Evaluation of Fetal Exposures to Metals and Metalloids through Meconium Analyses: A Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Analytical Methods and Reporting
3.2. Description of Cohorts
3.3. Premature vs. Term
3.4. Statistical Approaches
4. Discussion
- We have found several additional points of interest in this broad survey of metals in meconium. First were questions about the significance of the results reported.
- What is the significance of metals in meconium in terms of development and future health? What proportion of metal intake is deposited in meconium? Presumably, once metals are deposited in meconium and reach the lower intestine they are sequestered, but this is an area in need of further exploration [122]. What proportions might be deposited or circulated elsewhere (liver, kidney, brain) and result in fetal damage? More study would be needed to determine if metals found in meconium are correlated with adverse effects and to determine what concentration should raise a flag for concern.
- What does a high concentration of a particular metal mean? For example, does a high meconium concentration of Cu indicate high maternal intake of Cu? Or high maternal intake of a metal that competes with Cu or increases its sequestration or deposition in meconium, placenta or elsewhere?
- How do mixtures of metals affect transport or induce biochemical changes both from placenta to fetus and within the fetus itself?
- How much did methodological differences influence the results reported by different groups? According to sample preparation (homogenization of all meconium produced by an infant vs. procuring a small scoop) and according to analytical technique or instrument or according to statistics and reporting approach (concentration as ppb or ug/g/kg of bodyweight.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Environment Programme. UNEP’s Global Chemicals Outlook: Towards Sound Management of Chemicals; UNEP: Nairobi, Kenya, 2013. [Google Scholar]
- Landrigan, P.J.; Goldman, L.R. Children’s vulnerability to toxic chemicals: A challenge and opportunity to strengthen health and environmental policy. Health Affairs. 2011, 5, 842–850. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Pesticides in the Diets of Infants and Children; National Academy Press: Washington, DC, USA, 1993. [Google Scholar]
- Rahman, A.; Kumarathasan, P.; Gomes, J. Infant and mother related outcomes from exposure to metals with endocrine disrupting properties during pregnancy. Sci. Total Environ. 2016, 569–570, 1022–1031. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Chen, M.; Yang, S.; Li, J.; Lin, Y.; Deng, Y.; Li, N.; Guo, Y.; Yu, P.; et al. The effects of lead and aluminum exposure on congenital heart disease and the mechanism of oxidative stress. Reprod. Toxicol. 2018, 81, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Young, J.L.; Cai, L. Implications for prenatal cadmium exposure and adverse health outcomes in adulthood. Toxicol. Appl. Pharmacol. 2020, 403, 115161. [Google Scholar] [CrossRef]
- Kundak, A.A.; Pektas, A.; Zenciroglu, A.; Ozdemir, S.; Barutcu, U.B.; Orun, U.A.; Okumus, N. Do toxic metals and trace elements have a role in the pathogenesis of conotruncal heart malformations? Cardiol. Young 2016, 27, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Im, S.-H.; Woo, S.-Y.; Chung, J.; Hong, Y.-S.; Oh, S.-Y.; Choi, S.-J.; Oh, S.-Y.; Kim, K.W.; Shin, H.S.; et al. Prenatal Exposure to Lead and Chromium is Associated with IL-13 Levels in Umbilical Cord Blood and Severity of Atopic Dermatitis: COCOA Study. Immune Netw. 2019, 19, e42. [Google Scholar] [CrossRef] [PubMed]
- Sioen, I.; Hond, E.D.; Nelen, V.; Van De Mieroop, E.; Croes, K.; Van Larebeke, N.; Nawrot, T.S.; Schoeters, G. Prenatal exposure to environmental contaminants and behavioural problems at age 7–8 years. Environ. Int. 2013, 59, 225–231. [Google Scholar] [CrossRef]
- Ludvigsson, J.F.; Andersson-White, P.; Guerrero-Bosagna, C. Toxic metals in cord blood and later development of Type 1 diabetes. Pediatr. Dimens. 2019, 4. [Google Scholar] [CrossRef]
