The Effects of Exergaming Training on Balance in Healthy Elderly Women—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Intervention
2.4. Outcomes
2.5. Statistical Analysis
2.6. Sample Size
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horak, F.B.; Henry, S.M.; Shumway-Cook, A. Postural perturbations: New insights for treatment of balance disorders. Phys. Ther. 1997, 77, 517–533. [Google Scholar] [CrossRef] [PubMed]
- Adkin, A.L.; Frank, J.S.; Carpenter, M.G.; Peysar, G.W. Postural control is scaled to level of postural threat. Gait Posture 2000, 12, 87–93. [Google Scholar] [CrossRef]
- Tuunainen, E.; Rasku, J.; Jäntti, P.; Pyykkö, I. Risk factors of falls in community dwelling active elderly. Auris Nasus Larynx 2014, 41, 10–16. [Google Scholar] [CrossRef]
- Faraldo-García, A.; Santos-Pérez, S.; Crujeiras, R.; Soto-Varela, A. Postural changes associated with ageing on the sensory organization test and the limits of stability in healthy subjects. Auris Nasus Larynx 2016, 43, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Pompeu, J.E.; Arduini, L.A.; Botelho, A.R.; Fonseca, M.B.F.; Pompeu, S.M.A.A.; Torriani-Pasin, C.; Deutsch, J.E. Feasibility, safety and outcomes of playing Kinect Adventures for people with Parkinson’s disease: A pilot study. Physiotherapy 2014, 100, 162–168. [Google Scholar] [CrossRef]
- Kafri, M.; Myslinski, M.J.; Gade, V.K.; Deutsch, J.E. Energy expenditure and exercise intensity of interactive video gaming in individuals poststroke. Neurorehabilit. Neural Repair 2014, 28, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Dockx, K.; Bekkers, E.M.; Van den Bergh, V.; Ginis, P.; Rochester, L.; Hausdorff, J.M.; Mirelman, A.; Nieuwboer, A. Virtual reality for rehabilitation in Parkinson’s disease (Review). Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Wang, B.; Shen, M.; Wang, Y.; He, Z.; Chi, S.; Yang, Z. Effect of virtual reality on balance and gait ability in patients with Parkinson’s disease: A systematic review and meta-analysis. Clin. Rehabil. 2019, 33, 1130–1138. [Google Scholar] [CrossRef]
- Virk, S.; McConville, K.M.V. Virtual Reality Applications in Improving Postural Control and Minimizing Falls. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2694–2697. [Google Scholar]
- Duque, G.; Boersma, D.; Loza-Diaz, G.; Hassan, S.; Suarez, H.; Geisinger, D.; Suriyaarachchi, P.; Sharma, A.; Demontiero, O. Effects of balance training using a virtual-reality system in older fallers. Clin. Interv. Aging 2013, 8, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Cho, G.H.; Hwangbo, G.; Shin, H.S. The Effects of Virtual Reality-based Balance Training on Balance of the Elderly. J. Phys. Ther. Sci. 2014, 26, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Wüest, S.; Borghese, N.; Pirovano, M.; Mainetti, R.; van de Langenberg, R.; de Bruin, E.D. Usability and effects of an exergame-based balance training program. Games Health J. 2014, 3, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.; Cho, J.-J.; Kim, J.; Kim, Y.; Yoon, B. Design of virtual reality training program for prevention of falling in the elderly: A pilot study on complex versus balance exercises. Eur. J. Integr. Med. 2017, 15, 64–67. [Google Scholar] [CrossRef]
- Sápi, M.; Domján, A.; Fehérné Kiss, A.; Pintér, S. Is kinect training superior to conventional balance training for healthy older adults to improve postural control? Games Health J. 2019, 8, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kostiukow, A.; Rostkowska, E.; Samborski, W. Assessment of postural balance function. Ann. Acad. Med. Stetin. 2009, 55, 102–109. [Google Scholar]
- Fang, Q.; Shirley, R.; Fang, F.; Fang, C. Effects of Exergaming on Balance of Healthy Older Adults. Games Health J. 2019, 8. [Google Scholar] [CrossRef] [Green Version]
- de Amorim, J.S.C.; Leite, R.C.; Brizola, R.; Yonamine, C.Y. Virtual reality therapy for rehabilitation of balance in the elderly: A systematic review and META-analysis. Adv. Rheumatol. 2018, 58, 18. [Google Scholar] [CrossRef] [Green Version]
- Van den Heuvel, M.R.C.; Kwakkel, G.; Beek, P.J.; Berendse, H.W.; Daffertshofer, A.; van Wegen, E.E.H. Effects of augmented visual feedback during balance training in Parkinson’s disease: A pilot randomized clinical trial. Park. Relat. Disord. 2014, 20, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, M.; Giannoudis, P.V. Evidence-based medicine: What it is and what it is not. Injury 2006, 37, 302–306. [Google Scholar] [CrossRef]
