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Abstract: Hematopoietic cancer is a malignant transformation in immune system cells. Hematopoi-
etic cancer is characterized by the cells that are expressed, so it is usually difficult to distinguish
its heterogeneities in the hematopoiesis process. Traditional approaches for cancer subtyping use
statistical techniques. Furthermore, due to the overfitting problem of small samples, in case of a
minor cancer, it does not have enough sample material for building a classification model. Therefore,
we propose not only to build a classification model for five major subtypes using two kinds of losses,
namely reconstruction loss and classification loss, but also to extract suitable features using a deep
autoencoder. Furthermore, for considering the data imbalance problem, we apply an oversampling
algorithm, the synthetic minority oversampling technique (SMOTE). For validation of our proposed
autoencoder-based feature extraction approach for hematopoietic cancer subtype classification, we
compared other traditional feature selection algorithms (principal component analysis, non-negative
matrix factorization) and classification algorithms with the SMOTE oversampling approach. Addi-
tionally, we used the Shapley Additive exPlanations (SHAP) interpretation technique in our model to
explain the important gene/protein for hematopoietic cancer subtype classification. Furthermore, we
compared five widely used classification algorithms, including logistic regression, random forest,
k-nearest neighbor, artificial neural network and support vector machine. The results of autoencoder-
based feature extraction approaches showed good performance, and the best result was the SMOTE
oversampling-applied support vector machine algorithm consider both focal loss and reconstruction
loss as the loss function for autoencoder (AE) feature selection approach, which produced 97.01%
accuracy, 92.60% recall, 99.52% specificity, 93.54% F1-measure, 97.87% G-mean and 95.46% index of
balanced accuracy as subtype classification performance measures.

Keywords: hematopoietic cancer; cancer classification; subtype classification; machine learning;
autoencoder; data mining; bioinformatics

1. Introduction

Lots of bioinformatics techniques have been developed for the disease detection
and diagnosis of patients with incurable diseases such as cancer for several decades [1].
However, it still remains challenging to deal with cancer patients. Furthermore, the
development of appropriate classification models using the gene which is extracted from

Int. J. Environ. Res. Public Health 2021, 18, 2197. https://doi.org/10.3390/ijerph18042197 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-7133-3051
https://orcid.org/0000-0002-9724-8955
https://orcid.org/0000-0002-2951-9610
https://orcid.org/0000-0003-0394-9054
https://doi.org/10.3390/ijerph18042197
https://doi.org/10.3390/ijerph18042197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18042197
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/18/4/2197?type=check_update&version=2


Int. J. Environ. Res. Public Health 2021, 18, 2197 2 of 24

patients is useful for early diagnosis of both patients and normal people. Cancer is a major
disease which causes death, involving abnormal cell differentiation [2]. It is caused by
many reasons, but the majority of cancers (90~95%) are due to genetic mutations from
lifestyle factors such as smoking, obesity, alcohol and so on. The remaining 5~10% are
caused due to inherited genes [3].

A hematopoietic malignancy is a neoplasm from hematopoietic cells in the bone
marrow, lymph nodes, peripheral blood and lymphatic system which is related to organs
of the hematopoietic system. Furthermore, it can be found in other organs such as the
gastrointestinal system and the central nervous system [4]. Given that hematopoietic
malignancies occur in the hematopoietic system, this malignancy is called a liquid tumor.
While uncommon in other cancers, chromosomal translocations are a common cause of
these diseases. Hematopoietic cancer accounts for 8~10% of all cancer diagnoses, and its
mortality rate is also similar to this [5].

Historically, hematopoietic cancer is divided by whether the malignant location is
in the blood or the lymph nodes. However, in 2001, the World Health Organization
(WHO) introduced the WHO classification of tumors of hematopoietic and lymphoid
tissue as a standard and updated it in 2008 and 2016 [6]. This WHO classification criterion
focused on cell linkage rather than the location of the occurrence. According to the WHO
classification, hematopoietic malignancies are mainly divided into leukemia, lymphoma
and myeloma [7].

