Mir-1, miR-122, miR-132, and miR-133 Are Related to Subclinical Aortic Atherosclerosis Associated with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selecting Patients with Metabolic Syndrome
2.2. Measurements of Arterial Markers
2.3. Sample Collection and miR Detection
2.4. Total Blood Cell Preparation
2.5. Serum Sample Preparation
2.6. Sample Testing
2.7. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Update, S. Heart disease and stroke statistics—At-a-glance heart disease, stroke and other cardiovascular diseases heart disease. Stroke Cardiovasc. Dis. Risk Factors 2015, 1, 7–10. [Google Scholar]
- Watchira, J.K.; Stys, T.P. Cardiovascular disease and bridging the diagnostic gap. S. D. Med. J. South Dakota State Med. Assoc. 2013, 66, 366–369. [Google Scholar]
- Raitoharju, E.; Oksala, N.; Lehtimaki, T. MicroRNAs in the atherosclerosis plaque. Clin. Chem. 2013, 59, 1708–1721. [Google Scholar] [CrossRef] [Green Version]
- Dawber, T.R.; Meadors, G.F.; Moore, F.E.J. Epidemiological approaches to heart disease: The Framingham Study. Am. J. Public Health 1951, 41, 279–286. [Google Scholar] [CrossRef]
- Beswick, A.; Brindle, P. Risk scoring in the assessment of cardiovascular risk. Curr. Opin. Lipidol 2006, 17, 375–386. [Google Scholar] [CrossRef]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death a systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Iglseder, B.; Cip, P.; Malaimare, L.; Ladurner, G.; Paulweber, B. The metabolic syndrome is a stronger risk factor for early carotid atherosclerosis in women than in men. Stroke 2005, 36, 1212–1217. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Brewer, H.B.; Cleeman, J.I.; Smith, S.C.; Lenfant, C. Definition of metabolic syndrome: Report of the national heart, lung, and blood institute/american heart association conference on scientific issues related to definition. Arter. Thromb Vasc Biol. 2004, 24, e13–e18. [Google Scholar]
- Sun, C.-K. Cardio-ankle vascular index (CAVI) as an indicator of arterial stiffness. Integrated Blood Pressure Control. 2013, 6, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, B.; Klein, J.; Friedrich, C.; Frost, S.; Pfützner, A.; Kann, P.H.; Weber, M.M.; Forst, T. Increased arterial augmentation and augmentation index as surrogate parameters for arteriosclerosis in subjects with diabetes mellitus and nondiabetic subjects with cardiovascular disease. J. Diabetes Sci. Technol. 2007, 1, 260–263. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Sun, Z.; Li, J.; Zhang, R.; Zhang, X.; Liu, S.; Li, J.; Xu, C.; Hu, D.; Sun, Y. Pulse pressure and mean arterial pressure in relation to ischemic stroke among patients with uncontrolled hypertension in rural areas of china. Stroke 2008, 39, 1932–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amier, R.P.; Nijveldt, R. Clinical value of pulse wave velocity: A promising marker for arterial stiffness. Netherlands Heart J. 2015, 23, 491–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della-Morte, D.; Gardener, H.; Denaro, F.; Boden-Albala, D.; Elkind, M.S.V.; Paik, M.C.; Sacco, R.L.; Rundek, T. Metabolic syndrome increases carotid artery stiffness: The northern Manhattan study. Int. J. Stroke Off. J. Int. Stroke Soc. 2010, 5, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.-H.; Liao, J.-N.; Yu, W.-C.; Cheng, H.-M.; Chen, C.-H. Common carotid artery stiffness is associated with left ventricular structure and function and predicts first hospitalization for acute heart failure. Pulse 2014, 2, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Thijssen, D.H.J.; Black, M.A.; Pyke, K.E.; Padilla, A.; Atkinson, G.; Harris, R.A.; Parker, B.; Widlansky, M.E.; Tschakovsky, M.E.; Green, D.J. Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. Am. J. Physiol. Heart Circ. Physiol. 2011, 300, H2–H12. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Fichtlscherer, S.; De Rosa, S.; Fox, H.; Schwietz, T.; Fischer, A.; Liebetrau, C.; Weber, M.; Hamm, C.W.; Röxe, T.; Müller-Ardogan, M.; et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 2010, 107, 677–684. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Cao, H.; Zhuang, J.; Wan, J.; Guan, M.; Yu, B.; Li, X.; Zhang, W. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans. Clin. Chim. Acta. Neth. 2011, 412, 66–70. [Google Scholar] [CrossRef]