- Størdal, K.; McArdle, H.J.; Hayes, H.E.; Tapia, G.; Viken, M.K.; Lund-Blix, N.A.; Haugen, M.; Joner, G.; Skrivarhaug, T.; Mårild, K.; et al. Prenatal iron exposure and childhood type 1 diabetes. Sci. Rep. 2018, 8, 9067. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-W.; Kim, K.-Y.; Choi, B.-S.; Youn, P.; Ryu, D.-Y.; Klaassen, C.D.; Park, J.-D. Regulation of metal transporters by dietary iron, and the relationship between body iron levels and cadmium uptake. Arch. Toxicol. 2006, 81, 327–334. [Google Scholar] [CrossRef]
- Lester, B.; ElSohly, M.; Wright, L.; Smeriglio, V.; Verter, J.; Bauer, C.; Shankaran, S.; Bada, H.; Walls, H.; Huestis, M.; et al. The Maternal Lifestyle Study: Drug Use by Meconium Toxicology and Maternal Self-Report. Pediatrics 2001, 107, 309–317. [Google Scholar] [CrossRef]
- Ostrea, E.M., Jr.; Knapp, D.K.; Romero, A.; Montes, M.; Ostrea, A.R. Meconium analysis to assess fetal exposure to nicotine by active and passive maternal smoking. J. Pediatrics 1994, 124, 471–476. [Google Scholar] [CrossRef]
- Cassoulet, R.; Haroune, L.; Abdelouahab, N.; Gillet, V.; Baccarelli, A.A.; Cabana, H.; Takser, L.; Bellenger, J.-P. Monitoring of prenatal exposure to organic and inorganic contaminants using meconium from an Eastern Canada cohort. Environ. Res. 2019, 171, 44–51. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.J.; Liu, J.X.; Zheng, L.K.; Chen, G.J.; Chen, S.J.; Huo, X. Determination of meconium lead level of newborn by graphite furnace atomic absorption spectrometry. Guang Pu Xue Yu Guang Pu Fen Xi 2008, 28, 447–449. (In Chinese) [Google Scholar]
- Dawson, E.B.; Evans, D.R.; Nosovitch, J. Third-Trimester Amniotic Fluid Metal Levels Associated with Preeclampsia. Arch. Environ. Health Int. J. 1999, 54, 412–415. [Google Scholar] [CrossRef]
- Turker, G.; Ozsoy, G.; Ozdemir, S.; Barutcu, B.; Gökalp, A.S. Effect of heavy metals in the meconium on preterm mortality: Preliminary study. Pediatr. Int. 2013, 55, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Colby, J.M.; Adams, B.C.; Morad, A.; Presley, L.D.; Patrick, S.W. Umbilical Cord Tissue and Meconium May Not Be Equivalent for Confirming in Utero Substance Exposure. J. Pediatr. 2019, 205, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Underwood, M.A.; Gilbert, W.M.; Sherman, M.P. Amniotic Fluid: Not Just Fetal Urine Anymore. J. Perinatol. 2005, 25, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Chamorro-García, R.; Sahu, M.; Abbey, R.J.; Laude, J.; Pham, N.; Blumberg, B. Transgenerational Inheritance of Increased Fat Depot Size, Stem Cell Reprogramming, and Hepatic Steatosis Elicited by Prenatal Exposure to the Obesogen Tributyltin in Mice. Environ. Health Perspect. 2013, 121, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.C.; Knudsen, T.; Williams, A.J. Abstract Sifter: A comprehensive front-end system to PubMed. F1000Research 2017, 6, 2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friel, J.K.; Matthew, D.; Andrews, W.L.; Skinner, C.T. Trace Elements in Meconium from Preterm and Full-Term Infants. Neonatology 1989, 55, 214–217. [Google Scholar] [CrossRef]
- Aziz, S.; Ahmed, S.; Karim, S.A.; Tayyab, S.; Shirazi, A. Toxic metals in maternal blood, cord blood and meconium of newborn infants in Pakistan. East. Mediterr. Health J. 2017, 23, 678–687. [Google Scholar] [CrossRef]
- Ozsoy, G.; Türker, G.; Ozdemir, S.; Gökalp, A.S.; Barutçu, Ü.B. The Effect of Heavy Metals and Trace Elements in the Meconium on Preterm Delivery of Unknown Etiology. Turk. Klin. J. Med. Sci. 2012, 32, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Vall, O.; Gómez-Culebras, M.; García-Algar, O.; Joya, X.; Vélez, D.; Rodríguez-Carrasco, E.; Puig, C. Assessment of Prenatal Exposure to Arsenic in Tenerife Island. PLoS ONE 2012, 7, e50463. [Google Scholar] [CrossRef] [PubMed]
- Ostrea, E.M., Jr.; Morales, V.; Ngoumgna, E.; Prescilla, R.; Tan, E.; Hernandez, E.; Baens-Ramirez, G.; Cifra, H.L.; Manlapaz, M.L. Prevalence of Fetal Exposure to Environmental Toxins as Determined by Meconium Analysis. Neurotoxicology 2002, 23, 329–339. [Google Scholar] [CrossRef]