Leukemia is one type of hematopoietic cancer that results from genetic changes in
hematopoietic cells in the blood or bone marrow. If an abnormality occurs in the bone
marrow, the abnormally generated blood cells mix with blood in the body and spread
widely into the body through the blood stream [8]. Most leukemia cases are diagnosed in
adults aged over 65 years, but it is also commonly observed in children under the age of
15 [7]. The American Cancer Society (ACS) reported, in 2020, that the United States will
see about 60,530 new cases and 23,100 deaths from leukemia [9]. Lymphoma is usually
found in distinct stationary masses of lymphocytes, such as the lymph node, thymus or
spleen. Like leukemia, lymphoma can also travel through the whole body by the blood
stream. Commonly, lymphoma cases are divided into Hodgkin lymphoma, non-Hodgkin
lymphoma, acquired immune deficiency syndrome (AIDS)-related lymphoma and primary
central nervous system (CNS) lymphoma [8]. In 2020, the ACS reported that there will
be approximately 85,720 new cases and 20,910 deaths from lymphoma [9]. Myeloma is
a tumor that occurs in plasma cells which are differentiated from bone marrow, blood or
other tissue. Plasma cells generate antibodies that protect against disease or infection, but
when they develop abnormally, it interferes with antibody generation and causes confusion
in the human immune system [8]. According to the estimation by the ACS, there would be
32,270 new cases and 12,830 deaths in 2020 [9].

There have been several studies conducted using genetic data-based cancer classifica-
tion by machine learning and data mining approaches [10–18]. For instance, one study [10]
utilized several machine learning approaches with naïve Bayes and k-nearest neighbor clas-
sification algorithm for breast cancer classification. Another study [11] applied classification
algorithms for binary subtype cancer classification on acute myeloblastic leukemia microar-
ray data. Other kinds of research also typically use machine learning algorithms such as
support vector machine, decision tree, random forest, lasso and neural network [12–18].

Over the years, various approaches for data mining have been applied on many cancer
research studies. Specifically, a deep learning method was applied in this area [19–23].
Ahmed M et al. [19] developed a breast cancer classification model using deep belief
networks in an unsupervised part for learning input feature statistics. Additionally, in the
supervised part, they adopted a conjugate gradient and Levenberg–Marquardt algorithm.

Furthermore, there are several studies on cancer subtype classification. A study [20]
used a deep learning approach for kidney cancer subtype classification using miRNA data
from The Cancer Genome Atlas (TCGA), which contained five different subtypes. They
employed neighborhood component analysis for feature extraction and a long short-term
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memory (LSTM)-based classifier. DeepCC [22] architecture using the gene set enrichment
analysis (GSEA) method and artificial neural network generated deep cancer subtype
classification frameworks that made comparisons between machine learning algorithms
such as support vector machine, logistic regression and gradient boost using a colon
cancer dataset from TCGA which contains 14 subtype cancer labels, and a Deeptype [23]
framework has been made for cancer subtype classification based on PAM50 [24]. They
used a multi-layer neural network structure for adopting representation power to project
on representation space.

Traditional approaches [10–18] have used statistical techniques for cancer classifica-
tion. Sun et al. [17] used an entropy-based approach for feature extraction in a cancer
classification model. However, this method has a disadvantage; that is, multiple classes
cannot be applied at once because each cancer is classified one by one through binary
classification for cancer classification. In the case of Deeptype [23], clustering is established
using a specific gene set called PAM50, previously known for breast cancer.

However, since this PAM50 indicator is used as an already known indicator, subtypes
can be classified through some valid information about breast cancer. Above all, for other
cancers, including hematopoietic cancer, there is no gene set for subtype classification. In
view of this, our work has a difference in feature extraction and subtype classification only
from the gene expression data of hematologic cancer. In order to overcome the demerit
of the multi-class classification task and the limitations due to the absence of a gene set,
we applied a method of feature extraction using an autoencoder-based method among
deep learning methods. In addition, we propose a subtype classification method in which
reconstruction error is generated by the autoencoder. The classification error generated by
the classification model and merged error are used as the loss function by referring to the
loss function application methods of Deeptype [23].

The goal of this work is to develop an autoencoder-based feature extraction approach
for hematopoietic cancer subtype classification. We not only focus on the five subtypes
of hematopoietic cancer and conduct a study on classifying by applying deep learning
techniques, but we also perform a feature extraction and calculation of two kinds of
errors, which are reconstruction error and classification error. In the process, first a deep
autoencoder approach is used for extracting suited features for building a classification
model, and then the reconstruction error and classification error (cross-entropy loss and
focal loss) are calculated for considering the data imbalance problem when building
the classification model using the extracted features. To validate the deep autoencoder-
based classification model, we compared other traditional feature selection algorithms and
classification algorithms with an oversampling approach. We compared five widely used
classification algorithms including logistic regression (LR), random forest (RF), k-nearest
neighbor (KNN), artificial neural network (ANN) and support vector machine (SVM).