- Weber, M.; Baker, M.B.; Patel, R.S.; Quyyumi, A.A.; Bao, G.; Searles, C.D. MicroRNA expression profile in CAD patients and the Impact of ACEI/ARB. Cardiology Res. Pr. 2011, 2011, 532915. [Google Scholar] [CrossRef] [Green Version]
- Taurino, C.; Miller, W.H.; McBride, M.W.; McClure, J.D.; Khanin, R.; Moreno, M.U.; Dymott, J.A.; Delles, C.; Dominiczak, A.F. Gene expression profiling in whole blood of patients with coronary artery disease. Clin. Sci. (Lond.) 2010, 119, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; He, H.W.; Wang, Z.M.; Zhao, H.; Lian, X.Q.; Wang, Y.S.; Zhu, J.; Yan, J.J.; Zhang, D.G.; Yang, Z.J.; et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis. 2012, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhu, J.; Zhang, W.; Chen, Y.; Zhang, K.; Popescu, L.M.; Ma, X.; Lau, W.B.; Rong, R.; Yu, X.; et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011, 124, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Karolina, D.S.; Armugam, A.; Tavintharan, S.; Wong, M.T.K.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS ONE 2011, 6, e22839. [Google Scholar] [CrossRef]
- Karolina, D.S.; Tavintharan, S.; Armugam, A.; Sepramaniam, S.; Pek, S.L.T.; Wong, M.T.; Lim, S.C.; Sum, C.F.; Jeyaseelan, K. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol Metab. 2012, 97, E2271–E2276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; et al. Plasma MicroRNA profiling reveals loss of endothelial MiR-126 and other MicroRNAs in type 2 diabetes. Circ. Res. 2010, 107, 810–817. [Google Scholar] [CrossRef]
- Kong, L.; Zhu, J.; Han, W.; Jiang, X.; Xu, M.; Zhao, Y.; Dong, Q.; Pang, Z.; Guan, Q.; Gao, L.; et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: A clinical study. Acta Diabetol. 2011, 48, 61–69. [Google Scholar] [CrossRef]
- Navickas, R.; Gal, D.; Laucevičius, A.; Taparauskaitė, A.; Zdanytė, M.; Holvoet, P. Identifying circulating microRNAs as biomarkers of cardiovascular disease: A systematic review. Cardiovasc. Res. 2016, 111, 322–337. [Google Scholar] [CrossRef]
- Tune, J.D.; Goodwill, A.G.; Sassoon, D.J.; Mather, K.J. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017, 183, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Bundhun, P.K.; Wu, Z.J.; Chen, M.-H. Impact of modifiable cardiovascular risk factors on mortality after percutaneous coronary intervention: A systematic review and meta-analysis of 100 studies. Medicine 2015, 94, e2313. [Google Scholar] [CrossRef]
- Sperling, L.S.; Mechanick, J.I.; Neeland, I.J.; Herrick, C.J.; Després, J.P.; Ndumele, C.E.; Vijayaraghavan, K.; Handelsman, Y.; Puckrein, G.A.; Araneta, M.R.; et al. The cardiometabolic health alliance: Working toward a new care model for the metabolic syndrome. Am. Coll Cardiol. 2015, 66, 1050–1067. [Google Scholar] [CrossRef] [Green Version]
- Laucevicius, A.; Kasiulevicius, V.; Jatuzis, D.; Petrulioniene, Z.; Ryliskyte, L.; Rinkuniene, E.; Badariene, J.; Cypiene, A.; Gustiene, O.; Slapikas, R. Lithuanian high cardiovascular risk (lithir) primary prevention programme—rationale and design. Semin. Cardiovasc. Med. 2012, 18, 3. [Google Scholar] [CrossRef]
- Conroy, R.M.; Pyorala, K.; Fitzgerald, A.P.; Sans, S.; Menotti, A.; De Backer, G.; De Bacquer, D.; Ducimetière, P.; Jousilahti, P.; Keil, U.; et al. On behalf of the SCORE project group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart, J. 2003, 24, 987–1003. [Google Scholar] [CrossRef]
- Cleeman, J.I.; Grundy, S.M.; Becker, D.; Clark, L. Expert panel on detection evaluation and treatment of high blood, cholesterol in adults: Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 2001, 285, 2486–2497. [Google Scholar]