- González de Dios, J.; Moya Benavent, M.; Cortés Castell, E. Cuantificación de la excreción fecal de elementos traza en recién nacidos como expresión de la secreción intestinal fetal. An. Esp. Pediatr. 1996, 45, 281–285. (In Spanish) [Google Scholar]
- Lall, R.; Wapnir, R.A. Meconium Mineral Content in Small for Gestational Age Neonates. Am. J. Perinatol. 2005, 22, 259–263. [Google Scholar] [CrossRef]
- Hamzaoglu, O.; Yavuz, M.; Turker, G.; Savli, H. Air Pollution and Heavy Metal Concentration in Colostrum and Meconium in Two Different Districts of an Industrial City: A Preliminary Report. Int. Med. J. 2014, 21, 77–82. [Google Scholar]
- Haram-Mourabet, S.; Harper, R.G.; Wapnir, R.A. Mineral Composition of Meconium: Effect of Prematurity. J. Am. Coll. Nutr. 1998, 17, 356–360. [Google Scholar] [CrossRef]
- Knezović, Z.; Trgo, M.; Sutlović, D. Monitoring mercury environment pollution through bioaccumulation in meconium. Process. Saf. Environ. Prot. 2016, 101, 2–8. [Google Scholar] [CrossRef]
- McDermott, S.; Hailer, M.K.; Lead, J.R. Meconium identifies high levels of metals in newborns from a mining community in the U.S. Sci. Total. Environ. 2020, 707, 135528. [Google Scholar] [CrossRef]
- Unuvar, E.; Ahmadov, H.; Kiziler, A.; Aydemir, B.; Toprak, S.; Ulker, V.; Ark, C. Mercury levels in cord blood and meconium of healthy newborns and venous blood of their mothers: Clinical, prospective cohort study. Sci. Total Environ. 2007, 374, 60–70. [Google Scholar] [CrossRef]
- Li, Y.; Xu, X.; Wu, K.; Chen, G.; Liu, J.; Chen, S.; Gu, C.; Zhang, B.; Zheng, L.; Zheng, M.; et al. Monitoring of lead load and its effect on neonatal behavioral neurological assessment scores in Guiyu, an electronic waste recycling town in China. J. Environ. Monit. 2008, 10, 1233–1238. [Google Scholar] [CrossRef]
- Peng, S.; Liu, L.; Zhang, X.; Heinrich, J.; Zhang, J.; Schramm, K.-W.; Huang, Q.; Tian, M.; Eqani, S.A.M.A.S.; Shen, H. A nested case-control study indicating heavy metal residues in meconium associate with maternal gestational diabetes mellitus risk. Environ. Health 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, J.; Peng, S.; Wang, X.; Luo, L.; Liu, L.; Huang, Q.; Tian, M.; Zhang, X.; Shen, H. Multiple elements related to metabolic markers in the context of gestational diabetes mellitus in meconium. Environ. Int. 2018, 121, 1227–1234. [Google Scholar] [CrossRef]
- Cavell, P.A.; Widdowson, E.M. Intakes and Excretions of Iron, Copper, and Zinc in the Neonatal Period. Arch. Dis. Child. 1964, 39, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Golamco, F.P.; Harper, R.G.; Sia, C.; Spinazzola, R. Mineral and trace elements in meconium: Comparison in dizygotic twin pairs. J. Trace Elem. Exp. Med. 2000, 13, 205–213. [Google Scholar] [CrossRef]
- Yang, Y.; Nakai, S.; Oda, S.; Nishino, H.; Ishii, M.; Yokoyama, H.; Matsuki, H. A Preliminary Study on the Use of Meconium for the Assessment of Prenatal Exposure to Heavy Metals in Japan. J. UOEH 2013, 35, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbuckle, T.E.; Liang, C.L.; Morisset, A.-S.; Fisher, M.; Weiler, H.; Cirtiu, C.M.; Legrand, M.; Davis, K.; Ettinger, A.S.; Fraser, W.D.; et al. Maternal and fetal exposure to cadmium, lead, manganese and mercury: The MIREC study. Chemosphere 2016, 163, 270–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettinger, A.S.; Arbuckle, T.E.; Fisher, M.; Liang, C.L.; Davis, K.; Cirtiu, C.-M.; Bélanger, P.; Leblanc, A.; Fraser, W.D. Arsenic levels among pregnant women and newborns in Canada: Results from the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. Environ. Res. 2017, 153, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothenberg, S.E.; Wagner, C.L.; Hamidi, B.; Alekseyenko, A.V.; Azcarate-Peril, M.A. Longitudinal changes during pregnancy in gut microbiota and methylmercury biomarkers, and reversal of microbe-exposure correlations. Environ. Res. 2019, 172, 700–712. [Google Scholar] [CrossRef]
- Trdin, A.; Falnoga, I.; Fajon, V.; Živković, I.; Tratnik, J.S.; Prpić, I.; Špirić, Z.; Horvat, M. Mercury speciation in meconium and associated factors. Environ. Res. 2019, 179, 108724. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Fröhlich, S.; Graf-Rohrmeister, K.; Eibenberger, B.; Jessenig, V.; Gicic, D.; Prinz, S.; Wittmann, K.J.; Zeisler, H.; Vallant, B.; et al. Perinatal lead and mercury exposure in Austria. Sci. Total Environ. 2010, 408, 5744–5749. [Google Scholar] [CrossRef]
