Z.; Hedding, D.W.; Nel, W.; Ji, J.; Chen, J. Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops: A case study from Xuyi County, eastern China. Sci. Total Environ. 2020, 729, 139058. [Google Scholar] [CrossRef]
- Adefemi, S.O.; Awokunmi, E.E. Determination of physico-chemical parameters and heavy metals in water samples from Itaogbolu area of Ondo State, Nigeria. Afr. J. Environ. Sci. Technol. 2010, 4, 145–148. [Google Scholar]
- Musa, J.J.; Mustapha, H.I.; Bala, J.D.; Ibrahim, Y.Y.; Akos, M.P.; Daniel, E.S.; Oguche, F.M.; Kuti, I.A. Heavy metals in agricultural soils in Nigeria: A Review. Arid Zone J. Eng. Technol. Environ. 2017, 13, 593–603. [Google Scholar]
- Walker, D.J.; Clemente, R.; Bernal, M.P. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 2004, 57, 215–224. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Wu, X.L.; Tu, C.L.; Huang, X.F.; Zhang, J.C.; Fang, H.; Huo, H.H.; Lin, C.H. Relationships between soil properties and the accumulation of heavy metals in different Brassica campestris L. growth stages in a Karst mountainous area. Ecotoxicol. Environ. Saf. 2020, 206, 111150. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.L.; Ling, P. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction. Food Chem. 2016, 197, 482–488. [Google Scholar] [CrossRef]
- Botsou, F.; Sungur, A.; Kelepertzis, E.; Soylak, M. Insights into the chemical partitioning of trace metals in roadside and off-road agricultural soils along two major highways in Attica’s region, Greece. Ecotoxicol. Environ. Saf. 2016, 132, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Tie, M.; Song, L.L.; Hui, X.J.; Zhang, Z.H.; Xue, S.; Chen, Z.L.; Wang, J.; Zhang, Y. The available forms and bioavailability of heavy metals in soil amended with sewage sludge. Acta Ecol. Sin. 2013, 33, 2173–2181. [Google Scholar]
- Osobamiro, M.T.; Adewuyi, G.O. Levels of heavy metals in the soil: Effects of season, agronomic practice and soilgeology. J. Agric. Chem. Environ. 2015, 4, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.N.S.; Subbarayappa, C.T.; Reddy, M.R.; Meena, H.M. Development of critical limits for different crops grown in different soils and its use in optimizing fertilizer rates. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Goto, S.; Fujimori, H.; Hidaka, A.; Ioku, K. Eects of components on the rate of heat liberation of the hydration in the system of glass/gypsum/lime. J. Eur. Ceram. Soc. 2006, 26, 771–776. [Google Scholar] [CrossRef]
- Wu, H.; Wen, Q.; Hu, L.; Gong, M. Effect of adsorbate concentration to adsorbent dosage ratio on the sorption of heavy metals on soils. J. Environ. Eng. 2018, 144, 04017094. [Google Scholar] [CrossRef]
- Khanlari, Z.V.; Jalali, M. Concentrations and chemical speciation of five heavy metals (Zn, Cd, Ni, Cu, and Pb) in selected agricultural calcareous soils of Hamadan Province, western Iran. Arch. Agron. Soil Sci. 2008, 54, 19–32. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the peciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Wen, B.; Li, L.; Duan, Y.; Zhang, Y.Y.; Shen, J.Z.; Xia, M.; Wang, Y.H.; Fang, W.P.; Zhu, X.J. Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: The concentrations, spatial relationship and potential control. Chemosphere 2018, 204, 92–100. [Google Scholar] [CrossRef]