- Sato, F.; Tsuchiya, S.; Terasawa, K.; Tsujimoto, G. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS ONE 2009, 4, e5540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Howel, P.; Bruheim, S.; Ju, J.; Owen, L.B.; Fodstad, O.; Xi, Y. Systematic evaluation of three microRNA profiling platforms: Microarray, beads array, and quantitative real-time PCR array. PLoS ONE 2011, 6, e17167. [Google Scholar] [CrossRef]
- Chen, Y.; Gelfond, J.A.; McManus, L.M.; Shireman, P.K. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. Bmc Genom. 2009, 10, 407. [Google Scholar] [CrossRef] [Green Version]
- Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009, 10, R64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, B.; Murata, M.; Said, A.S.; Sakaida, H.; Masuda, S.; Takahashi, T.; Zhang, Z.; Takeuchi, K. Changes of micro-RNAs in asymptomatic subjects sensitized to Japanese cedar pollen after prophylactic sublingual immunotherapy. Allergy Rhinol. 2015, 6, e33–e38. [Google Scholar] [CrossRef] [Green Version]
- Barry, S.E.; Chan, B.; Ellis, M.; Yang, Y.; Plit, M.L.; Guan, G.; Wang, X.; Britton, W.J.; Saunders, B.M. Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients. J. Cell. Mol. Med. 2015, 19, 1606–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbi, S.; Shamsara, M.; Khateri, S.; Soroush, M.R.; Ghorbanmehr, N.; Tavallaei, M.; Nourani, M.R.; Mowla, S.J. Identification of reliable reference genes for quantification of micrornas in serum samples of sulfur mustard-exposed veterans. Cell J. (Yakhteh) 2015, 17, 494–501. [Google Scholar]
- Ouyang, X.; Jiang, X.; Gu, D.; Zhang, Y.; Kong, S.K.; Jiang, C.; Xie, W. Dysregulated serum MiRNA profile and promising biomarkers in dengue-infected patients. Int. J. Med Sci. 2016, 13, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhu, Y.; Jin, F.; Tang, L.; He, Z.; He, Z. Differential expression of circulating microRNAs in blood and haematoma samples from patients with intracerebral haemorrhage. Journal of International Medical Research 2016, 44, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Schwarzenbach, H.; da Silva, A.M.; Calin, G.; Pantel, K. Data normalization strategies for MicroRNA quantification. J. Clin. Chem. 2015, 61, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice. Chapter 2.5 Evaluating Forecast Accuracy. OTexts. 2013. Available online: http://otexts.org/fpp (accessed on 25 April 2017).
- Hastie, T.; Tibshirani, R.; Friedman, J.J. The Elements of Statistical Learning: Data Mining, Inference, And Prediction, 2nd ed.; Springer Series in Statistics: New York, NY, USA, 2009; pp. 44–61. [Google Scholar]
- Menard, S.W. Applied Logistic Regression, 2nd ed.; SAGE: Newbury Park, CA, USA, 2002. [Google Scholar]
- Lin, C.-Y.; Lee, H.-C.; Fu, C.-Y.; Ding, Y.-Y.; Chen, J.-S.; Lee, M.-H.; Huang, W.-J.; Tsai, H.-J. MiR-1 and miR-206 target different genes to have opposing roles during angiogenesis in zebrafish embryos. Nat. Commun. 2013, 4, 2829. [Google Scholar] [CrossRef] [Green Version]
- Soufi-Zomorrod, M.; Hajifathali, A.; Kouhkan, F.; Mehdizadeh, M.; Rad, S.M.A.H.; Soleimani, M. MicroRNAs modulating angiogenesis: miR-129-1 and miR-133 act as angio-miR in HUVECs. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2016, 37, 9527–9534. [Google Scholar] [CrossRef] [PubMed]
- Torella, D.; Iaconetti, C.; Catalucci, D.; Ellison, G.M.; Leone, A.; Waring, C.D.; Bochicchio, A.; Vicinanza, C.; Aquila, I.; Curcio, A.; et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ. Res. 2011, 109, 880–893. [Google Scholar] [CrossRef] [Green Version]
