Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description
2.2. Assessment of Mercury Exposures
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Mercury. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf (accessed on 16 June 2020).
- Agency for Toxic Substances and Disease Registry (ATSDR). Addendum to the Toxicological Profile for Mercury. Available online: https://www.atsdr.cdc.gov/toxprofiles/mercury_organic_addendum.pdf (accessed on 16 June 2020).
- United States Environmental Protection Agency (USEPA). Mercury Compounds. Available online: https://www.epa.gov/sites/production/files/2016-09/documents/mercury-compounds.pdf (accessed on 22 June 2020).
- Palkovicova, L.; Ursinyova, M.; Masanova, V.; Yu, Z.; Hertz-Picciotto, I. Maternal amalgam dental fillings as the source of mercury exposure in developing fetus and newborn. J. Exp. Sci. Environ. Epidemiol. 2008, 18, 326–331. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency (USEPA). Mercury in Dental Amalgam. Available online: https://www.epa.gov/mercury/mercury-dental-amalgam (accessed on 22 June 2020).
- Bjørklund, G.; Hilt, B.; Dadar, M.; Lindh, U.; Aaseth, J. Neurotoxic effects of mercury exposure in dental personnel. Basic Clin. Pharmacol. Toxicol. 2019, 124, 568–574. [Google Scholar] [CrossRef] [Green Version]
- Bose-O‘Reilly, S.; Bernaudat, L.; Siebert, U.; Roider, G.; Nowak, D.; Drasch, G. Signs and symptoms of mercury-exposed gold miners. Int. J. Occup. Med. Environ. Health 2017, 30, 249–269. [Google Scholar] [CrossRef]
- Counter, S.A.; Buchanan, L.H. Mercury exposure in children: A review. Toxicol. Appl. Pharm. 2004, 198, 209–230. [Google Scholar] [CrossRef]
- National Research Council. Toxicological Effects of Methylmercury; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Dufault, R.; Schnoll, R.; Lukiw, W.J.; LeBlanc, B.; Cornett, C.; Patrick, L.; Wallinga, D.; Gilbert, S.G.; Crider, R. Correction to: Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children. Behav. Brain Funct. Bbf 2018, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.B.; Xu, Y.; McCandless, L.C.; Chen, A.; Yolton, K.; Braun, J.; Jones, R.L.; Dietrich, K.N.; Lanphear, B.P. Very low-level prenatal mercury exposure and behaviors in children: The HOME Study. Environ. Health A Glob. Access Sci. Sour. 2019, 18, 4. [Google Scholar] [CrossRef] [Green Version]
- Sahin, D.; Erdolu, C.O.; Karadenizli, S.; Kara, A.; Bayrak, G.; Beyaz, S.; Demir, B.; Ates, N. Effects of gestational and lactational exposure to low dose mercury chloride (HgCl2) on behaviour, learning and hearing thresholds in WAG/Rij rats. EXCLI J. 2016, 15, 391–402. [Google Scholar] [CrossRef]
- Lakshmi Priya, M.; Geetha, A. Level of Trace Elements (Copper, Zinc, Magnesium and Selenium) and Toxic Elements (Lead and Mercury) in the Hair and Nail of Children with Autism. Biol. Trace Elem. Res. 2010, 142, 148–158. [Google Scholar] [CrossRef]
- Majewska, M.D.; Urbanowicz, E.; Rok-Bujko, P.; Namyslowska, I.; Mierzejewski, P. Age-dependent lower or higher levels of hair mercury in autistic children than in healthy controls. Acta Neurobiol. Exp. 2010, 70, 196–208. [Google Scholar]
- Mohamed, F.E.B.; Zaky, E.A.; El-Sayed, A.B.; Elhossieny, R.M.; Zahra, S.S.; Salah Eldin, W.; Youssef, W.Y.; Khaled, R.A.; Youssef, A.M. Assessment of hair aluminum, lead, and mercury in a sample of autistic Egyptian children: Environmental risk factors of heavy metals in autism. Behav. Neurol. 2015, 2015, 545674. [Google Scholar] [CrossRef] [Green Version]
- Tabatadze, T.; Zhorzholiani, L.; Kherkheulidze, M.; Kandelaki, E.; Ivanashvili, T. Hair heavy metal and essential trace element concentration in children with autism spectrum disorder. Georgian Med. News 2015, 1, 77–82. [Google Scholar]
- Bradstreet, J.; Geier, D.A.; Kartzinel, J.J.; Adams, J.B.; Geier, M.R. A case-control study of mercury burden in children with autistic spectrum disorders. J. Am. Phys. Surg. 2003, 8, 76–79. [Google Scholar]
- Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav. Brain Funct. 2014, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- El-Ansary, A. Data of multiple regressions analysis between selected biomarkers related to glutamate excitotoxicity and oxidative stress in Saudi autistic patients. Data Brief 2016, 7, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Geier, D.A.; Audhya, T.; Kern, J.K.; Geier, M.R. Blood mercury levels in autism spectrum disorder: Is there a threshold level? Acta Neurobiol. Exp. 2010, 70, 177–186. [Google Scholar]