- Phu, S.; Vogrin, S.; Al Saedi, A.; Duque, G. Balance training using virtual reality improves balance and physical performance in older adults at high risk of falls. Clin. Interv. Aging 2019, 14, 1567–1577. [Google Scholar] [CrossRef] [Green Version]
- Hue, O.A.; Seynnes, O.; Ledrole, D.; Colson, S.S.; Bernard, P.L. Effects of a physical activity program on postural stability in older people. Aging Clin. Exp. Res. 2004, 16, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Melzer, I.; Benjuya, N.; Kaplanski, J. Effect of physical training on postural control of elderly. Harefuah 2005, 144, 839–844. [Google Scholar] [PubMed]
- Ledin, T.; Kronhed, A.C.; Möller, C.; Möller, M.; Ödkvist, L.M.; Ollson, B. Effects of balance training in elderly evaluated by clinical tests and dynamic posturography. J. Vestib. Res. 1990, 1, 129–138. [Google Scholar] [PubMed]
- Martínez-Amat, A.; Hita-Contreras, F.; Lomas-Vega, R.; Caballero-Martínez, I.; Alvarez, P.J.; Martínez-López, E. Effects of 12-week proprioception training program on postural stability, gait, and balance in older adults: A controlled clinical trial. J. Strength Cond. Res. 2013, 27, 2180–2188. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Rose, D.J.; Fujimoto, K. Generalizability of the limits of stability test in the evaluation of dynamic balance among older adults. Arch. Phys. Med. Rehabil. 1997, 78, 1078–1084. [Google Scholar] [CrossRef]
- Wallmann, H.W. Comparison of elderly nonfallers and fallers on performance measures of functional reach, sensory organization, and limits of stability. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, 580–583. [Google Scholar] [CrossRef] [Green Version]
- Juras, G.; Słomka, K.; Fredyk, A.; Sobota, G.; Bacik, B. Evaluation of the Limits of Stability (LOS) Balance Test. J. Hum. Kinet. 2008, 19, 39–52. [Google Scholar] [CrossRef]
- Stemplewski, R.; Maciaszek, J.; Osiński, W.; Szeklicki, R. Test-Retest Reliability of Measurements of the Center of Pressure Displacement in Quiet Standing and During Maximal Voluntary Body Leaning Among Healthy Elderly Men. J. Hum. Kinet. 2011, 28, 15–23. [Google Scholar] [CrossRef]
- Słomka, J.K.; Michalska, J.; Marszałek, W.; Bacik, B.; Juras, G. Forward functional stability indicator ( FFSI ) as a reliable measure of limits of stability. MethodsX 2020, 7, 10–16. [Google Scholar] [CrossRef]
- Marszałek, W.; Bieniek, A.; Pawłowski, M.; Słomka, K.; Gzik, M.; Juras, G. Reliability of a New Diagnostic Test for a Functional Balance Measurement. In Proceedings of the International Conference of The Polish Society of Biomechanics—Biomechanics 2018, Zielona Góra, Poland, 5–7 September 2018; pp. 2–3. [Google Scholar]
- Baloh, R.W.; Fife, T.D.; Zwerling, L.; Socotch, T.; Jacobson, K.; Bell, T.; Beykirch, K. Comparison of Static and Dynamic Posturography in Young and Older Normal People. J. Am. Geriatr. Soc. 1994, 42, 405–412. [Google Scholar] [CrossRef]
- Maki, B.E.; Holliday, P.J.; Topper, A.K. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. 1994, 49, M72–M84. [Google Scholar] [CrossRef] [PubMed]
- Pizzigalli, L.; Micheletti Cremasco, M.; Mulasso, A.; Rainoldi, A. The Contribution of Postural Balance Analysis in Older Adult Fallers: A Narrative Review; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 20, ISBN 3901177647. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Błaszczyk, J.W. The use of force-plate posturography in the assessment of postural instability. Gait Posture 2016, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Raymakers, J.A.; Samson, M.M.; Verhaar, H.J.J. The assessment of body sway and the choice of the stability parameter(s). Gait Posture 2005, 21, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyk, J.; Lowe, D.; Hansen, P. Ranges of postural stability and their changes in the elderly. Gait Posture 1994, 2, 11–17. [Google Scholar] [CrossRef]
- Lajoie, Y. Effect of computerized feedback postural training on posture and attentional demands in older adults. Aging Clin. Exp. Res. 2004, 16, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Bisson, E.; Contant, B.; Sveistrup, H.; Lajoie, Y. Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training. Cyberpsychol. Behav. 2007, 10, 16–23. [Google Scholar] [CrossRef]