- Glass, C.; Singla, D.K. MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. AJP Heart Circ. Physiol. 2011, 301, H2038–H2049. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Lu, Y.; Pan, Z.; Chu, W.; Luo, X.; Lin, H.; Xiao, J.; Shan, H.; Wang, Z.; Yang, B. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell Sci. 2007, 120 Pt 17, 3045–3052. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Cheng, H.; Yue, Y.; Li, S.; Zhang, D.; He, R. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc Pathol. 2018, 33, 6–15. [Google Scholar] [CrossRef]
- Yu, S.Y.; Dong, B.; Tang, L.; Zhou, S.H. LncRNA MALAT1 sponges miR-133 to promote NLRP3 inflammasome expression in ischemia-reperfusion injured heart. Int. J. Cardiol. 2018, 254, 50. [Google Scholar] [CrossRef]
- Gast, M.; Rauch, B.H.; Nakagawa, S.; Haghikia, A.; Jasina, A.; Haas, J.; Nath, N.; Jensen, L.; Stroux, A.; Böhm, A.; et al. Immune system-mediated atherosclerosis caused by deficiency of long non-coding RNA MALAT1 in ApoE-/-mice. Cardiovasc Res. 2019, 115, 302–314. [Google Scholar] [CrossRef]
- Youyou, Y.; Bin, Z.; Ning, L.; Chao, Q.; Yanlong, X.; Xin, T.; Tianyi, L.; Bin, L. Circulating long non-coding RNA UCA1 as a novel biomarker of acute myocardial infarction. Biomed Res. Int. 2016, 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Carè, A.; Catalucci, D.; Felicetti, F.; Bonci, D.; Addario, A.; Gallo, P.; Bang, M.L.; Segnalini, P.; Gu, Y.; Dalton, N.D.; et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 2007, 13, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Matkovich, S.J.; Wang, W.; Tu, Y.; Eschenbacher, W.H.; Dorn, L.E.; Condorelli, G.; Diwan, A.; Nerbonne, J.M.; Dorn, G.W. 2nd. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ. Res. 2010, 106, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Castoldi, G.; Di Gioia, C.R.; Bombardi, C.; Catalucci, D.; Corradi, B.; Gualazzi, M.G.; Leopizzi, M.; Mancini, M.; Zerbini, G.; Condorelli, G.; et al. MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J. Cell Physiol. 2012, 227, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Puthanveetil, P.; Feng, B.; Matkovich, S.J.; Dorn, G.W., 2nd; Chakrabarti, S. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J. Cell Mol. Med. 2014, 18, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, J.; López, B.; Hermida, N.; Schroen, B.; San José, G.; Heymans, S.; Valencia, F.; Gómez-Doblas, J.J.; De Teresa, E.; Díez, J.; et al. microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation. Clin. Sci. (Lond.) 2014, 126, 497–506. [Google Scholar] [CrossRef]
- Novák, J.; Olejníčková, V.; Tkáčová, N.; Santulli, G. Mechanistic role of micrornas in coupling lipid metabolism and atherosclerosis. Adv. Exp. Med. Biol. 2015, 887, 79–100. [Google Scholar] [CrossRef] [Green Version]
- Nemecz, M.; Alexandru, N.; Tanko, G.; Georgescu, A. Role of MicroRNA in endothelial dysfunction and hypertension. Curr. Hypertens Rep. 2016, 18, 87. [Google Scholar] [CrossRef]
- Yang, Z.; Venardos, K.; Jones, E.; Morris, B.J.; Chin-Dusting, J. Identification of a novel polymorphism in the 3′UTR of the L-arginine transporter gene SLC7A1: Contribution to hypertension and endothelial dysfunction. Circulation 2007, 115, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Huang, F.; Liu, X.; Xiao, X.; Yang, M.; Hu, G.; Liu, H.; Liao, L. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR. Int J. Mol. Med. 2015, 35, 847–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdmanis, P.N.; Kim, H.K.; Chu, K.; Zhang, F.; Xu, J.; Munding, E.M.; Shen, J.; Kay, M.A. miR-122 removal in the liver activates imprinted microRNAs and enables more effective microRNA-mediated gene repression. Nat. Commun. 2018, 9, 5321. [Google Scholar] [CrossRef]
- Noh, K.; Kim, M.; Kim, Y.; Kim, H.; Kim, H.; Byun, J.; Park, Y.; Lee, H.; Lee, Y.S.; Choe, J.; et al. miR-122-SOCS1-JAK2 axis regulates allergic inflammation and allergic inflammation-promoted cellular interactions. Oncotarget 2017, 8, 63155–63176. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hong, J.; Cao, Y.; Shi, J.; Gu, W.; Ning, G.; Zhang, Y.; Wang, W. Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults. Eur. J. Endocrinol. 2015, 172, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Mononen, N.; Lyytikäinen, L.P.; Seppälä, I.; Mishra, P.P.; Juonala, M.; Waldenberger, M.; Klopp, N.; Illig, T.; Leiviskä, J.; Loo, B.M.; et al. Whole blood microRNA levels associate with glycemic status and correlate with target mRNAs in pathways important to type 2 diabetes. Sci. Rep. 2019, 9, 8887. [Google Scholar] [CrossRef] [PubMed]