- DeSoto, M.C.; Hitlan, R.T. Blood Levels of Mercury Are Related to Diagnosis of Autism: A Reanalysis of an Important Data Set. J. Child Neurol. 2007, 22, 1308–1311. [Google Scholar] [CrossRef]
- Khaled, E.M.; Meguid, N.A.; Bjørklund, G.; Gouda, A.; Bahary, M.H.; Hashish, A.; Sallam, N.M.; Chirumbolo, S.; El-Bana, M.A. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder. Metab. Brain Dis. 2016, 31, 1419–1426. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Li, Y.; Liu, Y.; Zhao, Z. Blood mercury, arsenic, cadmium, and lead in children with autism spectrum disorder. Biol. Trace Elem. Res. 2018, 181, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Yassa, H.A. Autism: A form of lead and mercury toxicity. Environ. Toxicol. Pharmacol. 2014, 38, 1016–1024. [Google Scholar] [CrossRef]
- Adams, J.; Romdalvik, J.; Ramanujam, V.; Legator, M. Mercury, lead, and zinc in baby teeth of children with autism versus controls. J. Toxicol. Environ. Health A 2007, 70, 1046–1051. [Google Scholar] [CrossRef]
- Adams, J.; Romdalvik, J.; Levine, K.; Hu, L.-W. Mercury in first-cut baby hair of children with autism versus typically-developing children. Toxicol. Environ. Chem. 2008, 90, 739–753. [Google Scholar] [CrossRef]
- Elsheshtawy, E.; Tobar, S.; Sherra, K.; Atallah, S.; Elkasaby, R. Study of some biomarkers in hair of children with autism. Middle East Curr. Psychiatry 2011, 18, 6–10. [Google Scholar] [CrossRef]
- Holmes, A.S.; Blaxill, M.F.; Haley, B.E. Reduced levels of mercury in first baby haircuts of autistic children. Int. J. Toxicol. 2003, 22, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obrenovich, M.E.; Shamberger, R.J.; Lonsdale, D. Altered Heavy Metals and Transketolase Found in Autistic Spectrum Disorder. Biol. Trace Elem. Res. 2011, 144, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Hertz-Picciotto, I.; Green, P.G.; Delwiche, L.; Hansen, R.; Walker, C.; Pessah, I.N. Blood mercury concentrations in CHARGE Study children with and without autism. Environ. Health Perspect. 2010, 118, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Ip, P.; Wong, V.; Ho, M.; Lee, J.; Wong, W. Mercury exposure in children with autistic spectrum disorder: Case-control study. J. Child Neurol. 2004, 19, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Loveland, K.A.; Ardjomand-Hessabi, M.; Chen, Z.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Bloom, K.; Pearson, D.A.; et al. Seafood Consumption and Blood Mercury Concentrations in Jamaican Children With and Without Autism Spectrum Disorders. Neurotox. Res. 2013, 23, 22–38. [Google Scholar] [CrossRef]
- Adams, J.; Audhya, T.; McDonough-Means, S.; Rubin, R.; Quig, D.; Geis, E.; Gehn, E.; Loresto, M.; Mitchell, J.; Atwood, S.; et al. Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol. Trace Elem. Res. 2013, 151, 171–180. [Google Scholar] [CrossRef]
- Albizzati, A.; Morè, L.; Di Candia, D.; Saccani, M.; Lenti, C. Normal concentrations of heavy metals in autistic spectrum disorders. Minerva Pediatr. 2012, 64, 27–31. [Google Scholar]
- Macedoni-Lukšič, M.; Gosar, D.; Bjørklund, G.; Oražem, J.; Kodrič, J.; Lešnik-Musek, P.; Zupančič, M.; France-Štiglic, A.; Sešek-Briški, A.; Neubauer, D.; et al. Levels of metals in the blood and specific porphyrins in the urine in children with autism spectrum disorders. Biol. Trace Elem. Res. 2015, 163, 2–10. [Google Scholar] [CrossRef]
- McKean, S.J.; Bartell, S.M.; Hansen, R.L.; Barfod, G.H.; Green, P.G.; Hertz-Picciotto, I. Prenatal mercury exposure, autism, and developmental delay, using pharmacokinetic combination of newborn blood concentrations and questionnaire data: A case control study. Environ. Health 2015, 14, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yau, V.M.; Green, P.G.; Alaimo, C.P.; Yoshida, C.K.; Lutsky, M.; Windham, G.C.; Delorenze, G.; Kharrazi, M.; Grether, J.K.; Croen, L.A. Prenatal and neonatal peripheral blood mercury levels and autism spectrum disorders. Environ. Res. 2014, 133, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Soden, S.E.; Lowry, J.A.; Garrison, C.B.; Wasserman, G.S. 24-hour provoked urine excretion test for heavy metals in children with autism and typically developing controls, a pilot study. Clin. Toxicol. 2007, 45, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.S.; Armel, S.E.; Fulton, D.I.; Allen, J.; Wessels, K.; Simmonds, P.L.; Granpeesheh, D.; Mumper, E.; Bradstreet, J.J.; Echeverria, D. Urinary porphyrin excretion in neurotypical and autistic children. Environ. Health Perspect. 2010, 118, 1450–1457. [Google Scholar] [CrossRef] [Green Version]