We compared our proposed method with traditional cancer classification and cancer
subtype classification methods such as data mining and machine learning approaches
which are not able to be used in the previous end-to-end approaches. Our end-to-end
approach has multiple steps including feature engineering, data imbalance handling and
a classification task. The objectives of this study are to extract features from a deep
learning-based approach on the gene expression data for predicting hematopoietic cancer
subtypes and develop an end-to-end deep learning-based classification model. The major
contributions of this study are, briefly, as follows:

• We propose an end-to-end approach without any manual engineering, which classifies
hematopoietic cancer subtypes;

• We adopt a non-linear transformation step by using a deep autoencoder to select
deep features from gene expression data in hematopoietic cancer by adopting a deep
learning architecture-based feature engineering task;

• We implement a mixed loss function for the proposed deep learning model, considering
both the compression of knowledge representation and the data imbalance problem.

The remainder of this paper is organized as follows: Section 2 introduces the hematopoietic
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cancer gene expression dataset from TCGA. Furthermore, the proposed deep autoencoder-
based approach is explained in detail. In Section 3, the experimental results are provided.
Finally, Section 4 discusses the experimental results with our conclusion.

2. Materials and Methods
2.1. Dataset

TCGA is a site that contains plenty of information and data related to human cancer.
Currently, as of 2020, there are 47 types of cancer data, and each cancer’s data are provided
various kinds of data such as gene expression, clinical data and methylation data from
large numbers of patient with cancer [25]. Although some raw data, which include original
sequence information, are treated by controlled data that have to be approved for use in
experiments by TCGA, most data are freely accessible for researchers. We collected TCGA
data from 2457 patients with hematopoietic cancer gene expression data. The collected
gene expression data have five subtypes of hematopoietic cancer: lymphoid leukemia,
myeloid leukemia, leukemia not otherwise specified (nos), mature B-cell leukemia and
plasma cell neoplasm. The size of each hematopoietic subtype sample is 550 lymphoid
leukemia cases, 818 myeloid leukemia, 104 leukemia nos, 113 mature B-cell leukemia and
860 plasma cell neoplasm. Furthermore, these data have 60,453 exons’ information with
one gene expression profiling measurement. The level of gene expression is fragments per
kilobase per million (FPKM) mapped measure [26]. This FPKM can be calculated by the
following equation:

FPKM =
Total f ragments o f interest

Mapped reads (Millions)× exon length (kb)
(1)

FPKM is a normalized estimation of gene expression based on RNA-seq data consider-
ing both the number of reads and the length of the exon, measured by kilobase unit. That
is, a large FPKM means a large amount of expression per unit length, so the FPKM of a
certain gene refers to a relative amount of gene expression.

The statistics of hematopoietic cancer are shown in Table 1. In a preprocessing step,
we eliminated noisy and non-valued instances. These preprocessed data were used for the
subtype classification in this experiment; they were divided into 80% for training and 20%
for testing. However, as we introduced above, the dataset was considerably imbalanced.

Table 1. Summary of the hematopoietic cancer dataset.

Subtype # Sample Train Test

Lymphoid leukemias (LL) 550 440 110
Myeloid leukemias (ML) 818 654 164

Leukemia nos (NO) 104 83 21
Mature B-cell leukemias (MB) 113 90 23
Plasma cell neoplasms (PC) 860 688 172

Due to this data imbalance problem, we applied a cost function on the classification
and feature extraction and oversampling method. We also used an autoencoder-based
model for extracting the highly related gene expression data and compared this algorithm
with other traditional dimension reduction algorithms.

2.2. Proposed Autoencoder-Based Approach

In the experiment, we propose a deep learning-based hematopoietic cancer sub-
type classification approach. Figure 1 shows the proposed approach which inputs the
hematopoietic cancer gene expression data from TCGA and outputs the subtype classifica-
tion result. This approach consists of an autoencoder feature extraction part and a machine
learning-based cancer subtype classifier.
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Figure 1. Overview of proposed autoencoder-based classification approach. We used hematopoietic cancer gene expression
data from The Cancer Genome Atlas (TCGA). The deep autoencoder (DAE) model was used to extract deep features from
these gene expression data as a lower-dimensional vector. In this study, we use an autoencoder (AE) and a variational
autoencoder (VAE) as DAEs. The classifier is used to classify hematopoietic cancer subtypes. We summed the reconstruction
loss on DAE and classification loss in the cost function. LR: logistic regression; RF: random forest; SVM: support vector
machine; RBF: radial-based function; KNN: k-nearest neighbor; ANN: artificial neural network.

