Spatial-Temporal Relationship between Water Resources and Economic Development in Rural China from a Poverty Perspective
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Model
3.1.1. The Water Poverty Index
3.1.2. Sustainable Livelihoods Approach
- (i)
- Natural capital: sunshine, clean air, land, water, forest, and minerals;
- (ii)
- Physical capital: machines, factories, tools, equipment, and facilities;
- (iii)
- Financial capital: credit, savings, and remittances;
- (iv)
- Human capital: education, knowledge, skills, training, health spending, and migration;
- (v)
- Social capital: social relationships in the market, wealth, power, prestige, and social networks.
3.1.3. The Harmonious Development Model
3.1.4. Modified OECD Model
3.2. Assigning Weights to the Indicators
4. Results and Discussion
4.1. WPI and SLA Results for Rural China and Their Significance
4.2. WPI and SLA Component Results for Rural China and Their Significance
4.3. Temporal and Spatial Variation between Water Poverty and Economic Poverty
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Daly, H.E. Toward some operational principles of sustainable development. Ecol. Econ. 1990, 2, 1–6. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, J.; He, C.; Feng, Y. Evolution of the coupling relationship between regional development strength and resource environment level in China. Geogr. Res. 2013, 32, 507–517. [Google Scholar]
- United Nations Educational, Scientific and Cultural Organization (UNESCO)-WWAP. Water a Shared Responsibility, The United Nations World Water Development Report 2; UNESCO: Paris, France, 2006. [Google Scholar]
- Abrams, L. Poverty and water supply and sanitation services. In Proceedings of the Regional Workshop on Financing Community Water Supply and Sanitation, White River, South Africa, 29 November 1999. [Google Scholar]
- Alasdair, C.; Caroline, A.S. Water and poverty in rural China: Developing an instrument to assess the multiple dimensions of water and poverty. Ecol. Econ. 2010, 69, 999–1009. [Google Scholar]
- Yang, Q.; Wang, M.; Han, L.Z.; Liu, Z.H.; Zhang, J.H. Progress in the Study of Water Poverty Evaluation. Ecol. Econ. 2016, 32, 169–175. [Google Scholar]
- Manandhar, S.; Pandey, V.P.; Kazama, F. Application of Water Poverty Index (WPI) in Nepalese Context: A Case Study of Kali Gandaki River Basin (KGRB). Water Resour. Manag. 2011, 26, 89–107. [Google Scholar] [CrossRef]
- Xia, J.; Zhai, J.L.; Zhan, C.S. Some Reflections on the Research and of Development Water Resources in China. Adv. Earth Sci. 2011, 26, 905–915. [Google Scholar]
- Yokwe, S. Water productivity in smallholder irrigation schemes in South Africa. Agric. Water Manag. 2009, 96, 1223–1228. [Google Scholar] [CrossRef]
- Progress on Sanitation and Drinking-Water: 2010 Update. Joint Monitoring Programme for Water Supply and Sanitation; WHO: Geneva, Switzerland, 2010.
- Sullivan, C.A. The Potential for Calculating a Meaningful Water Poverty Index. Water Int. 2001, 26, 471–480. [Google Scholar] [CrossRef]
- Sun, C.Z.; Tang, W.J.; Zou, W. Measure of water poverty conditions and its spatial pattern mechanism in China’s rural areas. Geogr. Res. 2012, 31, 1445–1455. [Google Scholar]
- Sullivan, C.A.; Hatem, J. Toward Understanding Water Conflicts in MENA Region: A Comparative Analysis Using Water Poverty Index. Econ. Res. Forum 2014, 8, 1–24. [Google Scholar]
- LaBar, K.; Bresson, F. A multidimensional analysis of poverty in China from 1991 to 2006. China Econ. Rev. 2011, 22, 646–668. [Google Scholar] [CrossRef]
- Wagle, U. Rethinking poverty: Definition and measurement. Int. Soc. Sci. J. 2002, 54, 155–165. [Google Scholar] [CrossRef]
- Ferreira, F.; Lugo, M.A. Multidimensional poverty analysis: Looking for a middle ground. World Bank Res. Obs. 2012, 28, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Sustainable Livelihoods Guidance Sheets; Department for International Development: London, UK, 2000.