- Jiang, C.-B.; Hsi, H.-C.; Fan, C.-H.; Chien, L.-C. Fetal Exposure to Environmental Neurotoxins in Taiwan. PLoS ONE 2014, 9, e109984. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, G.B.; Cruz, M.C.V.; Pagulayan, O.; Ostrea, E.; Dalisay, C. The Tagum study I: Analysis and clinical correlates of mercury in maternal and cord blood, breast milk, meconium, and infants’ hair. Pediatrics 2000, 106, 774–781. [Google Scholar] [CrossRef]
- Türker, G.; Ergen, K.; Karakoç, Y.; Arısoy, A.E.; Barutcu, U.B. Concentrations of Toxic Metals and Trace Elements in the Meconium of Newborns from an Industrial City. Neonatology 2006, 89, 244–250. [Google Scholar] [CrossRef]
- Li, A.; Zhuang, T.; Shi, J.; Liang, Y.; Song, M. Heavy metals in maternal and cord blood in Beijing and their efficiency of placental transfer. J. Environ. Sci. 2019, 80, 99–106. [Google Scholar] [CrossRef]
- Ostrea, E.M., Jr.; Preccilla, R.; Moroles, V.; Go, J.; Tan, E.; Hernandez, E.; Baens-Ramirez, G.; Manlapaz, M.L. Significant fetal exposure to heavy metals as detected by meconium analysis. Pediatr. Res. 1997, 42, 168. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, H.S.; Karadas, F.; Yörük, I.; Oto, G.; Erdemoğlu, E.; Yesilova, A. Vitamin and Mineral Levels of Newborns in Van Basin and Their Relation to Maternal Vitamin and Mineral Status. Open J. Pediatrics 2014, 4, 107–114. [Google Scholar] [CrossRef] [Green Version]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Aluminum; Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2008. [Google Scholar]
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, E.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health B Crit. Rev. 2007, 10, 1–269. [Google Scholar] [CrossRef]
- Morris, G.; Puri, B.K.; Frye, R.E. The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab. Brain Dis. 2017, 32, 1335–1355. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.-H.; Huang, C.-J.; Chen, S.-T.; Hsu, G.-S.W. Serum and testicular testosterone and nitric oxide products in aluminum-treated mice. Environ. Toxicol. Pharmacol. 2001, 10, 53–60. [Google Scholar] [CrossRef]
- Wang, J.-Q.; Hu, Y.-B.; Liang, C.-M.; Xia, X.; Li, Z.-J.; Gao, H.; Sheng, J.; Huang, K.; Wang, S.-F.; Li, Y.; et al. Aluminum and magnesium status during pregnancy and placenta oxidative stress and inflammatory mRNA expression: China Ma ‘anshan birth cohort study. Environ. Geochem. Health 2020. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, X.; Zhang, W.; Su, W.; Zhou, A.; Xu, S.; Li, Y.; Chen, D. Aluminum Exposure and Gestational Diabetes Mellitus: Associations and Potential Mediation by n − 6 Polyunsaturated Fatty Acids. Environ. Sci. Technol. 2020, 54, 5031–5040. [Google Scholar] [CrossRef]
- Winterbottom, E.F.; Ban, Y.; Sun, X.; Capobianco, A.J.; Marsit, C.; Chen, S.X.; Wang, L.; Karagas, M.R.; Robbins, D.J. Transcriptome-wide analysis of changes in the fetal placenta associated with prenatal arsenic exposure in the New Hampshire Birth Cohort Study. Environ. Health 2019, 18, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldwell, K.E.; Labrecque, M.T.; Solomon, B.R.; Ali, A.; Allan, A.M. Prenatal arsenic exposure alters the programming of the glucocorticoid signaling system during embryonic development. Neurotoxicol. Teratol. 2015, 47, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Salmeri, N.; Villanacci, R.; Ottolina, J.; Bartiromo, L.; Cavoretto, P.; Dolci, C.; Lembo, R.; Schimberni, M.; Valsecchi, L.; Viganò, P.; et al. Maternal Arsenic Exposure and Gestational Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3094. [Google Scholar] [CrossRef]
- Pomroy, C.; Charbonneau, S.; McCullough, R.; Tam, G. Human retention studies with 74As. Toxicol. Appl. Pharmacol. 1980, 53, 550–556. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, Z.; Tian, X.; Chen, M.; Deng, Y.; Guo, Y.; Li, N.; Yu, P.; Yang, J.; Zhu, J. Barium exposure increases the risk of congenital heart defects occurrence in offspring. Clin. Toxicol. 2017, 56, 132–139. [Google Scholar] [CrossRef]