- Wright, B.; Pearce, H.; Allgar, V.; Miles, J.; Whitton, C.; Leon, I.; Jardine, J.; McCaffrey, N.; Smith, R.; Holbrook, I.; et al. A comparison of urinary mercury between children with autism spectrum disorders and control children. PLoS ONE 2012, 7, e29547. [Google Scholar] [CrossRef] [Green Version]
- Jafari, T.; Rostampour, N.; Fallah, A.A.; Hesami, A. The association between mercury levels and autism spectrum disorders: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. Organ. Soc. Miner. Trace Elem. (GMS) 2017, 44, 289–297. [Google Scholar] [CrossRef]
- Geier, D.A.; Kern, J.K.; Garver, C.R.; Adams, J.B.; Audhya, T.; Geier, M.R. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem. Res. 2009, 34, 386. [Google Scholar] [CrossRef]
- Stamova, B.; Green, P.G.; Tian, Y.; Hertz-Picciotto, I.; Pessah, I.N.; Hansen, R.; Yang, X.; Teng, J.; Gregg, J.P.; Ashwood, P.; et al. Correlations between gene expression and mercury levels in blood of boys with and without autism. Neurotox. Res. 2011, 19, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.V.B.; Hacon, S.S.; Vega, C.M.; Vieira, J.A.; Larentis, A.L.; Mattos, R.; Valente, D.; Costa-Amaral, I.C.; Mourão, D.S.; Silva, G.P.; et al. Oxidative Stress Levels Induced by Mercury Exposure in Amazon Juvenile Populations in Brazil. Int. J. Environ. Res. Public Health 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Grotto, D.; Valentini, J.; Fillion, M.; Passos, C.J.; Garcia, S.C.; Mergler, D.; Barbosa, F., Jr. Mercury exposure and oxidative stress in communities of the Brazilian Amazon. Sci. Total Environ. 2010, 408, 806–811. [Google Scholar] [CrossRef]
- Morris, G.; Puri, B.K.; Frye, R.E.; Maes, M. The Putative Role of Environmental Mercury in the Pathogenesis and Pathophysiology of Autism Spectrum Disorders and Subtypes. Mol. Neurobiol. 2018, 55, 4834–4856. [Google Scholar] [CrossRef] [PubMed]
- Garrecht, M.; Austin, D.W. The plausibility of a role for mercury in the etiology of autism: A cellular perspective. Toxicol. Environ. Chem. 2011, 93, 1251–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.-J.; Hao, K.; Shi, R.; Zhao, G.; Jiang, G.-X.; Song, Y.; Xu, X.; Ma, J. Glutathione S-transferase M1 (GSTM1) and glutathione S-transferase T1 (GSTT1) null polymorphisms, smoking, and their interaction in oral cancer: A HuGE review and meta-analysis. Am. J. Epidemiol. 2011, 173, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.-B.; Drummen, G.P.; Jiang, Z.-P.; Qin, Y.-H. GSTT1 polymorphism and the risk of developing prostate cancer. Am. J. Epidemiol. 2014, 180, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, J.D.; Strange, R.C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000, 61, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Josephy, P.D. Genetic variations in human glutathione transferase enzymes: Significance for pharmacology and toxicology. Hum. Genom. Proteom. HGP 2010, 2010, 876940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barcelos, G.R.; Grotto, D.; de Marco, K.C.; Valentini, J.; Lengert, A.; de Oliveira, A.; Garcia, S.C.; Braga, G.; Schläwicke Engström, K.; Cólus, I.M.; et al. Polymorphisms in glutathione-related genes modify mercury concentrations and antioxidant status in subjects environmentally exposed to methylmercury. Sci. Total Environ. 2013, 463–464, 319–325. [Google Scholar] [CrossRef]
- Engström, K.S.; Strömberg, U.; Lundh, T.; Johansson, I.; Vessby, B.; Hallmans, G.; Skerfving, S.; Broberg, K. Genetic variation in glutathione-related genes and body burden of methylmercury. Environ. Health Perspect. 2008, 116, 734–739. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, J.M.; Wang, Y.; Gillespie, B.; Werner, R.; Franzblau, A.; Basu, N. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicol. Appl. Pharm. 2011, 257, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Custodio, H.M.; Broberg, K.; Wennberg, M.; Jansson, J.H.; Vessby, B.; Hallmans, G.; Stegmayr, B.; Skerfving, S. Polymorphisms in glutathione-related genes affect methylmercury retention. Arch. Environ. Health 2004, 59, 588–595. [Google Scholar] [CrossRef]