- Martha, G.R.; Yang, G.A. The International Progress of Sustainable Development Research: A Comparison of Vulnerability Analysis and the Sustainable Livelihoods Approach. Prog. Geogr. 2003, 22, 11–21. [Google Scholar]
- Sun, C.Z.; Liu, W.X.; Zou, W. Water Poverty in Urban and Rural China Considered Through the Harmonious and Developmental Ability Model. Water Resour Manag. 2016. [Google Scholar] [CrossRef]
- China Statistical Yearbook; China Statistic Press: Beijing, China, 1998.
- Yang, G.T.; Wang, G.J. Estimation and Simulation of China’s Rural Poverty: 1995–2003. China Popul. Resour. Environ. 2005, 15, 30–34. [Google Scholar]
- Manandhar, S.; Vogt, D.S.; Perret, S.R.; Kazama, F. Adapting cropping systems to climate change in Nepal: A cross regional study of farmers’perception and practices. Reg. Environ. Chang. 2011, 11, 335–348. [Google Scholar] [CrossRef]
- Leila, M.H. Water Rich, Resource Poor: Intersections of Gender, Poverty, and Vulnerability in Newly Irrigated Areas of Southeastern Turkey. World Dev. 2012, 36, 2643–2662. [Google Scholar]
- Liu, W.X.; Zhao, M.J.; Cai, Y.; Wang, R.; Lu, W.N. Synergetic Relationship between Urban and Rural Water Poverty: Evidence from Northwest China. Int. J. Environ. Res. Public Health 2019, 16, 1647. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, C.; Meigh, J. Considering the Water Poverty Index in the context of poverty alleviation. Hydrol. Res. 2003, 5, 513–528. [Google Scholar] [CrossRef]
- Komnenic, V.; Ahlers, R.; Van Der Zaag, P. Assessing the usefulness of the water poverty index by applying it to a special case: Can one be water poor with high levels of access? Phys. Chem. Earth 2009, 34, 219–224. [Google Scholar] [CrossRef]
- Scoones, I. Sustainable Rural Livelihoods: A Framework for Analysis; Institute of Development Studies: Brighton, UK, 1998. [Google Scholar]
- Liu, Y.H.; Xu, Y. Geographical identification and classification of multi-dimensional poverty in rural China. Acta Geogr. Sin. 2015, 70, 993–1007. [Google Scholar]
- Yang, Z.; Jiang, Q.; Liu, H.M.; Wang, X.X. Multi-Dimensional Poverty Measure and Spatial Pattern of China’s Rural Residents. Econ. Geogr. 2015, 35, 148–153. [Google Scholar]
- Liu, X.P.; Su, S.L.; Wang, Y.J.; Huang, Y.; Zhao, Y. The Index System of Spatial Poverty of Village Level to Monitor in Concentrated Contiguous Areas with Particular Difficulties. Sci. Geogr. Sin. 2014, 34, 447–453. [Google Scholar]
- Qin, X.; Sun, C.; Zou, W. Quantitative models for assessing the human-ocean system’s sustainable development in coastal cities: The perspective of metabolic-recycling in the Bohai Sea Ring Area, China. Ocean Coast. Manag. 2015, 107, 46–58. [Google Scholar] [CrossRef]
- Gai, M.; Hu, H.A.; Ke, L.N. Decoupling Analysis between Economic Development and Resources and Environmental of the Yangtze River Delta. J. Nat. Resour. 2013, 28, 185–198. [Google Scholar]