- Pi, X.; Jin, L.; Li, Z.; Liu, J.; Zhang, Y.; Wang, L.; Ren, A. Association between concentrations of barium and aluminum in placental tissues and risk for orofacial clefts. Sci. Total Environ. 2019, 652, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Ohgami, N.; Mitsumatsu, Y.; Ahsan, N.; Akhand, A.A.; Li, X.; Iida, M.; Yajima, I.; Naito, M.; Wakai, K.; Ohnuma, S.; et al. Epidemiological analysis of the association between hearing and barium in humans. J. Expo. Sci. Environ. Epidemiol. 2015, 26, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Menke, A.; Guallar, E.; Cowie, C.C. Metals in Urine and Diabetes in United States Adults. Diabetes 2015, 65, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroyer, A.; Hemon, D.; Nisse, C.; Auque, G.; Mazzuca, M.; Haguenoer, J.-M. Determinants of Cadmium Burden Levels in a Population of Children Living in the Vicinity of Nonferrous Smelters. Environ. Res. 2001, 87, 147–159. [Google Scholar] [CrossRef]
- Boal, A.K.; Rosenzweig, A.C. Structural Biology of Copper Trafficking. Chem. Rev. 2009, 109, 4760–4779. [Google Scholar] [CrossRef] [Green Version]
- Elam, J.S.; Thomas, S.T.; Holloway, S.P.; Taylor, A.B.; Hart, P. Copper chaperones. Protein Simul. 2002, 60, 151–219. [Google Scholar] [CrossRef]
- McArdle, H.J.; Andersen, H.S.; Jones, H.; Gambling, L. Copper and Iron Transport Across the Placenta: Regulation and Interactions. J. Neuroendocr. 2008, 20, 427–431. [Google Scholar] [CrossRef]
- Kuo, Y.-M.; Zhou, B.; Cosco, D.; Gitschier, J. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc. Natl. Acad. Sci. USA 2001, 98, 6836–6841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, A.; Yacoubian, C.; Watson, N.; Morrison, I. The risk of copper deficiency in patients prescribed zinc supplements. J. Clin. Pathol. 2015, 68, 723–725. [Google Scholar] [CrossRef]
- Chen, Z.; Myers, R.P.; Wei, T.; Bind, E.; Kassim, P.; Wang, G.; Ji, Y.; Hong, X.; Caruso, D.; Bartell, T.; et al. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, R.N.; Cuffe, J.S.M.; Moritz, K.M.; Paravicini, T. Maternal hypomagnesemia causes placental abnormalities and fetal and postnatal mortality. Placenta 2015, 36, 750–758. [Google Scholar] [CrossRef]
- Wedig, K.E.; Kogan, J.; Schorry, E.K.; Whitsett, J.A. Skeletal demineralization and fractures caused by fetal magnesium toxicity. J. Perinatol. 2006, 26, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, K.; Takahashi, N.; Yada, Y.; Koike, Y.; Kawamata, R.; Uehara, R.; Kono, Y.; Honma, Y.; Momoi, M.Y. Prolonged maternal magnesium administration and bone metabolism in neonates. Early Hum. Dev. 2010, 86, 187–191. [Google Scholar] [CrossRef]
- Emery, J.L. Laboratory Observations on the Viscidity of Meconium. Arch. Dis. Child. 1954, 29, 34–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, H.; Wang, M.; Li, X.; Piao, F.; Li, Q.; Xu, L.; Kitamura, F.; Yokoyama, K. Manganese concentrations in maternal and umbilical cord blood: Related to birth size and environmental factors. Eur. J. Public Health 2013, 24, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kullar, S.S.; Shao, K.; Surette, C.; Foucher, D.; Mergler, D.; Cormier, P.; Bellinger, D.C.; Barbeau, B.; Sauvé, S.; Bouchard, M.F. A benchmark concentration analysis for manganese in drinking water and IQ deficits in children. Environ. Int. 2019, 130, 104889. [Google Scholar] [CrossRef]
- Broberg, K.; Taj, T.; Guazzetti, S.; Peli, M.; Cagna, G.; Pineda, D.; Placidi, D.; Wright, R.O.; Smith, D.R.; Lucchini, R.G.; et al. Manganese transporter genetics and sex modify the association between environmental manganese exposure and neurobehavioral outcomes in children. Environ. Int. 2019, 130, 104908. [Google Scholar] [CrossRef]