- Bilbo, S.D.; Nevison, C.D.; Parker, W. A model for the induction of autism in the ecosystem of the human body: The anatomy of a modern pandemic? Microb. Ecol. Health Dis. 2015, 26, 26253. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, A.; Neri, M.; Cesario, A.; Adams, J.B.; Domenici, E.; Dalla Bernardina, B.; Bonassi, S. Oxidative stress-related biomarkers in autism: Systematic review and meta-analyses. Free Radic. Biol. Med. 2012, 52, 2128–2141. [Google Scholar] [CrossRef] [PubMed]
- James, S.J.; Melnyk, S.; Jernigan, S.; Cleves, M.A.; Halsted, C.H.; Wong, D.H.; Cutler, P.; Bock, K.; Boris, M.; Bradstreet, J.J.; et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141B, 947–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossignol, D.A.; Frye, R.E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 2014, 5, 150. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, B.; Sarkans, U.; Schumann, G.; Persico, A.M. Biomarkers in autism spectrum disorder: The old and the new. Psychopharmacology 2014, 231, 1201–1216. [Google Scholar] [CrossRef]
- Schmidt, R.J.; Hansen, R.L.; Hartiala, J.; Allayee, H.; Schmidt, L.C.; Tancredi, D.J.; Tassone, F.; Hertz-Picciotto, I. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology 2011, 22, 476. [Google Scholar] [CrossRef] [Green Version]
- Bjorklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlova, B.; Kizek, R.; et al. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020, 57, 2314–2332. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Lee, M.; Zhang, J.; Hessabi, M.; Bressler, J.; Bach, M.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Interaction between a Mixture of Heavy Metals (Lead, Mercury, Arsenic, Cadmium, Manganese, Aluminum) and GSTP1, GSTT1, and GSTM1 in Relation to Autism Spectrum Disorder. Res. Autism. Spectr. Disord. 2020, 79. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Ma, J.; Bressler, J.; Loveland, K.A.; Hessabi, M.; Dickerson, A.S.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Interaction between GSTT1 and GSTP1 allele variants as a risk modulating-factor for autism spectrum disorders. Res. Autism. Spectr. Disord. 2015, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Ma, J.; Bressler, J.; Loveland, K.A.; Ardjomand-Hessabi, M.; Dickerson, A.S.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Role of Metabolic Genes in Blood Arsenic Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2014, 11, 7874–7895. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Pitcher, M.R.; Bressler, J.; Hessabi, M.; Loveland, K.A.; Christian, M.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2016, 13, 1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Lee, M.; Shakespeare-Pellington, S.; Grove, M.L.; Pearson, D.A.; et al. Role of fruits, grains, and seafood consumption in blood cadmium concentrations of Jamaican children with and without Autism Spectrum Disorder. Res. Autism. Spectr. Disord. 2014, 8, 1134–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Boerwinkle, E. Factors associated with blood lead concentrations of children in Jamaica. J. Environ. Sci. Health Part A 2015, 50, 529–539. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Pearson, D.A.; Boerwinkle, E. Blood manganese concentrations in Jamaican children with and without autism spectrum disorders. Environ. Health 2014, 13, 69. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Lee, M.; Christian, M.A.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakespeare-Pellington, S.; Coore Desai, C.; Reece, J.A.; et al. Interaction between manganese and GSTP1 in relation to autism spectrum disorder while controlling for exposure to mixture of lead, mercury, arsenic, and cadmium. Res. Autism. Spectr. Disord. 2018, 55, 50–63. [Google Scholar] [CrossRef]
- Lord, C.; Rutter, M.; DiLavore, P.C.; Risi, S.; Gotham, K.; Bishop, D.V.; Luyster, R.J.; Guthrie, W. Autism Diagnostic Observation Schedule, Second Edition (ADOS-2). Available online: https://www.mhs.com/product.aspx?gr=cli&prod=ados2&id=overview (accessed on 1 February 2013).