- Huang, G.; Su, X.; Rizwan, M.S.; Zhu, Y.; Hu, H. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils. Environ. Sci. Pollut. Res. 2016, 23, 16845–16856. [Google Scholar] [CrossRef]
- Yang, Y.G.; Liu, C.Q.; Pan, W.; Zhang, G.P.; Zhu, W.H. Heavy metal accumulation from zinc smelters in a carbonate rock region in Hezhang County, Guizhou Province, China. Water Air Soil Pollut. 2006, 174, 1–4. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, J.; Chen, J.; Xu, H.; Wang, C.; Zhao, M. Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China. Environ. Pollut. 2014, 185, 258–265. [Google Scholar] [CrossRef] [PubMed]
- He, G.D.; Zhang, Z.M.; Wu, X.L.; Cui, M.Y.; Zhang, J.C.; Huang, X.F. Adsorption of Heavy Metals on Soil Collected from Lixisol of Typical Karst Areas in the Presence of CaCO3 and Soil Clay and Their Competition Behavior. Sustainability 2020, 12, 7315. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Lopez-Valdivia, L.M.; Novillo, J.; Obrador, A.; Rico, M.I. Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma 2006, 132, 450–463. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.J.; Wang, J.P.; Wang, W.X. Carbon and nitrogen contents in typical plants and soil profiles in Yanqi Basin of Northwest China. J. Integr. Agric. 2014, 13, 648–656. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in Southwest China: Impacts causes and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhou, Y.C.; Wang, S.J.; Huang, X.F. Change in SOC content in a small Karst basin for the past 35 years and its influencing factors. Arch. Agron. Soil Sci. 2018, 64, 2019–2029. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Wu, X.L.; Wu, Q.S.; Huang, X.F.; Zhang, J.C.; Fang, H. Speciation and accumulation pattern of heavy metals from soil to rice at different growth stages in farmland of southwestern China. Environ. Sci. Pollut. Res. 2020, 27, 35675–35691. [Google Scholar] [CrossRef]
- Kayastha, S.P. Heavy metal pollution of agricultural soils and vegetables of Bhaktapur District, Nepal. Sci. World 2014, 12, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Zeng, M.F.; Vries, D.; Bonten, W.; Luc, L.T.; Zhu, Q.C.; Hao, T.X. Model-based analysis of the long-term effects of fertilization management on cropland soil acidification. Environ. Sci. Technol. 2017, 51, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Zhu, S.; Peng, C.; Lijuan, S.; Jiyan, S.; Chen, Y. Transformation of metal fractions in the rhizosphere of elsholtzia splendens in mining and smelter-contaminated soils: Contribution of fulvic-metal complex. In Functions of Natural Organic Matter in Changing Environment; Xu, J., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 721–725. [Google Scholar]
- Mao, L.C.; Ye, H. Influence of redox potential on heavy metal behavior in soils: A review. Res. Environ. Sci. 2018, 31, 1669–1676. [Google Scholar]
- Bogusz, A.; Oleszczuk, P.; Dobrowolski, R. Adsorption and desorption of heavy metals by the sewage sludge and biochar-amended soil. Environ. Geochem. Health 2019, 41, 1663–1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingh, B.R.; Myhr, K. Cadmium Uptake by Barley as Affected by Cd Sources and pH Levels. Geodema 1998, 1, 185–194. [Google Scholar]
- Wang, X.F.; Huang, X.F.; Hu, J.W.; Zhang, Z.M. The Spatial Distribution Characteristics of Soil Organic Carbon and Its Eects on Topsoil under Dierent Karst Landforms. Int. J. Environ. Res. Public Health 2020, 17, 2889. [Google Scholar] [CrossRef]