- Vehmas, J.; Kaivooja, J.; Luukkanen, J. Global Trends of Linking Environmental Stress and Economic Growth; Turku School of Economics and Business Administration: Turku, Finland, 2003. [Google Scholar]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffman, A.; Giovannini, E. Handbook on Constructing Composite Indicators: Methodology and User Guide; Organisation for Economic Co-Operation and Development: Paris, France, 2005. [Google Scholar]
- Iwaro, J.; Mwasha, A.; Williams, R.G.; Zico, R. An Integrated Criteria Weighting Framework for the sustainable performance assessment and design of building envelope. Renew. Sustain. Energy Rev. 2014, 29, 417–434. [Google Scholar] [CrossRef]
- James, L.; Sadeghi, N.A.; Kim, K. Ontology based personalized route planning system using a multi-criteria decision making approach. Expert Syst. Appl. 2009, 36, 2250–2259. [Google Scholar]
- Chen, S.; Leng, Y.; Mao, B.; Liu, S. Integrated weight-based multi-criteria evaluation on transfer in large transport terminals: A case study of the Beijing South Railway Station. Transp. Res. Part A Policy Pract. 2014, 66, 13–26. [Google Scholar] [CrossRef]
- Namara, R.E.; Hanjra, M.A.; Castillo, G.E.; Ravnborg, H.M.; Smith, L.; Van Koppen, B. Agricultural water management and poverty linkages. Agric. Water Manag. 2010, 97, 520–527. [Google Scholar] [CrossRef]
- Vishnu, P.P.; Sujata, M.; Futaba, K. Water Poverty Situation of Medium-sized River Basins in Nepal. Water Resour. Manag. 2012, 26, 2475–2489. [Google Scholar]
- Agustí, P.F.; Ricard, G. Analyzing water poverty in basins. Water Resour. Manag. 2011, 25, 3395–3612. [Google Scholar]
- James, L.; Wescoat, J.R.; Lisa, H.; Rebecca, T. Water and poverty in the United States. Geoforum 2007, 38, 801–814. [Google Scholar]
Component. | Indicator | Relationship with Water Poverty | References |
---|---|---|---|
Resources (0.2) | Rainfall (R1) | High R1—Less water poverty | [21] |
Per capita annual rural water resources (R2) | High R2—Less water poverty | [21] | |
Access (0.2) | Numbers of reservoirs (A1) | High A1—Less water poverty | [22] |
Percentage of population with access to clean water (A2) | High A2—Less water poverty | [23] | |
Actual irrigation capacity (A3) | High A3—Less water poverty | [21] | |
Capacity (0.2) | Per capita annual rural gross domestic product (C1) | High C1—Less water poverty | [22] |
Number of doctors per ten thousand people (C2) | High C2—Less water poverty | [24] | |
Male migrant workers (C3) | High C3—High water poverty | [12] | |
Use (0.2) | Per capita per day rural domestic water use (U1) | High U1—Less water poverty | [25] |
Portion of water use for irrigated land (U2) | High U2—Less water poverty | [21] | |
Environment (0.2) | Chemical fertilizer use per hectare of cultivated area(E1) | High E1—High water poverty | [21] |
Soil and water loss control area(E2) | High E2—Less water poverty | [21] |
Component. | Indicator | Relationship with Economic Poverty | References |
---|---|---|---|