- Rutter, M.; Le Couteur, A.; Lord, C. Autism diagnostic interview-revised. Los Angeles CA West. Psychol. Serv. 2003, 29, 30. [Google Scholar]
- Rutter, M.; Bailey, A.; Lord, C. SCQ: The Social Communication Questionnaire. In Manual; Western Psychological Services: Los Angeles, CA, USA, 2003. [Google Scholar]
- Rahbar, M.H.; Samms-Vaughan, M.; Ma, J.; Bressler, J.; Dickerson, A.S.; Hessabi, M.; Loveland, K.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Synergic effect of GSTP1 and blood manganese concentrations in Autism Spectrum Disorder. Res. Autism. Spectr. Disord. 2015, 18, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Meeker, J.D.; Sathyanarayana, S.; Swan, S.H. Phthalates and other additives in plastics: Human exposure and associated health outcomes. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2097–2113. [Google Scholar] [CrossRef] [Green Version]
- Pearce, N. Analysis of matched case-control studies. BMJ 2016, 352, i969. [Google Scholar] [CrossRef] [Green Version]
- Kleinbaum, D.; Klein, M. Logistic Regression: A Self-Learning Text, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- SAS Institute. SAS 9.4 Online Documentation; SAS Institute: Cary, NC, USA, 2013. [Google Scholar]
- Rooney, J.P. The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 2007, 234, 145–156. [Google Scholar] [CrossRef]
- Gundacker, C.; Wittmann, K.J.; Kukuckova, M.; Komarnicki, G.; Hikkel, I.; Gencik, M. Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ. Res. 2009, 109, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, R.P.; Goodrich, J.M.; Chou, H.N.; Gruninger, S.E.; Dolinoy, D.C.; Franzblau, A.; Basu, N. Genetic polymorphisms are associated with hair, blood, and urine mercury levels in the American Dental Association (ADA) study participants. Environ. Res. 2016, 149, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Gundacker, C.; Gencik, M.; Hengstschläger, M. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: Mercury and lead. Mutat. Res. 2010, 705, 130–140. [Google Scholar] [CrossRef]
- Al-Gadani, Y.; El-Ansary, A.; Attas, O.; Al-Ayadhi, L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin. Biochem. 2009, 42, 1032–1040. [Google Scholar] [CrossRef]
- Al-Yafee, Y.A.; Al-Ayadhi, L.Y.; Haq, S.H.; El-Ansary, A.K. Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia. BMC Neurol. 2011, 11, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyman, M.H. The impact of mercury on human health and the environment. Altern. Ther. Health Med. 2004, 10, 70–75. [Google Scholar]
- Morris, G.; Anderson, G.; Dean, O.; Berk, M.; Galecki, P.; Martin-Subero, M.; Maes, M. The glutathione system: A new drug target in neuroimmune disorders. Mol. Neurobiol. 2014, 50, 1059–1084. [Google Scholar] [CrossRef]
- Farina, M.; Aschner, M.; Rocha, J.B. Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharm. 2011, 256, 405–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodrich, J.M.; Basu, N. Variants of glutathione s-transferase pi 1 exhibit differential enzymatic activity and inhibition by heavy metals. Toxicol. Vitr. Int. J. Publ. Assoc. Bibra 2012, 26, 630–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricketts, P.; Voutchkov, M.; Chan, H.M. Risk-Benefit Assessment for Total Mercury, Arsenic, Selenium, and Omega-3 Fatty Acids Exposure from Fish Consumption in Jamaica. Biol. Trace Elem. Res. 2019. [Google Scholar] [CrossRef]
- FAO. Fishery and aquaculture country profiles. In Jamaica. Country Profile Factsheet; The Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2016. In Contributing to Food Security and Nutrition for All; The Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; p. 200. [Google Scholar]
- Ricketts, P.; Fletcher, H.; Voutchkov, M. Factors associated with mercury levels in human placenta and the relationship to neonatal anthropometry in Jamaica and Trinidad & Tobago. Reprod. Toxicol. 2017, 71, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Washington State Deparment of Health. Health Benefits of Fish. Available online: http://www.doh.wa.gov/CommunityandEnvironment/Food/Fish/HealthBenefits (accessed on 28 August 2020).