- Choe, N.; Kwon, J.S.; Kim, J.R.; Eom, G.H.; Kim, Y.; Nam, K.I.; Ahn, Y.; Kee, H.J.; Kook, H. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis 2013, 229, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Huang, D.; Wang, Q.; Shen, D.; Wang, Y.; Chen, B.; Zhang, J.; Gai, L. MiR-132 inhibits expression of SIRT1 and induces pro-inflammatory processes of vascular endothelial inflammation through blockade of the SREBP-1c metabolic pathway. Cardiovasc. Drugs 2014, 28, 303–311. [Google Scholar] [CrossRef]
- Eskildsen, T.V.; Jeppesen, P.L.; Schneider, M.; Nossent, A.Y.; Sandberg, M.B.; Hansen, P.B.; Jensen, C.H.; Hansen, M.L.; Marcussen, N.; Rasmussen, L.M.; et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int. J. Mol. Sci. 2013, 14, 11190–11207. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, I.; Zivković, M.; Jovanović, J.; Djurić, T.; Stanković, A. The co-inertia approach in identification of specific microRNA in early and advanced atherosclerosis plaque. Med. Hypotheses 2014, 83, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhang, J.; Xu, N.; Han, G.; Geng, Q.; Song, J.; Li, S.; Zhao, J.; Chen, H. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS ONE 2013, 8, e80738. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandra, Y.; Carena, M.C.; Spazzafumo, L.; Martinelli, F.; Bassetti, B.; Devanna, P.; Rubino, M.; Marenzi, G.; Colombo, G.I.; Achilli, F.; et al. Diagnostic potential of plasmatic MicroRNA signatures in stable and unstable angina. PLoS ONE 2013, 8, e80345. [Google Scholar]
- Feinberg, M.W.; Moore, K.J. MicroRNA regulation of atherosclerosis. Circ. Res. 2016, 118, 703–720. [Google Scholar] [CrossRef] [Green Version]
- Novák, J.; Bienertová-Vašků, J.; Kára, T.; Novák, M. MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediat. Inflamm. 2014, 2014, 275867. [Google Scholar] [CrossRef]
- Simon, A.; Chironi, G.; Levenson, J. Comparative performance of subclinical atherosclerosis tests in predicting coronary heart disease in asymptomatic individuals. Eur. Heart J. 2007, 28, 2967–2971. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Levenson, J. May subclinical arterial disease help to better detect and treat high-risk asymptomatic individuals? J. Hypertens 2005, 23, 1939–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar]
- Taylor, A.J.; Merz, C.N.; Udelson, J.E. 34th Bethesda Conference: Executive summary—can atherosclerosis imaging techniques improve the detection of patients at risk for ischemic heart disease? J. Am. Coll Cardiol. 2003, 41, 1860–1862. [Google Scholar] [CrossRef] [Green Version]
- De Backer, G.; Ambrosion, i.E.; Borch-Johnsen, K.; Brotons, C.; Cifkova, R.; Dallongeville, J.; Ebrahim, S.; Faergeman, O.; Graham, I.; Mancia, G.; et al. Third joint task force of european and other societies on cardiovascular disease prevention in clinical practice. european guidelines on cardiovascular disease prevention in clinical practice. third joint task force of european and other societies on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2003, 24, 1601–1610. [Google Scholar] [PubMed]