Financial capital (0.2) | Per capita GDP (F1) | High F1—Less economic poverty | [27] |
Engel’s coefficient (F2) | High F2—High economic poverty | [28] | |
Human capital (0.2) | Illiteracy rate (H1) | High H1—High economic poverty | [26] |
Agricultural population (H2) | High H2—Less economic poverty | [29] | |
Physicians per capita (H3) | High H3—Less economic poverty | [29] | |
Natural capital (0.2) | Average crop production (N1) | High N1—Less economic poverty | [26] |
Cultivated land per capita (N2) | High N2—Less economic poverty | [26] | |
Rainfall (N3) | High N3—Less economic poverty | [27] | |
Physical capital (0.2) | Road mileage per capita (P1) | High P1—Less economic poverty | [26] |
Agricultural machinery per capita (P2) | High P2—Less economic poverty | [26] | |
Electricity consumption per capita (P3) | High P3—Less economic poverty | [26] | |
Social capital (0.2) | Urbanization (S1) | High S1—Less economic poverty | [26] |
Level of social justice (S2) | High S2—Less economic poverty | [27] |
System | Component | Variable | AHP | Entropy | Integrated |
---|---|---|---|---|---|
WATER POVERTY | Resources (0.2) | Rainfall | 0.333 | 0.401 | 0.446 |
Per capita annual water resources | 0.667 | 0.599 | 0.554 | ||
Access (0.2) | Number of reservoirs | 0.250 | 0.620 | 0.522 | |
Percentage of rural population with access to clean water | 0.500 | 0.129 | 0.227 | ||
The actual irrigation situation | 0.250 | 0.251 | 0.251 | ||
Capacity (0.2) | Per capita annual rural gross domestic product | 0.493 | 0.501 | 0.400 | |
Elementary education enrolment rate | 0.196 | 0.231 | 0.310 | ||
Number of doctors per capita | 0.311 | 0.268 | 0.290 | ||
Use (0.2) | Per capita per day rural domestic water use | 0.500 | 0.686 | 0.534 | |
Portion of water use to irrigated land | 0.500 | 0.314 | 0.466 | ||
Environment (0.2) | Chemical fertilizer use per hectare of cultivated area | 0.667 | 0.190 | 0.429 | |
Soil and water loss control area | 0.333 | 0.810 | 0.572 | ||
ECONOMIC POVERTY | Financial capital (0.2) | Per capita GDP | 0.667 | 0.617 | 0.632 |
Engel’s coefficient | 0.333 | 0.383 | 0.368 | ||
Human capital (0.2) | Illiteracy rate | 0.311 | 0.472 | 0.400 | |
Agricultural population | 0.493 | 0.347 | 0.410 | ||
Physicians per capita | 0.196 | 0.181 | 0.190 | ||
Natural capital (0.2) | Average crop production | 0.200 | 0.494 | 0.333 | |
Cultivated land per capita | 0.400 | 0.289 | 0.352 | ||
Water resources | 0.200 | 0.217 | 0.315 | ||
Physical capital (0.2) | Road mileage per capita | 0.333 | 0.331 | 0.332 | |
Agricultural machinery per capita | 0.333 | 0.226 | 0.280 | ||
Electricity consumption per capita | 0.334 | 0.442 | 0.388 | ||
Social capital (0.2) | Urbanization (S1) + | 0.500 | 0.612 | 0.589 | |
Level of social justice (S2) + | 0.500 | 0.388 | 0.411 |
W/E | 1997 | 2003 | 2008 | 2013 | 2019 | Mean |
---|---|---|---|---|---|---|
Beijing | 0.206/0.216 | 0.208/0.283 | 0.238/0.422 | 0.285/0.553 | 0.279/0.632 | 0.234/0.382 |