- Mazahery, H.; Stonehouse, W.; Delshad, M.; Kruger, M.C.; Conlon, C.A.; Beck, K.L.; von Hurst, P.R. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials. Nutrients 2017, 9, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keenan, T.D.; Agrón, E.; Mares, J.A.; Clemons, T.E.; van Asten, F.; Swaroop, A.; Chew, E.Y. Adherence to a Mediterranean diet and cognitive function in the Age-Related Eye Disease Studies 1 & 2. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2020, 16, 831–842. [Google Scholar] [CrossRef]
- Santos-Lima, C.D.; Mourão, D.S.; Carvalho, C.F.; Souza-Marques, B.; Vega, C.M.; Gonçalves, R.A.; Argollo, N.; Menezes-Filho, J.A.; Abreu, N.; Hacon, S.S. Neuropsychological Effects of Mercury Exposure in Children and Adolescents of the Amazon Region, Brazil. Neurotoxicology 2020, 79, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Teisen, M.N.; Vuholm, S.; Niclasen, J.; Aristizabal-Henao, J.J.; Stark, K.D.; Geertsen, S.S.; Damsgaard, C.T.; Lauritzen, L. Effects of oily fish intake on cognitive and socioemotional function in healthy 8–9-year-old children: The FiSK Junior randomized trial. Am. J. Clin. Nutr. 2020, 112, 74–83. [Google Scholar] [CrossRef]
- De Sande, M.M.; van Buul, V.J.; Brouns, F.J. Autism and nutrition: The role of the gut-brain axis. Nutr. Res. Rev. 2014, 27, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Postorino, V.; Sanges, V.; Giovagnoli, G.; Fatta, L.M.; De Peppo, L.; Armando, M.; Vicari, S.; Mazzone, L. Clinical differences in children with autism spectrum disorder with and without food selectivity. Appetite 2015, 92, 126–132. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef]
- Martins, B.P.; Bandarra, N.M.; Figueiredo-Braga, M. The role of marine omega-3 in human neurodevelopment, including Autism Spectrum Disorders and Attention-Deficit/Hyperactivity Disorder—A review. Crit. Rev. Food Sci. Nutr. 2019, 1–16. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
Variables | Categories | ASD Case (n = 266) | TD Control (n = 266) | P-Value * |
---|---|---|---|---|
Child’s sex | Male | 217 (81.6) | 217 (81.6) | 1.00 |
Child’s age (months) | Age < 72 | 185 (69.5) | 190 (71.4) | 0.18 |
Age ≥ 72 | 81 (30.5) | 76 (28.6) | ||
Child’s race | Afro-Caribbean | 254 (95.5) | 258 (97.0) | 0.37 |
Maternal age a (at child’s birth) | Age < 35 | 215 (81.1) | 229 (87.7) | 0.03 |
Age ≥ 35 | 50 (18.9) | 32 (12.3) | ||
Parental education b (at child’s birth) | Both up to high school † | 98 (37.7) | 132 (52.0) | <0.01 |
At least one beyond high school †† | 162 (62.3) | 122 (48.0) | ||
Socioeconomic status (SES) | Car ownership | 150 (56.4) | 106 (39.9) | <0.01 |
GSTP1c | Ile/Ile | 68 (25.9) | 65 (24.4) | 0.58 |
Ile/Val | 144 (54.8) | 139 (52.3) | ||
Val/Val | 51 (19.4) | 62 (23.3) | ||
GSTM1d | DD f | 78 (29.7) | 62 (23.6) | 0.11 |
I/I or I/D g | 185 (70.3) | 201 (76.4) | ||
GSTT1e | DD f | 70 (26.6) | 65 (24.8) | 0.70 |
I/I or I/D g | 193 (73.4) | 197 (75.2) | ||
Blood Hg concentration (µg/L) mean (SD) h | 1.0 (1.3) | 1.0 (0.9) | 0.93 ** |
Exposure Variables | Category | ASD Case n (%) | TD Control n (%) | MOR | 95% CI | P-Value c | |
---|---|---|---|---|---|---|---|
Source of drinking water a | Piped water | 207 (77.8) | 226 (85.3) | 0.78 | (0.39, 1.56) | 0.48 | |
Source of water for cooking a | Piped water | 244 (91.7) | 252 (95.1) | 0.55 | (0.26, 1.15) | 0.11 | |
Fruits and vegetables consumption b | Root vegetables | Yam, sweet potato, or dasheen | 154 (58.1) | 174 (65.4) | 0.71 | (0.49, 1.02) | 0.07 |
Carrot or pumpkin | 204 (77.0) | 231 (86.8) | 0.52 | (0.33, 0.82) | 0.01 | ||
Leafy vegetables | Lettuce | 119 (44.9) | 167 (62.8) | 0.42 | (0.28, 0.63) | <0.01 | |
Callaloo, broccoli, or pakchoi | 192 (72.4) | 223 (83.8) | 0.48 | (0.31, 0.76) | <0.01 | ||