- Smith, S.C., Jr.; Greenland, P.; Grundy, S.M. AHA Conference proceedings. Prevention conference V: Beyond secondary prevention: Identifying the high-risk patient for primary prevention: Executive summary. American Heart Association. Circulation 2000, 101, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhler, L.H. Prevention of coronary heart disease and the national cholesterol education program. Circulation 2006, 113, 598–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyoshi, T.; Ito, H. Assessment of arterial stiffness using the cardio-ankle vascular index. Pulse 2016, 4, 11–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, G.; Wang, F.; Li, H.; Yin, Z.; Sandip, C.; Lou, Y.; Wang, Y.; Chen, C.; Wang, D.W. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol. 2013, 13, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, S.; Liu, D.; Zhu, W.; Su, Z.; Zhang, L.; Zhou, C.; Li, P. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction. Front Physiol. 2019, 10, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Guo, D.; Liu, G.; Chen, G.; Hang, M.; Jin, M. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol. Biochem. 2017, 44, 2105–2116. [Google Scholar] [CrossRef]
- Hijmans, J.G.; Diehl, K.J.; Bammert, T.D.; Kavlich, P.J.; Lincenberg, G.M.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Influence of overweight and obesity on circulating inflammation-related microRNA. Microrna 2018, 7, 148–154. [Google Scholar] [CrossRef]
- Vasu, S.; Kumano, K.; Darden, C.M.; Rahman, I.; Lawrence, M.C.; Naziruddin, B. MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells 2019, 8, 1533. [Google Scholar] [CrossRef] [Green Version]
- Faccini, J.; Ruidavets, J.B.; Cordelier, P.; Martins, F.; Maoret, J.J.; Bongard, V.; Ferrières, J.; Roncalli, J.; Elbaz, M.; Vindis, C. Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci. Rep. 2017, 7, 42916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorente-Cebrián, S.; Mejhert, N.; Kulyté, A.; Laurencikiene, J.; Åström, G.; Hedén, P.; Rydén, M.; Arner, P. MicroRNAs regulate human adipocyte lipolysis: Effects of miR-145 are linked to TNF-α. PLoS ONE 2014, 9, e86800. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Chen, S.; Liu, X.; Lin, L.; Huang, X.; Guo, Z.; Liu, J.; Wang, Y.; Yuan, W.; et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 2011, 215, 286–293. [Google Scholar] [CrossRef]
- Karkeni, E.; Astier, J.; Tourniaire, F.; El Abed, M.; Romier, B.; Gouranton, E.; Wan, L.; Borel, P.; Salles, J.; Walrand, S.; et al. Obesity-associated inflammation induces microRNA-155 expression in adipocytes and adipose tissue: Outcome on adipocyte function. J. Clin. Endocrinol. Metab. 2016, 101, 1615–1626. [Google Scholar] [CrossRef]
- Mayorga, M.E.; Penn, M.S. miR-145 is differentially regulated by TGF-β1 and ischaemia and targets Disabled-2 expression and wnt/β-catenin activity. J Cell Mol. Med. 2012, 16, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.K.; Ma, J. Alteration in microRNA-155 level correspond to severity of coronary heart disease. Scand. J Clin. Lab. Invest. 2018, 78, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, D.; Kuch, M.; Pilecki, T.; Żochowska, D.; Wirkowska, A.; Pączek, L. Plasma microRNA-155-5p is increased among patients with chronic kidney disease and nocturnal hypertension. J. Am. Soc. Hypertens. 2017, 11, 831–841.e4. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Fan, W.D.; Fang, R.; Wu, G.F. Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-κB P65. J. Cell Biochem. 2014, 115, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; Taganov, K.D.; Boldin, M.P.; Cheng, G.; Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 2007, 104, 1604–1609. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.X.; Zeng, D.Y.; Li, R.T.; Pang, R.P.; Yang, H.; Hu, Y.L.; Zhang, Q.; Jiang, Y.; Huang, L.Y.; Tang, Y.B.; et al. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 2012, 60, 1407–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Sun, Y.; Zhong, L.; Xiao, Z.; Yang, M.; Chen, M.; Wang, C.; Xie, X.; Chen, X. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, S.; Jurisic, M.; Kopp, C.W.; Koppensteiner, R.; Huber, K.; Wojta, J.; Gremmel, T. Circulating microRNAs identify patients at increased risk of in-stent restenosis after peripheral angioplasty with stent implantation. Atherosclerosis 2018, 269, 197–203. [Google Scholar] [CrossRef]