Tianjin | 0.171/0.166 | 0.195/0.197 | 0.213/0.287 | 0.278/0.404 | 0.245/0.464 | 0.212/0.272 |
Hebei | 0.289/0.159 | 0.307/0.172 | 0.323/0.244 | 0.345/0.340 | 0.356/0.375 | 0.321/0.235 |
Shanxi | 0.204/0.105 | 0.207/0.113 | 0.219/0.180 | 0.244/0.252 | 0.255/0.283 | 0.220/0.168 |
Neimenggu | 0.239/0.101 | 0.251/0.117 | 0.274/0.205 | 0.315/0.324 | 0.356/0.368 | 0.275/0.193 |
Liaoning | 0.216/0.170 | 0.237/0.182 | 0.256/0.257 | 0.288/0.381 | 0.289/0.430 | 0.252/0.255 |
Jilin | 0.238/0.125 | 0.236/0.135 | 0.272/0.182 | 0.319/0.254 | 0.318/0.294 | 0.267/0.178 |
Heilongjiang | 0.312/0.152 | 0.333/0.152 | 0.336/0.194 | 0.396/0.265 | 0.423/0.301 | 0.350/0.195 |
Shanghai | 0.228/0.241 | 0.255/0.290 | 0.262/0.414 | 0.318/0.485 | 0.339/0.515 | 0.267/0.368 |
Jiangsu | 0.363/0.223 | 0.393/0.259 | 0.427/0.399 | 0.410/0.565 | 0.423/0.642 | 0.400/0.373 |
Zhejiang | 0.327/0.173 | 0.364/0.219 | 0.396/0.352 | 0.394/0.469 | 0.421/0.511 | 0.378/0.313 |
Anhui | 0.333/0.128 | 0.348/0.132 | 0.362/0.181 | 0.396/0.265 | 0.422/0.303 | 0.366/0.191 |
Fujian | 0.336/0.161 | 0.339/0.170 | 0.374/0.238 | 0.398/0.330 | 0.429/0.375 | 0.366/0.228 |
Jiangxi | 0.366/0.116 | 0.356/0.116 | 0.351/0.166 | 0.378/0.241 | 0.403/0.276 | 0.363/0.162 |
Shandong | 0.357/0.213 | 0.372/0.245 | 0.397/0.367 | 0.427/0.494 | 0.429/0.561 | 0.389/0.340 |
Henan | 0.309/0.163 | 0.345/0.174 | 0.369/0.247 | 0.407/0.339 | 0.396/0.380 | 0.362/0.236 |
Hubei | 0.310/0.142 | 0.335/0.152 | 0.346/0.211 | 0.375/0.308 | 0.390/0.370 | 0.344/0.211 |
Hunan | 0.404/0.134 | 0.453/0.143 | 0.413/0.205 | 0.421/0.294 | 0.453/0.336 | 0.420/0.199 |
Guangdong | 0.415/0.246 | 0.413/0.299 | 0.415/0.444 | 0.492/0.576 | 0.518/0.638 | 0.436/0.403 |
Guangxi | 0.339/0.109 | 0.332/0.114 | 0.329/0.162 | 0.358/0.230 | 0.380/0.264 | 0.340/0.158 |
Hainan | 0.210/0.082 | 0.227/0.097 | 0.252/0.133 | 0.296/0.188 | 0.298/0.215 | 0.247/0.131 |
Chongqing | 0.253/0.105 | 0.259/0.117 | 0.267/0.174 | 0.281/0.259 | 0.284/0.298 | 0.263/0.168 |
Sichuan | 0.354/0.142 | 0.359/0.150 | 0.374/0.218 | 0.398/0.313 | 0.429/0.362 | 0.381/0.212 |
Guizhou | 0.257/0.065 | 0.249/0.084 | 0.259/0.119 | 0.271/0.167 | 0.274/0.211 | 0.257/0.116 |
Yunnan | 0.341/0.101 | 0.330/0.104 | 0.339/0.147 | 0.340/0.204 | 0.357/0.244 | 0.336/0.144 |
Xizang | 0.347/0.059 | 0.361/0.044 | 0.323/0.080 | 0.331/0.124 | 0.332/0.148 | 0.338/0.080 |
Shaanxi | 0.229/0.083 | 0.231/0.113 | 0.237/0.168 | 0.269/0.272 | 0.272/0.331 | 0.243/0.169 |
Gansu | 0.189/0.070 | 0.200/0.088 | 0.217/0.123 | 0.243/0.170 | 0.244/0.207 | 0.213/0.119 |
Qinghai | 0.200/0.044 | 0.214/0.073 | 0.219/0.111 | 0.228/0.166 | 0.220/0.202 | 0.216/0.108 |
Ningxia | 0.152/0.059 | 0.175/0.071 | 0.187/0.119 | 0.203/0.182 | 0.215/0.215 | 0.185/0.114 |
Xinjiang | 0.292/0.100 | 0.334/0.117 | 0.329/0.143 | 0.325/0.205 | 0.341/0.242 | 0.328/0.145 |
W/E | R/F | A/H | C/N | U/P | E/S | |||||
---|---|---|---|---|---|---|---|---|---|---|
W | E | W | E | W | E | W | E | W | E | |