- Ying, S.C.; Schaefer, M.V.; Cock-Esteb, A.; Alicea, C.-E.; Fendorf, S. Depth Stratification Leads to Distinct Zones of Manganese and Arsenic Contaminated Groundwater. Environ. Sci. Technol. 2017, 51, 8926–8932. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, Y.; Xia, W.; Jin, S.; Liu, W.; Lin, X.; Liu, H.; Chen, X.; Peng, Y.; Li, H.; et al. Association between prenatal nickel exposure and preterm low birth weight: Possible effect of selenium. Environ. Sci. Pollut. Res. 2018, 25, 25888–25895. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, M.; Li, J.; Deng, Y.; Li, S.-L.; Guo, Y.-X.; Li, N.; Lin, Y.; Yu, P.; Liu, Z.; et al. Metal nickel exposure increase the risk of congenital heart defects occurrence in offspring. Medicine 2019, 98, e15352. [Google Scholar] [CrossRef]
- Rayman, M.P.; Wijnen, H.; Vader, H.; Kooistra, L.; Pop, V. Maternal selenium status during early gestation and risk for preterm birth. Can. Med. Assoc. J. 2011, 183, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özdemir, H.S.; Karadas, F.; Pappas, A.C.; Cassey, P.; Oto, G.; Tunçer, Ö. The Selenium Levels of Mothers and Their Neonates Using Hair, Breast Milk, Meconium, and Maternal and Umbilical Cord Blood in Van Basin. Biol. Trace Elem. Res. 2008, 122, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Penglase, S.J.; Hamre, K.; Ellingsen, S. Selenium prevents downregulation of antioxidant selenoprotein genes by methylmercury. Free Radic. Biol. Med. 2014, 75, 95–104. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Rothman, K.J. Selenium exposure and the risk of type 2 diabetes: A systematic review and meta-analysis. Eur. J. Epidemiol. 2018, 33, 789–810. [Google Scholar] [CrossRef]
- Kilness, A.W.; Hochberg, F.H. Amyotrophic Lateral Sclerosis in a High Selenium Environment. JAMA 1977, 237, 2843–2844. [Google Scholar] [CrossRef]
- Vinceti, M.; Bonvicini, F.; Bergomi, M.; Malagoli, C. Possible involvement of overexposure to environmental selenium in the etiology of amyotrophic lateral sclerosis: A short review. Ann. Ist. Super. Sanità 2010, 46, 279–283. [Google Scholar]
- Oo, S.M.; Misu, H.; Saito, Y.; Tanaka, M.; Kato, S.; Kita, Y.; Takayama, H.; Takeshita, Y.; Kanamori, T.; Nagano, T.; et al. Serum selenoprotein P, but not selenium, predicts future hyperglycemia in a general Japanese population. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ao, M.; Qiu, G.; Zhang, C.; Xu, X.; Zhao, L.; Feng, X.; Qin, S.; Meng, B. Atmospheric deposition of antimony in a typical mercury-antimony mining area, Shaanxi Province, Southwest China. Environ. Pollut. 2019, 245, 173–182. [Google Scholar] [CrossRef]
- Wan, X.-M.; Tandy, S.; Hockmann, K.; Schulin, R. Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake. Environ. Pollut. 2013, 172, 53–60. [Google Scholar] [CrossRef]
- Ji, Y.; Mestrot, A.; Schulin, R.; Tandy, S. Uptake and Transformation of Methylated and Inorganic Antimony in Plants. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, G.B.; Maes, J.; Eykens, B. Transfer of antimony and arsenic to the developing organism. Arch. Toxicol. 1982, 49, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Rashedy, A.H.; A Solimany, A.; Ismail, A.K.; Wahdan, M.H.; Saban, K.A. Histopathological and functional effects of antimony on the renal cortex of growing albino rat. Int. J. Clin. Exp. Pathol. 2013, 6, 1467–1480. [Google Scholar]
- Cooke, G.M.; Forsyth, D.S.; Bondy, G.S.; Tachon, R.; Tague, B.; Coady, L. Organotin speciation and tissue distribution in rat dams, fetuses, and neonates following oral administration of tributyltin chloride. J. Toxicol. Environ. Health Part A 2008, 1, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Podratz, P.L.; Merlo, E.; De Araújo, J.F.; Ayub, J.G.; Pereira, A.F.; Freitas-Lima, L.C.; Da Costa, M.B.; Miranda-Alves, L.; Cassa, S.G.; Carneiro, M.T.W.D.; et al. Disruption of fertility, placenta, pregnancy outcome, and multigenerational inheritance of hepatic steatosis by organotin exposure from contaminated seafood in rats. Sci. Total Environ. 2020, 723, 138000. [Google Scholar] [CrossRef]
- Cao, D.; Jiang, G.; Zhou, Q.; Yang, R. Organotin pollution in China: An overview of the current state and potential health risk. J. Environ. Manag. 2009, 90, S16–S24. [Google Scholar] [CrossRef] [PubMed]
- Lehmler, H.-J.; Gadogbe, M.; Liu, B.; Bao, W. Environmental tin exposure in a nationally representative sample of U.S. adults and children: The National Health and Nutrition Examination Survey 2011–2014. Environ. Pollut. 2018, 240, 599–606. [Google Scholar] [CrossRef]