- Yin, D.; Fu, C.; Sun, D. Silence of lncRNA uca1 represses the growth and tube formation of human microvascular endothelial cells through miR-195. Cell Physiol. Biochem. 2018, 49, 1499–1511. [Google Scholar] [CrossRef]
Baseline Characteristics. | miR | All Patients | p-Value |
---|---|---|---|
Number of patients | 178 | 3194 | |
Sex | |||
Male n (%) | 73 (41) | 1152 (36.1) | 0.210 |
Female n (%) | 105 (59) | 2042 (63.9) | |
Age, years (mean ± SD) | 53.23 ± 5.69 | 54.12 ± 6.15 | 0.109 |
MetS components | |||
Waist circumference men (mean ± SD) | 109.4 ± 7.02 | 110.89 ± 9.88 | 0.102 |
Waist circumference women (mean ± SD) | 102.9 ± 9.1 | 104.62 ± 10.65 | 0.142 |
Body mass index (mean ± SD) | 31.25 ± 3.94 | 32.33 ± 4.83 | 0.026 |
Triglycerides (mean ± SD) | 2.63 ± 4.14 | 2.58 ± 2.42 | 0.489 |
High-density lipoprotein cholesterol (mean ± SD) | 1.26 ± 0.28 | 1.24 ± 0.33 | 0.204 |
Systolic blood pressure, mmHg (mean ± SD) | 135.64 ± 10.81 | 142.04 ± 16.85 | 0.143 |
Diastolic blood pressure, mmHg (mean ± SD) | 83.18 ± 8.88 | 86.79 ± 10.58 | 0.104 |
Fasting plasma glucose, mmol/L (mean ± SD) | 5.9 ± 0.72 | 6.31 ± 1.36 | <0.001 |
Number of MetS components | 0.225 | ||
3 out of 5 n (%) | 74 (41.6) | 1197 (37.5) | 0.225 |
4 out of 5 n (%) | 60 (33.7) | 1147 (35.9) | 0.225 |
5 out of 5 n (%) | 33 (18.5) | 767 (23.1) | 0.225 |
Mean number of MetS components | 3.64 ± 0.87 | 3.85 ± 0.78 | 0.225 |
Other cardiovascular risk factors | |||
Arterial hypertension (%) | 164 (92.1) | 3089 (96.7) | 0.003 |
Hyperlipidemia (%) | 178 (100) | 3157 (98.8) | 0.283 |
Positive family history (%) | 68 (38.2) | 1031 (32.3) | 0.119 |
Diabetes mellitus (%) | 16 (9) | 644 (20.2) | 0.0004 |
Current smoking (%) | 43 (24.2) | 734 (22.9) | 0.786 |
C-reactive protein (mean ± SD) | 3.5 ± 4.58 | 2.93 ± 3.67 | 0.003 |
Low-density lipoprotein cholesterol (mean ± SD) | 4.44 ± 1.26 | 4.34 ± 1.26 | 0.203 |
Use of statins | 30 (16.9) | 158 (4.9) | <0.001 |
miR-1 | miR-126 | miR-145 | miR-155 | miR-122 | miR-370 | miR-133a | miR-133b | miR-195 | miR-132 | |
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | 6.12 ± 1.33 | 2.05 ± 0.6 | 2.11 ± 0.67 | 5.79 ± 1.1 | −0.92 ± 1.3 | 7.98 ± 1.71 | 6.05 ± 1.18 | 4.58 ± 1.2 | 7.09 ± 1.43 | 4.66 ± 0.98 |
CAVI Mean | AIxHR75 | AoPWV | MAP | FMD % | Stiffness Left Carotid Artery | Stiffness Right Carotid Artery | Stiffness Carotid Artery | Right Carotid Plaque | Left Carotid Plaque | ||
---|---|---|---|---|---|---|---|---|---|---|---|
miR-1 | r | −0.218 | −0.201 | 3.7 × 10−5 | −0.076 | −0.086 | 0.154 | −0.024 | 0.074 | −0.05 | 0.027 |
p | 0.004 | 0.005 | 0.99 | 0.315 | 0.264 | 0.042 | 0.754 | 0.324 | 0.63 | 0.79 | |
miR-133b | r | −0.221 | −0.242 | −0.09 | −0.066 | −0.073 | 0.109 | 0.024 | 0.076 | −0.019 | −0.021 |
p | 0.003 | 0.001 | 0.233 | 0.385 | 0.347 | 0.151 | 0.757 | 0.318 | 0.855 | 0.835 | |
miR-133a | r | −0.177 | −0.235 | −0.003 | −0.071 | −0.067 | 0.053 | 0.014 | 0.039 | 0.039 | −0.038 |
p | 0.02 | 0.002 | 0.964 | 0.345 | 0.389 | 0.482 | 0.858 | 0.613 | 0.712 | 0.699 | |
miR-122 | r | 0.152 | 0.032 | −0.15 | −0.1 | 0.002 | 0.036 | 0.102 | 0.078 | −0.121 | −0.065 |
p | 0.046 | 0.671 | 0.049 | 0.188 | 0.98 | 0.639 | 0.181 | 0.306 | 0.244 | 0.512 | |
miR-145 | r | 0.037 | −0.151 | 0.005 | −0.039 | −0.066 | 0.001 | 0.038 | 0.022 | −0.025 | −0.033 |
p | 0.629 | 0.044 | 0.944 | 0.603 | 0.392 | 0.986 | 0.615 | 0.769 | 0.811 | 0.74 | |
miR-132 | r | 0.025 | 0.008 | 0.057 | 0.011 | 0.091 | 0.018 | 0.165 | 0.103 | 0.118 | 0.176 |
p | 0.747 | 0.92 | 0.453 | 0.889 | 0.24 | 0.818 | 0.029 | 0.174 | 0.257 | 0.04 | |
miR-126 | r | −0.054 | −0.041 | −0.003 | −0.009 | −0.03 | −0.002 | 0.119 | 0.067 | 0.091 | 0.102 |
p | 0.479 | 0.585 | 0.972 | 0.907 | 0.695 | 0.985 | 0.116 | 0.382 | 0.382 | 0.306 | |
miR-155 | r | −0.136 | −0.126 | −0.064 | 0.041 | −0.074 | −0.035 | −0.032 | −0.038 | 0.006 | -0.021 |
p | 0.073 | 0.095 | 0.393 | 0.589 | 0.34 | 0.642 | 0.679 | 0.616 | 0.953 | 0.834 | |