Beijing | 0.004 | 0.117 | 0.045 | 0.076 | 0.132 | 0.037 | 0.059 | 0.026 | 0.033 | 0.133 |
Tianjin | 0.002 | 0.097 | 0.047 | 0.056 | 0.099 | 0.031 | 0.051 | 0.039 | 0.028 | 0.129 |
Hebei | 0.012 | 0.080 | 0.118 | 0.063 | 0.071 | 0.029 | 0.063 | 0.038 | 0.101 | 0.074 |
Shanxi | 0.012 | 0.068 | 0.042 | 0.038 | 0.070 | 0.020 | 0.048 | 0.027 | 0.110 | 0.070 |
Neimenggu | 0.069 | 0.071 | 0.038 | 0.038 | 0.071 | 0.050 | 0.070 | 0.047 | 0.157 | 0.081 |
Liaoning | 0.024 | 0.077 | 0.059 | 0.046 | 0.080 | 0.033 | 0.060 | 0.026 | 0.100 | 0.107 |
Jilin | 0.037 | 0.074 | 0.055 | 0.034 | 0.075 | 0.039 | 0.058 | 0.028 | 0.081 | 0.099 |
Heilongjiang | 0.065 | 0.077 | 0.129 | 0.041 | 0.075 | 0.057 | 0.066 | 0.035 | 0.116 | 0.105 |
Shanghai | 0.007 | 0.118 | 0.044 | 0.086 | 0.116 | 0.033 | 0.045 | 0.023 | 0.046 | 0.145 |
Jiangsu | 0.020 | 0.092 | 0.146 | 0.073 | 0.080 | 0.032 | 0.055 | 0.024 | 0.036 | 0.101 |
Zhejiang | 0.053 | 0.104 | 0.061 | 0.058 | 0.091 | 0.031 | 0.056 | 0.023 | 0.069 | 0.091 |
Anhui | 0.034 | 0.064 | 0.097 | 0.056 | 0.055 | 0.025 | 0.053 | 0.022 | 0.066 | 0.060 |
Fujian | 0.082 | 0.075 | 0.040 | 0.038 | 0.064 | 0.034 | 0.058 | 0.017 | 0.031 | 0.080 |
Jiangxi | 0.086 | 0.061 | 0.040 | 0.041 | 0.054 | 0.022 | 0.062 | 0.019 | 0.099 | 0.074 |
Shandong | 0.016 | 0.081 | 0.143 | 0.077 | 0.074 | 0.033 | 0.060 | 0.034 | 0.069 | 0.078 |
Henan | 0.019 | 0.069 | 0.113 | 0.084 | 0.062 | 0.028 | 0.053 | 0.024 | 0.076 | 0.062 |
Hubei | 0.049 | 0.065 | 0.071 | 0.057 | 0.063 | 0.030 | 0.051 | 0.019 | 0.076 | 0.079 |
Hunan | 0.073 | 0.060 | 0.057 | 0.062 | 0.055 | 0.026 | 0.069 | 0.019 | 0.083 | 0.062 |
Guangdong | 0.074 | 0.076 | 0.054 | 0.064 | 0.068 | 0.031 | 0.063 | 0.017 | 0.040 | 0.086 |
Guangxi | 0.098 | 0.055 | 0.040 | 0.046 | 0.050 | 0.025 | 0.075 | 0.014 | 0.061 | 0.048 |
Hainan | 0.078 | 0.052 | 0.019 | 0.020 | 0.054 | 0.038 | 0.075 | 0.017 | 0.028 | 0.075 |
Chongqing | 0.038 | 0.054 | 0.030 | 0.030 | 0.050 | 0.024 | 0.031 | 0.017 | 0.082 | 0.062 |
Sichuan | 0.093 | 0.055 | 0.040 | 0.077 | 0.051 | 0.023 | 0.051 | 0.012 | 0.113 | 0.056 |
Guizhou | 0.056 | 0.044 | 0.024 | 0.037 | 0.037 | 0.018 | 0.049 | 0.013 | 0.101 | 0.034 |
Yunnan | 0.114 | 0.049 | 0.040 | 0.043 | 0.043 | 0.022 | 0.064 | 0.019 | 0.104 | 0.031 |
Xizang | 0.176 | 0.039 | 0.002 | 0.013 | 0.041 | 0.061 | 0.071 | 0.059 | 0.077 | 0.020 |
Shanxi | 0.029 | 0.069 | 0.025 | 0.041 | 0.067 | 0.026 | 0.056 | 0.019 | 0.121 | 0.051 |
Gansu | 0.024 | 0.055 | 0.022 | 0.030 | 0.052 | 0.024 | 0.064 | 0.022 | 0.140 | 0.042 |
Qinghai | 0.079 | 0.057 | 0.011 | 0.022 | 0.058 | 0.020 | 0.066 | 0.041 | 0.086 | 0.053 |
Ningxia | 0.003 | 0.066 | 0.014 | 0.019 | 0.064 | 0.032 | 0.070 | 0.036 | 0.072 | 0.067 |
Xinjiang | 0.107 | 0.065 | 0.058 | 0.044 | 0.071 | 0.042 | 0.080 | 0.033 | 0.055 | 0.061 |
SD | 1997–2003 Mean | Lag | 2004–2011 Mean | Lag | 2012–2019 Mean | Lag | 1997–2019 Mean | Lag |
---|---|---|---|---|---|---|---|---|
Beijing | 0.479 | V | 0.501 | II | 0.510 | II | 0.496 | III |