- Hu, J.; Peng, Y.; Zheng, T.; Zhang, B.; Liu, W.; Wu, C.; Jiang, M.; Braun, J.M.; Liu, S.; Buka, S.L.; et al. Effects of trimester-specific exposure to vanadium on ultrasound measures of fetal growth and birth size: A longitudinal prospective prenatal cohort study. Lancet Planet. Health 2018, 2, e427–e437. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.P.; Cui, R.Y.; Zhang, K.; Ding, X.M.; Luo, Y.H.; Bai, S.P.; Zeng, Q.F.; Xuan, Y.; Su, Z.W. High-Fat Diet Increased Renal and Hepatic Oxidative Stress Induced by Vanadium of Wistar Rat. Biol. Trace Elem. Res. 2015, 170, 415–423. [Google Scholar] [CrossRef]
- Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sanchez-Gaytan, B.; Perez-Aguilar, J.M.; González-Vergara, E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol. Trace Elem. Res. 2019, 188, 68–98. [Google Scholar] [CrossRef] [Green Version]
- Fatola, O.I.; OlaOlorun, F.A.; Olopade, F.E.; Olopade, J.O. Trends in vanadium neurotoxicity. Brain Res. Bull. 2019, 145, 75–80. [Google Scholar] [CrossRef]
- Goyer, R.A. Transplacental transport of lead. Environ. Health Perspect. 1990, 89, 101–105. [Google Scholar] [CrossRef]
- Ballatori, N. Transport of toxic metals by molecular mimicry. Environ. Health Perspect. 2002, 110, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Bridges, C.C.; Zalups, R.K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 2005, 204, 274–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boadi, W.Y.; Yannai, S.; Urbach, J.; Brandes, J.M.; Summer, K.H. Transfer and accumulation of cadmium, and the level of metallothionein in perfused human placentae. Arch. Toxicol. 1991, 65, 318–323. [Google Scholar] [CrossRef]
- Mikheev, A.M.; Nabekura, T.; Kaddoumi, A.; Bammler, T.K.; Govindarajan, R.; Hebert, M.F.; Unadkat, J.D. Profiling Gene Expression in Human Placentae of Different Gestational Ages: An OPRU Network and UW SCOR Study. Reprod. Sci. 2008, 15, 866–877. [Google Scholar] [CrossRef] [Green Version]
- Straka, E.; Ellinger, I.; Balthasar, C.; Scheinast, M.; Schatz, J.; Szattler, T.; Bleichert, S.; Saleh, L.; Knöfler, M.; Zeisler, H.; et al. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters. Toxicology 2016, 340, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Zu Schwabedissen, H.E.M.; Jedlitschky, G.; Gratz, M.; Haenisch, S.; Linnemann, K.; Fusch, C.; Cascorbi, I.; Kroemer, H.K. Variable expression of MRP2 (ABCC2) in human placenta: Influence of gestational age and cellular differentiation. Drug Metab. Dispos. 2005, 33, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Gregus, Z.; Klaassen, C.D. Disposition of metals in rats: A comparative study of fecal, urinary, and biliary excretion and tissue distribution of eighteen metals. Toxicol. Appl. Pharmacol. 1986, 85, 24–38. [Google Scholar] [CrossRef]
- Kuriwaki, J.-I.; Nishijo, M.; Honda, R.; Tawara, K.; Nakagawa, H.; Hori, E.; Nishijo, H. Effects of cadmium exposure during pregnancy on trace elements in fetal rat liver and kidney. Toxicol. Lett. 2005, 156, 369–376. [Google Scholar] [CrossRef]
- Thévenod, F.; Wolff, N.A. Iron transport in the kidney: Implications for physiology and cadmium nephrotoxicity. Metallomics 2016, 8, 17–42. [Google Scholar] [CrossRef]
- Brace, R.A. Physiology of Amniotic Fluid Volume Regulation. Clin. Obstet. Gynecol. 1997, 40, 280–289. [Google Scholar] [CrossRef]
- Suliburska, J.; Kocyłowski, R.; Komorowicz, I.; Grzesiak, M.; Bogdański, P.; Barałkiewicz, D. Concentrations of Mineral in Amniotic Fluid and Their Relations to Selected Maternal and Fetal Parameters. Biol. Trace Elem. Res. 2016, 172, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Stern, A.H.; Smith, A.E. An assessment of the cord blood:maternal blood methylmercury ratio: Implications for risk assessment. Environ. Health Perspect. 2003, 111, 1465–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aye, I.L.M.H.; Paxton, J.W.; Evseenko, D.A.; Keelan, J.A. Expression, localisation and activity of ATP binding cassette (ABC) family of drug transporters in human amnion membranes. Placenta 2007, 28, 868–877. [Google Scholar] [CrossRef]