Cabbage | 128 (48.3) | 157 (59.0) | 0.60 | (0.42, 0.88) | <0.01 | ||
Fruits | Tomatoes | 151 (56.9) | 196 (73.7) | 0.46 | (0.32, 0.68) | <0.01 | |
Ackee | 119 (44.9) | 182 (68.4) | 0.32 | (0.21, 0.48) | <0.01 | ||
Avocado | 110 (41.5) | 173 (65.0) | 0.34 | (0.23, 0.51) | <0.01 | ||
Green banana | 153 (57.7) | 180 (67.7) | 0.63 | (0.44, 0.91) | 0.01 | ||
Fried plantains | 189 (71.3) | 228 (85.7) | 0.42 | (0.27, 0.66) | <0.01 | ||
Seafood consumption | High seafood consumption (more than 6 meals per week) | 58 (21.8) | 76 (28.6) | 0.67 | (0.44, 1.02) | 0.06 | |
Ate salt water fish | 170 (63.9) | 185 (69.6) | 0.73 | (0.49, 1.10) | 0.13 | ||
Ate fresh water fish (pond fish, tilapia) | 95 (35.7) | 86 (32.3) | 1.20 | (0.81, 1.77) | 0.37 | ||
Ate sardine, mackerel (canned fish) | 200 (75.2) | 227 (85.3) | 0.53 | (0.34, 0.82) | <0.01 | ||
Ate tuna (canned fish) | 80 (30.1) | 92 (34.6) | 0.80 | (0.55, 1.17) | 0.25 | ||
Ate salted fish (pickled mackerel) | 175 (65.8) | 214 (80.5) | 0.49 | (0.33, 0.72) | <0.01 | ||
Ate shellfish (lobsters, crabs) | 14 (5.3) | 36 (13.5) | 0.35 | (0.18, 0.68) | <0.01 | ||
Ate shrimp | 30 (11.3) | 46 (17.3) | 0.63 | (0.39, 1.02) | 0.06 |
Variables | Category | Yes | No | P-Value ** | |||
---|---|---|---|---|---|---|---|
Mean Hg * (μg/L) | N | Mean Hg * (μg/L) | N | ||||
ASD status | Autism Spectrum Disorder | 0.62 | 266 | 0.76 | 266 | <0.01 | |
Child’s age (months) | Age ≥ 72 | 1.07 | 157 | 0.57 | 375 | 0.05 | |
Child’s sex | Male | 0.71 | 434 | 0.62 | 98 | 0.16 | |
Socioeconomic status (SES) | Own a car | 0.64 | 256 | 0.73 | 276 | 0.20 | |
Maternal age a (at child’s birth) | ≥35 years | 0.55 | 82 | 0.71 | 444 | 0.06 | |
Parental education levels b (at child’s birth) | At least one of the parents had education beyond high school | 0.63 | 284 | 0.75 | 230 | 0.06 | |
Source of drinking water c | Piped water | 0.69 | 495 | 0.65 | 36 | 0.79 | |
Fruits and vegetables consumption d | Root vegetables | Yam, sweet potato, or dasheen | 0.75 | 328 | 0.60 | 203 | 0.03 |
Carrot or pumpkin | 0.70 | 435 | 0.65 | 96 | 0.60 | ||
Leafy vegetables | Lettuce | 0.75 | 286 | 0.62 | 245 | 0.10 | |
Callaloo, broccoli, or pak choi | 0.74 | 415 | 0.55 | 116 | 0.02 | ||
Cabbage | 0.77 | 285 | 0.61 | 246 | 0.03 | ||
Fruits | Tomatoes | 0.77 | 347 | 0.56 | 184 | <0.01 | |
Ackee | 0.75 | 301 | 0.62 | 230 | 0.08 | ||
Avocado | 0.76 | 283 | 0.62 | 248 | 0.06 | ||
Green banana | 0.74 | 333 | 0.61 | 198 | 0.06 | ||
Fried plantains | 0.74 | 417 | 0.53 | 114 | <0.01 | ||
Seafood consumption | High seafood consumption (more than 6 meals per week) | 0.87 | 134 | 0.63 | 398 | <0.01 | |
Ate salt water fish | 0.79 | 355 | 0.52 | 177 | <0.01 | ||
Ate fresh water fish (pond fish, tilapia) | 0.76 | 181 | 0.65 | 351 | 0.19 | ||
Ate sardine, mackerel (canned fish) | 0.74 | 427 | 0.50 | 105 | <0.01 | ||
Ate tuna (canned fish) | 0.79 | 172 | 0.64 | 360 | 0.07 | ||
Ate salted fish (pickled mackerel) | 0.73 | 389 | 0.58 | 143 | 0.03 | ||
Ate shellfish (lobsters, crabs) | 0.87 | 50 | 0.67 | 482 | 0.14 | ||
Ate shrimp | 0.80 | 76 | 0.67 | 456 | 0.19 | ||
Genes e | GSTT1 (I *) f | 0.70 | 384 | 0.66 | 134 | 0.61 | |
GSTM1 (I *) f | 0.70 | 382 | 0.67 | 138 | 0.71 | ||
GSTP1 (Ile/Ile) g | 0.77 | 132 | 0.66 | 394 | 0.17 | ||
GSTP1 (Val/Val) g | 0.59 | 111 | 0.72 | 415 | 0.14 | ||
GSTP1 (Ile/Val) g | 0.69 | 283 | 0.69 | 243 | 0.97 |
Models | Gene | (Column A) Genotypes Compared | Referent Genotypes | Group | Unadjusted (μg/L) a | Adjusted (μg/L) b | ||||
---|---|---|---|---|---|---|---|---|---|---|
Geometric Mean Hg of Children with Genotypes in Column A c | Geometric Mean Hg of Children with Referent Genotypes c | P-Value d | Geometric Mean Hg of Children with Genotypes in Column A c | Geometric Mean Hg of Children with Referent Genotypes c | P-Value d | |||||
Co-dominant e† | GSTP1 | Ile/Ile | Ile/Val | TD Control | 0.70 | 0.89 | 0.16 | 0.49 | 0.72 | 0.03 |
GSTP1 | Ile/Ile | Ile/Val | ASD Case | 0.87 | 0.54 | <0.01 | 0.73 | 0.48 | 0.01 | |