- Jorgensen, M.G.; Laessoe, U.; Hendriksen, C.; Bruno, O.; Nielsen, F. Efficacy of Nintendo Wii Training on Mechanical Leg Muscle Function and Postural Balance in Community-Dwelling Older Adults: A Randomized Controlled Trial. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2013, 68, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Esculier, J.F.; Vaudrin, J.; Bériault, P.; Gagnon, K.; Tremblay, L.E. Home-based balance training programme using Wii Fit with balance board for Parkinson’s disease: A pilot study. J. Rehabil. Med. 2012, 44, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Ordnung, M.; Hoff, M.; Kaminski, E.; Villringer, A. No Overt Effects of a 6-Week Exergame Training on Sensorimotor and Cognitive Function in Older Adults. A Preliminary Investigation. Front. Hum. Neurosci. 2017, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Park, E.C.; Kim, S.G.; Lee, C.W. The effects of virtual reality game exercise on balance and gait of the elderly. J. Phys. Ther. Sci. 2015, 27, 1157–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluchino, A.; Lee, S.Y.; Asfour, S.; Roos, B.A.; Signorile, J.F. Pilot study comparing changes in postural control after training using a video game balance board program and 2 standard activity-based balance intervention programs. Arch. Phys. Med. Rehabil. 2012, 93, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
Variables | Baseline | After 6 Session | After 12 Session | p-Value | Effect Size |
---|---|---|---|---|---|
Me (IQR) | Me (IQR) | Me (IQR) | |||
Functional Balance Test | |||||
FtCOP (s) | 2.69 ± 0.5 2.52 (2–3) | 2.28 ± 0.3 * 2.27 (2–3) | 2.38 ± 0.3 2.34 (2–3) | 0.001 | 0.49 |
FvCOP (mm/s) | 64.86 ± 16.7 59.66 (53–73) | 73.87 ± 17.1 69.45 (63–82) | 73.87 ± 15.4 74.56 (66–81) | 0.053 | 0.22 |
FoCOP (%) | 216.24 ± 67.2 205.46 (166–267) | 188.65 ± 70.5 204.34 (174–212) | 213.03 ± 59.8 199.78 (177–242) | 0.28 | 0.1 |
Quiet Standing Eyes Open | |||||
raCOP_ap (mm) | 22.81 ± 7.34 23.11 (21–26) | 23.83 ± 9.36 26.04 (15–28) | 24.29 ± 6.39 24.95 (18–29) | 0.64 | 0.03 |
raCOP_ml (mm) | 11.9 ± 4.32 12.81 (8–16) | 10.31 ± 4.03 9.05 (8–14) | 12.8 ± 6.31 11.04 (10–13) | 0.10 | 0.07 |
vCOP_ap (mm/s) | 8.22 ± 3.4 8.02 (6–10) | 8.15 ± 3.12 6.83 (6–11) | 7.9 ± 2.74 7.5 (6–11) | 0.77 | 0.02 |
vCOP_ml (mm/s) | 4.66 ± 2.27 4.36 (3–7) | 3.83 ± 1.49 3.27 (2–5) | 4.55 ± 2.95 4 (3–5) | 0.36 | 0.07 |
Quiet Standing Eyes Closed | |||||
raCOP_ap (mm) | 24.43 ± 9.43 21.33 (21–28) | 24.62 ± 8.45 22.97 (18–33) | 24.44 ± 6.76 23.17 (22–26) | 0.99 | 0.005 |
raCOP_ml (mm) | 12.79 ± 4.85 12.52 (9–16) | 11.89 ± 5.12 10.21 (9–13) | 13.09 ± 8.01 10.33 (8–15) | 0.92 | 0.02 |
vCOP_ap (mm/s) | 11.88 ± 6.47 10.22 (8–13) | 11.56 ± 6.1 8.86 (8–13) | 10.73 ± 5.41 9.4 (7–12) | 0.11 | 0.07 |
vCOP_ml (mm/s) | 5.52 ± 2.8 4.68 (3–8) | 4.58 ± 2.23 4.2 (3–6) | 5.14 ± 3.46 4.65 (3–6) | 0.19 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brachman, A.; Marszałek, W.; Kamieniarz, A.; Michalska, J.; Pawłowski, M.; Akbaş, A.; Juras, G. The Effects of Exergaming Training on Balance in Healthy Elderly Women—A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 1412. https://doi.org/10.3390/ijerph18041412
Brachman A, Marszałek W, Kamieniarz A, Michalska J, Pawłowski M, Akbaş A, Juras G. The Effects of Exergaming Training on Balance in Healthy Elderly Women—A Pilot Study. International Journal of Environmental Research and Public Health. 2021; 18(4):1412. https://doi.org/10.3390/ijerph18041412
Chicago/Turabian StyleBrachman, Anna, Wojciech Marszałek, Anna Kamieniarz, Justyna Michalska, Michał Pawłowski, Anna Akbaş, and Grzegorz Juras. 2021. "The Effects of Exergaming Training on Balance in Healthy Elderly Women—A Pilot Study" International Journal of Environmental Research and Public Health 18, no. 4: 1412. https://doi.org/10.3390/ijerph18041412
APA StyleBrachman, A., Marszałek, W., Kamieniarz, A., Michalska, J., Pawłowski, M., Akbaş, A., & Juras, G. (2021). The Effects of Exergaming Training on Balance in Healthy Elderly Women—A Pilot Study. International Journal of Environmental Research and Public Health, 18(4), 1412. https://doi.org/10.3390/ijerph18041412