- Chen, S.Z.; Zhou, Z.F.; Yan, L.H.; Li, B. Quantitative Evaluation of Ecosystem Health in a Karst Area of South China. Sustainability 2016, 8, 975. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Cheng, H. A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions. Environ. Pollut. 2016, 214, 400–409. [Google Scholar] [CrossRef]
- Xu, X.; Meng, B.; Zhang, C.; Feng, X.; Gu, C.; Guo, J.; Bishop, K.; Xu, Z.; Zhang, S.; Qiu, G. The local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice (Oryza sativa L). Environ. Pollut. 2017, 223, 11–18. [Google Scholar] [CrossRef]
- Hjortenkrans, D.S.; Bergback, B.G.; Haggerud, A.V. Transversal immission patterns and leachability of heavy metals in road side soils. J. Environ. Monit. 2008, 10, 739–746. [Google Scholar] [CrossRef]
- Wilcke, W.; Krauss, M.; Safronov, G.; Fokin, A.D.; Kaupenjohann, M. Polycyclic aromatic hydrocarbons (PAHs) in soils of the Moscow Region—Concentrations, temporal trends, and small-scale distribution. J. Environ. Qual. 2005, 34, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.; Trevizam, A.R.; Muraoka, T.; Marcante, N.C. Heavy metals in vegetables and potential risk for human health. Sci. Agric. 2012, 69, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Eze, O.C.; Tukura, B.W.; Atolaiye, B.O.; Opaluwa, O.D. Index model assessment of heavy metal pollution in soils selected from three irrigated farm sites in FCT Abuja, Nigeria. Int. J. Adv. Sci. Res. Eng. 2018, 4, 93–105. [Google Scholar]
- Peng, L.F.; Liu, P.Y.; Feng, X.H.; Wang, Z.M.; Cheng, T.; Liang, Y.Z.; Lin, Z.; Shi, Z.Q. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation. Geochim. Cosmochim. Acta 2018, 224, 282–300. [Google Scholar] [CrossRef]
- Mofor, N.A.; Tamungang, E.B.N.; Mvondo-zé, A.D.; Kome, G.K.; Mbene, K. Assessment of physico-chemical and heavy metals properties of some agricultural soils of Awing-North West Cameroon. Arch. Agric. Environ. Sci. 2017, 2, 277–286. [Google Scholar] [CrossRef]
- Naghipour, D.; Gharibi, H.; Taghavi, K.; Jaafari, J. Influence of EDTA and NTA on heavy metal extraction from sandy-loam contaminated soils. J. Environ. Chem. Eng. 2016, 4, 3512–3518. [Google Scholar] [CrossRef]
Soil Layers | Index | SOM (g/kg) | Eh (mV) | pH | Cr (mg/kg) | Cd (mg/kg) | SBD (mg/kg) | TN (g/kg) | TP (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
0–20 cm | Mean | 56.19 | 10.20 | 7.80 | 56.19 | 1.41 | 1.12 | 1.87 | 1.58 |
Standard deviation | 2.38 | 12.62 | 0.09 | 2.38 | 0.13 | 0.22 | 0.08 | 0.14 | |
Coefficient of variation (%) | 4.24 | 123.73 | 1.15 | 4.24 | 9.22 | 19.64 | 4.28 | 8.86 | |
20–40 cm | Mean | 41.03 | 29.20 | 8.07 | 80.61 | 1.88 | 1.18 | 1.65 | 1.39 |
Standard deviation | 2.64 | 6.72 | 0.10 | 1.58 | 0.06 | 0.17 | 0.11 | 0.12 | |
Coefficient of variation (%) | 6.43 | 23.01 | 1.24 | 1.96 | 3.19 | 14.41 | 6.67 | 8.63 |
Soil Layers | Heavy Metals | Rape | Rice | ||||||
---|---|---|---|---|---|---|---|---|---|
Seedling | Bolting | Florescence | Harvest | Seedling | Tillering | Filling | Harvest | ||
Mean ± Standard Division | |||||||||
0–20 cm | Cr | 72.7 ± 2.04 | 80.6 ± 2.80 | 74.1 ± 1.04 | 84.4 ± 1.49 | 78.3 ± 1.44 | 77.6 ± 2.73 | 52.5 ± 3.45 | 48.1 ± 0.97 |
Cd | 1.67 ± 0.23 | 1.73 ± 0.14 | 1.72 ± 0.09 | 1.50 ± 0.19 | 1.81 ± 0.34 | 1.73 ± 0.09 | 0.57 ± 0.11 | 0.48 ± 0.08 | |