GSTP1 | Ile/Ile | Val/Val | TD Control | 0.70 | 0.57 | 0.28 | 0.49 | 0.51 | 0.85 | |
GSTP1 | Ile/Ile | Val/Val | ASD Case | 0.87 | 0.62 | 0.11 | 0.73 | 0.66 | 0.62 | |
GSTP1 | Ile/Val | Val/Val | TD Control | 0.89 | 0.57 | <0.01 | 0.72 | 0.51 | 0.04 | |
GSTP1 | Ile/Val | Val/Val | ASD Case | 0.54 | 0.62 | 0.45 | 0.48 | 0.66 | 0.10 | |
Dominant f⸶ | GSTP1DOM | Ile/Val or Val/Val | Ile/Ile | TD Control | 0.78 | 0.70 | 0.53 | 0.67 | 0.51 | 0.11 |
GSTP1DOM | Ile/Val or Val/Val | Ile/Ile | ASD Case | 0.56 | 0.85 | 0.01 | 0.54 | 0.74 | 0.06 | |
Recessive g⸷ | GSTP1REC | Val/Val | Ile/Ile or Ile/Val | TD Control | 0.57 | 0.83 | 0.03 | 0.51 | 0.64 | 0.20 |
GSTP1REC | Val/Val | Ile/Ile or Ile/Val | ASD Case | 0.63 | 0.63 | 0.99 | 0.66 | 0.56 | 0.37 | |
Recessive ⸸ | GSTT1 | I/I or I/D | DD | TD Control | 0.77 | 0.74 | 0.79 | 0.61 | 0.63 | 0.83 |
I/I or I/D | DD | ASD Case | 0.64 | 0.59 | 0.67 | 0.59 | 0.55 | 0.67 | ||
Recessive ‡ | GSTM1 | I/I or I/D | DD | TD Control | 0.73 | 0.87 | 0.30 | 0.63 | 0.66 | 0.81 |
I/I or I/D | DD | ASD Case | 0.66 | 0.53 | 0.14 | 0.63 | 0.49 | 0.09 |
Gene | Models | (Column A) Group Compared | Referent Group | GSTP1 Genotypes | Unadjusted Model (μg/L) a | Adjusted Model (μg/L) b | ||||
---|---|---|---|---|---|---|---|---|---|---|
Geometric Mean Hg of Children with Group Compared in Column A c | Geometric Mean Hg of Children with Referent Group c | P-Value d | Geometric Mean Hg of Children with Group Compared in Column A c | Geometric Mean Hg of Children with Referent Group c | P-Value d | |||||
GSTP1 | Co-dominant e† | ASD Case | TD Control | Ile/Ile | 0.87 | 0.70 | 0.24 | 0.73 | 0.49 | 0.02 |
ASD Case | TD Control | Ile/Val | 0.54 | 0.89 | <0.01 | 0.48 | 0.72 | <0.01 | ||
ASD Case | TD Control | Val/Val | 0.62 | 0.57 | 0.63 | 0.66 | 0.51 | 0.16 | ||
Dominant f⸶ | ASD Case | TD Control | Ile/Ile | 0.85 | 0.70 | 0.29 | 0.74 | 0.51 | 0.04 | |
ASD Case | TD Control | Val/Val or Ile/Val | 0.56 | 0.78 | <0.01 | 0.54 | 0.67 | 0.01 | ||
Recessive g⸷ | ASD Case | TD Control | Val/Val | 0.63 | 0.57 | 0.65 | 0.66 | 0.51 | 0.10 | |
ASD Case | TD Control | Ile/Ile or Ile/Val | 0.63 | 0.83 | <0.01 | 0.56 | 0.64 | 0.21 | ||
GSTT1 | Recessive⸸ | ASD Case | TD Control | DD | 0.59 | 0.74 | 0.24 | 0.55 | 0.63 | 0.44 |
ASD Case | TD Control | I/I or I/D | 0.64 | 0.77 | 0.04 | 0.59 | 0.61 | 0.70 | ||
GSTM1 | Recessive‡ | ASD Case | TD Control | DD | 0.53 | 0.87 | <0.01 | 0.49 | 0.66 | 0.10 |
ASD Case | TD Control | I/I or I/D | 0.66 | 0.73 | 0.29 | 0.63 | 0.63 | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahbar, M.H.; Samms-Vaughan, M.; Saroukhani, S.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakspeare-Pellington, S.; Loveland, K.A.; Beecher, C.; McLaughlin, W. Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2021, 18, 1377. https://doi.org/10.3390/ijerph18041377
Rahbar MH, Samms-Vaughan M, Saroukhani S, Bressler J, Hessabi M, Grove ML, Shakspeare-Pellington S, Loveland KA, Beecher C, McLaughlin W. Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. International Journal of Environmental Research and Public Health. 2021; 18(4):1377. https://doi.org/10.3390/ijerph18041377
Chicago/Turabian StyleRahbar, Mohammad H., Maureen Samms-Vaughan, Sepideh Saroukhani, Jan Bressler, Manouchehr Hessabi, Megan L. Grove, Sydonnie Shakspeare-Pellington, Katherine A. Loveland, Compton Beecher, and Wayne McLaughlin. 2021. "Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder" International Journal of Environmental Research and Public Health 18, no. 4: 1377. https://doi.org/10.3390/ijerph18041377
APA StyleRahbar, M. H., Samms-Vaughan, M., Saroukhani, S., Bressler, J., Hessabi, M., Grove, M. L., Shakspeare-Pellington, S., Loveland, K. A., Beecher, C., & McLaughlin, W. (2021). Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. International Journal of Environmental Research and Public Health, 18(4), 1377. https://doi.org/10.3390/ijerph18041377