Tianjin | 0.419 | III | 0.480 | I | 0.516 | III | 0.469 | I |
Hebei | 0.360 | III | 0.437 | II | 0.593 | III | 0.456 | III |
Shanxi | 0.292 | I | 0.376 | I | 0.498 | I | 0.382 | I |
Neimenggu | 0.281 | V | I | I | 0.577 | III | 0.403 | III |
Liaoning | 0.406 | III | 0.474 | II | 0.554 | III | 0.474 | II |
Jilin | 0.314 | V | 0.368 | I | 0.491 | III | 0.385 | III |
Heilongjiang | 0.333 | I | 0.376 | I | 0.472 | II | 0.389 | I |
Shanghai | 0.517 | V | 0.530 | I | 0.560 | II | 0.534 | II |
Jiangsu | 0.445 | V | 0.603 | II | 0.634 | III | 0.556 | III |
Zhejiang | 0.394 | V | 0.544 | III | 0.676 | III | 0.530 | IV |
Anhui | 0.345 | IV | 0.345 | III | 0.469 | III | 0.381 | IV |
Fujian | 0.345 | I | 0.412 | II | 0.563 | II | 0.432 | II |
Jiangxi | 0.273 | V | 0.327 | II | 0.438 | I | 0.340 | III |
Shandong | 0.433 | V | 0.574 | I | 0.676 | III | 0.554 | III |
Henan | 0.355 | V | 0.426 | III | 0.579 | III | 0.446 | IV |
Hubei | 0.329 | I | 0.390 | V | 0.548 | III | 0.415 | V |
Hunan | 0.306 | I | 0.364 | IV | 0.501 | III | 0.384 | III |
Guangdong | 0.483 | V | 0.656 | III | 0.743 | III | 0.621 | IV |
Guangxi | 0.277 | I | 0.321 | V | 0.432 | III | 0.338 | V |
Hainan | 0.255 | III | 0.308 | III | 0.391 | III | 0.314 | III |
Chongqing | 0.277 | IV | 0.353 | II | 0.502 | III | 0.370 | III |
Sichuan | 0.320 | V | 0.386 | I | 0.540 | II | 0.408 | III |
Guizhou | 0.226 | IV | 0.277 | II | 0.376 | III | 0.288 | III |
Yunnan | 0.264 | I | 0.303 | I | 0.405 | III | 0.319 | I |
Xizang | 0.185 | IV | 0.212 | II | 0.290 | III | 0.226 | III |
Shanxi | 0.273 | IV | 0.352 | IV | 0.511 | III | 0.371 | IV |
Gansu | 0.241 | III | 0.294 | III | 0.390 | II | 0.304 | III |
Qinghai | 0.206 | 0.180 | 0.272 | I | 0.386 | III | 0.282 | III |
Ningxia | 0.215 | II | 0.293 | II | 0.418 | III | 0.302 | II |
Xinjiang | 0.265 | 0.306 | 0.308 | III | 0.407 | II | 0.322 | III |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, W. Spatial-Temporal Relationship between Water Resources and Economic Development in Rural China from a Poverty Perspective. Int. J. Environ. Res. Public Health 2021, 18, 1540. https://doi.org/10.3390/ijerph18041540
Liu Z, Liu W. Spatial-Temporal Relationship between Water Resources and Economic Development in Rural China from a Poverty Perspective. International Journal of Environmental Research and Public Health. 2021; 18(4):1540. https://doi.org/10.3390/ijerph18041540
Chicago/Turabian StyleLiu, Zhaorunqing, and Wenxin Liu. 2021. "Spatial-Temporal Relationship between Water Resources and Economic Development in Rural China from a Poverty Perspective" International Journal of Environmental Research and Public Health 18, no. 4: 1540. https://doi.org/10.3390/ijerph18041540
APA StyleLiu, Z., & Liu, W. (2021). Spatial-Temporal Relationship between Water Resources and Economic Development in Rural China from a Poverty Perspective. International Journal of Environmental Research and Public Health, 18(4), 1540. https://doi.org/10.3390/ijerph18041540