miR-195 | r | 0.065 | −0.012 | 0.075 | −0.124 | −0.068 | 0.047 | 0.103 | 0.085 | −0.169 | −0.061 |
p | 0.398 | 0.873 | 0.317 | 0.101 | 0.382 | 0.536 | 0.173 | 0.261 | 0.104 | 0.537 | |
miR-370 | r | −0.058 | 9 × 10−4 | 0.094 | 0.068 | −0.004 | 0.026 | 0.095 | 0.069 | 0.291 | −0.047 |
p | 0.449 | 0.99 | 0.213 | 0.369 | 0.964 | 0.729 | 0.209 | 0.364 | 0.005 | 0.636 |
Model | MAE | MAPE | |
---|---|---|---|
CAVImean | 9.21 − 0.31 miR-133b + 0.24 miR-122 | 1.12 | 17.16 |
AIxHR75 | 38.55 − 3.14 miR-133b | 9.87 | 145.89 |
AoPWV | 8.41 − 0.19 miR-122 | 1.25 | 14.31 |
Stiffness right carotid artery | 2.31 + 0.39 miR-132 | 1.35 | 39.01 |
Stiffness left carotid artery | 3.72 + 0.14 miR-1 | 1.27 | 32.69 |
Scheme | Model | MAE | MAPE |
---|---|---|---|
1 | 8.94–0.23 miR-122 − 0.3 age miR-133b + 0.82 smoking | 1.07 | 16.18 |
2 | 0.6 + 0.22 miR-122 + 0.12 age + 1.1 smoking − 0.27TG − 0.78 HDL-Ch | 1.43 | 20.07 |
3 | 0.6 + 0.22 miR-122 + 0.12 age + 1.1 smoking − 0.27TG − 0.78 HDL-Ch | 1.43 | 20.07 |
4 | 0.6 + 0.22 miR-122 + 0.12 age + 1.1 smoking − 0.27TG − 0.78 HDL-Ch | 1.43 | 20.07 |
Scheme | Model | MAE | MAPE |
---|---|---|---|
1 | 37.49 − 2.06 miR-133b − 10.73 sex | 10.58 | 151.72 |
2 | 37.49 − 2.06 miR-133b − 10.73 sex | 10.58 | 151.72 |
3 | 37.49 − 2.06 miR-133b − 10.73 sex | 10.58 | 151.72 |
4 | 37.49 − 2.06 miR-133b − 10.73 sex | 10.58 | 151.72 |
Scheme | Model | MAE | MAPE |
---|---|---|---|
1 | 3.34–0.27 miR-122 + 0.09 age | 1.29 | 14.7 |
2 | 3.34–0.26 miR-122 + 0.08 age + 0.63 TG | 1.22 | 13.53 |
3 | 3.34–0.26 miR-122 + 0.08 age + 0.63 TG | 1.22 | 13.53 |
4 | 3.34–0.26 miR-122 + 0.08 age + 0.63 TG | 1.22 | 13.53 |
Stiffness right carotid artery | |||
Scheme | Model | MAE | MAPE |
1 | −1.92 + 0.4 miR-132 + 0.07 age | 1.37 | 38.07 |
2 | −1.92 + 0.4 miR-132 + 0.07 age | 1.37 | 38.07 |
3 | −2.31 + 0.43 miR-132 + 0.08 age + 0.06 hs-CRP | 1.41 | 38.03 |
4 | −2.31 + 0.43 miR-132 + 0.08 age + 0.06 hs-CRP | 1.41 | 38.03 |
Stiffness left carotid artery | |||
Scheme | Model | MAE | MAPE |
1 | −0.46 + 0.19 miR-1 + 0.07 age−0.02 smoking duration | 1.29 | 31.73 |
2 | −0.46 + 0.19 miR-1 + 0.07 age−0.02 smoking duration | 1.29 | 31.73 |
3 | −0.92 + 0.18miR-1 + 0.08 age−0.03 smoking duration + 0.07 hs-CRP | 1.31 | 30.43 |
4 | −0.92 + 0.18miR-1 + 0.08 age−0.03 smoking duration + 0.07 hs-CRP | 1.31 | 30.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šatrauskienė, A.; Navickas, R.; Laucevičius, A.; Krilavičius, T.; Užupytė, R.; Zdanytė, M.; Ryliškytė, L.; Jucevičienė, A.; Holvoet, P. Mir-1, miR-122, miR-132, and miR-133 Are Related to Subclinical Aortic Atherosclerosis Associated with Metabolic Syndrome. Int. J. Environ. Res. Public Health 2021, 18, 1483. https://doi.org/10.3390/ijerph18041483
Šatrauskienė A, Navickas R, Laucevičius A, Krilavičius T, Užupytė R, Zdanytė M, Ryliškytė L, Jucevičienė A, Holvoet P. Mir-1, miR-122, miR-132, and miR-133 Are Related to Subclinical Aortic Atherosclerosis Associated with Metabolic Syndrome. International Journal of Environmental Research and Public Health. 2021; 18(4):1483. https://doi.org/10.3390/ijerph18041483
Chicago/Turabian StyleŠatrauskienė, Agnė, Rokas Navickas, Aleksandras Laucevičius, Tomas Krilavičius, Rūta Užupytė, Monika Zdanytė, Ligita Ryliškytė, Agnė Jucevičienė, and Paul Holvoet. 2021. "Mir-1, miR-122, miR-132, and miR-133 Are Related to Subclinical Aortic Atherosclerosis Associated with Metabolic Syndrome" International Journal of Environmental Research and Public Health 18, no. 4: 1483. https://doi.org/10.3390/ijerph18041483
APA StyleŠatrauskienė, A., Navickas, R., Laucevičius, A., Krilavičius, T., Užupytė, R., Zdanytė, M., Ryliškytė, L., Jucevičienė, A., & Holvoet, P. (2021). Mir-1, miR-122, miR-132, and miR-133 Are Related to Subclinical Aortic Atherosclerosis Associated with Metabolic Syndrome. International Journal of Environmental Research and Public Health, 18(4), 1483. https://doi.org/10.3390/ijerph18041483