- Balthasar, C.; Stangl, H.; Widhalm, R.; Granitzer, S.; Hengstschläger, M.; Gundacker, C. Methylmercury Uptake into BeWo Cells Depends on LAT2-4F2hc, a System L Amino Acid Transporter. Int. J. Mol. Sci. 2017, 18, 1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhou, L.; Hu, S.; Zhou, S.; Deng, Y.; Dong, M.; Huang, J.; Zeng, Y.; Chen, X.; Zhao, N.; et al. Down-regulation of ABCG2 and ABCB4 transporters in the placenta of rats exposed to cadmium. Oncotarget 2016, 7, 38154–38163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llop, S.; Engström, K.; Ballester, F.; Franforte, E.; Alhamdow, A.; Pisa, F.; Tratnik, J.S.; Mazej, D.; Murcia, M.; Rebagliato, M.; et al. Polymorphisms in ABC Transporter Genes and Concentrations of Mercury in Newborns–Evidence from Two Mediterranean Birth Cohorts. PLoS ONE 2014, 9, e97172. [Google Scholar] [CrossRef] [PubMed]
- Engström, K.; Love, T.M.; Watson, G.E.; Zareba, G.; Yeates, A.; Wahlberg, K.; Alhamdow, A.; Thurston, S.W.; Mulhern, M.; McSorley, E.M.; et al. Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study. Environ. Int. 2016, 94, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Orr, S.E.; Barnes, M.C.; George, H.S.; Joshee, L.; Jeon, B.; Scircle, A.; Black, O.; Cizdziel, J.V.; Smith, B.E.; Bridges, C.C. Exposure to mixtures of mercury, cadmium, lead, and arsenic alters the disposition of single metals in tissues of Wistar rats. J. Toxicol. Environ. Health Part A 2018, 81, 1246–1256. [Google Scholar] [CrossRef]
- Abduljalil, K.; Jamei, M.; Johnson, T.N. Fetal Physiologically Based Pharmacokinetic Models: Systems Information on the Growth and Composition of Fetal Organs. Clin. Pharmacokinet. 2019, 58, 235–262. [Google Scholar] [CrossRef]
Descriptor | Authors |
---|---|
Preterm | [18,23,25,28,29] |
Full term | [18,24,25,26,30,31,32,33,34] |
Identical vs. dizygotic twins | [34] |
Small vs. average for gestational age | [29] |
Heart defects | [7] |
Male vs. Female | [35] |
Polluted area | [16,30] |
Gestational Diabetic | [36,37] |
Non-surviving | [18] |
Study | Cu | Cr | Fe | Mn | Zn |
---|---|---|---|---|---|
[23] | Terms | Preemies | Preemies | Terms | Terms |
[28] | Preemies | Preemies | Preemies | Preemies | Terms |
[25] | Preemies, Full term, Gestational diabetes | Preemies, Full term, Gestational diabetes | |||
[18] | Healthy, Preemies, non-surviving | Healthy, Preemies, non-surviving |
Type of Statistics | Authors |
---|---|
Standard | [7,15,19,24,26,28,29,33,37,38,39,40] |
Order | [15,18,25,27,30,32,33,36,41,42,43,44] |
Both | [15,33,35,42] |
Neither | [45,46,47] |
As | [15,27,30,36,37,40,42] |
Cd | [7,15,20,24,30,37,48] |
Cu | [7,15,18,19,24,25,27,28,29,31,33,37,38,42] |
Hg | [30,32,36,37,41,43,44,47,48] |
Mg | [15,28,29,31,37,39] |
Mn | [15,19,28,29,31,37,41] |
Pb | [7,15,18,24,25,27,28,30,35,38,40,49,50] |
Zn | [7,15,19,24,25,28,29,30,31,33,34,37,38,41,48] |
Al | [37] |
Ba | [37] |
Co | [15,37] |
Cr | [15,28,36,37] |
Fe | [15,30] |
Li | [37] |
Mo | [15,28,33] |
Ni | [15,37] |
P | [28] |
Sb | [37] |
Se | [51] |
Sn | [37] |
V | [15] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michelsen-Correa, S.; Martin, C.F.; Kirk, A.B. Evaluation of Fetal Exposures to Metals and Metalloids through Meconium Analyses: A Review. Int. J. Environ. Res. Public Health 2021, 18, 1975. https://doi.org/10.3390/ijerph18041975
Michelsen-Correa S, Martin CF, Kirk AB. Evaluation of Fetal Exposures to Metals and Metalloids through Meconium Analyses: A Review. International Journal of Environmental Research and Public Health. 2021; 18(4):1975. https://doi.org/10.3390/ijerph18041975
Chicago/Turabian StyleMichelsen-Correa, Stephani, Clyde F. Martin, and Andrea B. Kirk. 2021. "Evaluation of Fetal Exposures to Metals and Metalloids through Meconium Analyses: A Review" International Journal of Environmental Research and Public Health 18, no. 4: 1975. https://doi.org/10.3390/ijerph18041975
APA StyleMichelsen-Correa, S., Martin, C. F., & Kirk, A. B. (2021). Evaluation of Fetal Exposures to Metals and Metalloids through Meconium Analyses: A Review. International Journal of Environmental Research and Public Health, 18(4), 1975. https://doi.org/10.3390/ijerph18041975