20–40 cm | Cr | 83.9 ± 1.32 | 82.0 ± 2.59 | 77.0 ± 2.75 | 78.0 ± 2.08 | 81.3 ± 2.51 | 89.1 ± 2.97 | 54.0 ± 2.53 | 49.2 ± 1.35 |
Cd | 1.06 ± 0.10 | 1.25 ± 0.15 | 1.93 ± 0.14 | 1.6 ± 0.20 | 1.59 ± 0.12 | 1.60 ± 0.12 | 0.60 ± 0.21 | 0.53 ± 0.19 |
Crops | Cr | Cd | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Organs | Seedling | Bolting | Florescence | Harvest | Organs | Seedling | Tillering | Filling | Harvest | |
Rape (MF) | stem | 0.25 | 0.09 | 1.78 | 0.38 | stem | 0.31 | 0.22 | 0.12 | 0.18 |
leaf | 0.37 | 0.10 | 0.84 | leaf | 0.17 | 0.22 | 0.22 | 0.29 | ||
flower | 1.69 | flower | 0.09 | 0.25 | ||||||
grain | 0.42 | grain | 0.12 | |||||||
pod | 0.44 | pod | 0.12 | |||||||
Rice (MF) | stem | 0.96 | 0.54 | 1.11 | 1.43 | stem | 0.07 | 0.06 | 0.06 | 0.06 |
leaf | 1.91 | 1.23 | 2.34 | leaf | 0.23 | 0.18 | 0.14 | 0.12 | ||
flower | 0.27 | flower | 0.09 | 0.11 | ||||||
grain | 0.49 | grain | 0.05 | |||||||
rice husk | 1.53 | rice husk | 0.06 |
Cr Speciation | EXC | CAR | OX | OM | |
---|---|---|---|---|---|
0–20 cm | CAR | 0.81 ** | |||
OX | −0.73 ** | −0.42 | |||
OM | 0.78 ** | 0.43 | −0.59 | ||
RES | −0.83 ** | −0.53 | 0.57 | −0.98 ** | |
20–40 cm | CAR | 0.38 | |||
OX | 0.68 * | −0.05 | |||
OM | 0.86 ** | −0.23 | 0.87 ** | ||
RES | −0.88 ** | −0.21 | −0.92 ** | −0.97 ** |
Cd Speciation | EXC | CAR | OX | OM | |
---|---|---|---|---|---|
0–20 cm | CAR | 0.41 | |||
OX | 0.53 | 0.86 ** | |||
OM | 0.42 | 0.67 * | 0.85 ** | ||
RES | −0.56 | −0.89 ** | −0.95 ** | −0.87 ** | |
20–40 cm | CAR | 0.38 | |||
OX | 0.52 | 0.55 | |||
OM | 0.41 | 0.68 * | 0.75 ** | ||
RES | −0.62 * | −0.81 ** | −0.92 ** | −0.88 ** |
Soil Layer | Index | Mechanical Composition | pH | Eh | SOM | |||||
---|---|---|---|---|---|---|---|---|---|---|
Clay | FSP | MT | CT | FS | CSM | |||||
0–20 cm | Cr | 0.19 | −0.89 ** | 0.50 | −0.36 | −0.24 | −0.57 | −0.69 * | −0.85 ** | 0.73 * |
Cd | 0.31 | −0.87 ** | 0.56 | −0.38 | −0.31 | −0.62 | −0.63 | −0.83 ** | 0.52 | |
20–40 cm | Cr | 0.57 | −0.97 ** | 0.41 | −0.53 | −0.48 | −0.23 | 0.56 | −0.95 ** | −0.63 |
Cd | −0.31 | −0.11 | −0.23 | 0.22 | 0.35 | −0.19 | −0.16 | −0.02 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Mu, G.; Zhang, Z.; Huang, X.; Fang, H. Speciation Variation and Bio-Activation of Soil Heavy Metals (Cd and Cr) in Rice-Rape Rotation Lands in Karst Regions. Int. J. Environ. Res. Public Health 2021, 18, 1364. https://doi.org/10.3390/ijerph18031364
Zhang J, Mu G, Zhang Z, Huang X, Fang H. Speciation Variation and Bio-Activation of Soil Heavy Metals (Cd and Cr) in Rice-Rape Rotation Lands in Karst Regions. International Journal of Environmental Research and Public Health. 2021; 18(3):1364. https://doi.org/10.3390/ijerph18031364
Chicago/Turabian StyleZhang, Jiachun, Guiting Mu, Zhenming Zhang, Xianfei Huang, and Hui Fang. 2021. "Speciation Variation and Bio-Activation of Soil Heavy Metals (Cd and Cr) in Rice-Rape Rotation Lands in Karst Regions" International Journal of Environmental Research and Public Health 18, no. 3: 1364. https://doi.org/10.3390/ijerph18031364
APA StyleZhang, J., Mu, G., Zhang, Z., Huang, X., & Fang, H. (2021). Speciation Variation and Bio-Activation of Soil Heavy Metals (Cd and Cr) in Rice-Rape Rotation Lands in Karst Regions. International Journal of Environmental Research and Public Health, 18(3), 1364. https://doi.org/10.3390/ijerph18031364