In the DAE structure, we employed the mean squared error (MSE) for measuring deep
learning reconstruction loss when training the training set and adopted focal loss [27] as
a measurement of the classification error in the classifier. Focal loss (FL) is an updated
version of cross-entropy loss, which was used for class imbalance encountered during
the model training. Therefore, our proposed autoencoder-based hematopoietic cancer
subtype classification approach used the sum of both MSE as reconstruction loss and FL as
classification loss as a cost function for this approach.

We performed this experiment on an Intel Xeon E3 1231 v3 processor with 32G
memory and RTX 2060 (Gigabyte, New Taipei City, Taiwan). Additionally, we used Python
3.7 for parsing the data and analysis by implementing deep learning and machine learning
libraries. The whole process of this experiment and the methodologies including the
machine learning and deep learning approaches performed are explained in detail in the
next section.

2.2.1. Feature Extraction using Deep Learning Approach on Gene Expression Data

In this research, we used a DAE-based feature selection approach. The autoencoder
structure has a strong point in the non-linear feature selection and transformation. Addi-
tionally, we compared this DAE-based approach with traditional statistical-based feature se-
lection approaches, which are Principal Component Analysis (PCA) [28] and Non-negative
Matrix Factorization (NMF) [29]. PCA is one of most popular statistical techniques which
relates factor analysis with multivariate analysis. This algorithm aims to represent the char-
acteristics in a dataset as a small set of factors or a dataset that keeps important information.
Furthermore, NMF is available for multivariate analysis. This algorithm based on linear
algebra makes complex feature information into smaller non-negative matrices. Generally,
PCA tends to group both positively and negatively correlated components; on the other
hand, NMF divides factors into positive vectors. These kinds of statistical factor analyses
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access the linearity constraint, so we applied DAE techniques with non-linear calculations
for obtaining better classification results.

We applied two DAE models. One was a normal autoencoder model (AE) [30,31] and
the other was a variational autoencoder model (VAE) [32,33]. Both of the two autoencoder
models were constructed using the Pytorch deep learning library in Python [34]. The
structure of an AE is divided into two main parts: encoder and decoder. The encoder has
an input layer with three fully connected hidden layers with 2000, 500 and 100 nodes. The
decoder is comprised of two hidden layers, which are fully connected. The details of the
autoencoder are explained in Appendix A.

Furthermore, similar with the AE structure, VAEs also have an encoder and a decoder.
The VAE is normally used in semi-supervised learning models nowadays. Additionally, it
can learn approximate inferences and be trained using the gradient descent method. The
main approach of the VAE is using probability distribution to obtain samples which match
the distribution. The details of the variational autoencoder are explained in Appendix B.

2.2.2. Hematopoietic Cancer Subtype Classification Model

For the subtype classification on hematopoietic cancer, we generated a feed-forward
neural network (NN) which has one input layer, one hidden layer with 100 nodes and one
output layer. The features we extracted from the DAE utilized the input of the NN. In here,
we adopt ReLU and sigmoid for non-linear activation function. This NN has the two loss
functions for measuring classification error, which is the error between the real value and
the predicted value. The details of the NN are shown in Appendix C.

The two loss functions are cross-entropy loss (CE) and focal loss (FL). CE is the most
widely used loss function in classification models. However, if there are plenty of class
labels with the imbalance status, it incurs a loss with non-trivial magnitude. If there are a
lot of easy examples to be classified, which means there is a large class imbalance on the
dataset, the CE of major class labels is going to be larger than the minor classes.

For handling this class imbalance problem, a modulating factor is added to CE, defined
as focal loss (FL). This modulating factor in focal loss is (1− pi)

γ. Here, γ is a focusing
factor which can be a changeable parameter that ranges γ ≥ 0. Due to this advantage,
using FL can prevent the overfitting problem which can accompanied by class imbalance.
The details of CE and FL are described in Appendix D.

2.2.3. Training the Models

The loss functions on autoencoder models are calculated by using the difference
between the input and the output. The formulas of each loss function are shown below:

LDAE
(
input, reconstructioninput

)
= Mean Squared

ErrorLNN
(
hiddenencode3 , output

)
=

{
Cross Entropy loss

Focal loss
L(input, output) = LDAE + LNN

(2)

In this experiment, we adopted the Adam optimizer [35] for updating the weight and
bias iterative based in the training data. This approach has some merits. One is that the
step size does not affect the gradient rescaling. Another is that Adam can refer to previous
gradients for updating the step size. We performed several trials for defining the learning
rate and set it to 0.0001. The batch size of the training set was 128, with the maximum epoch
size set to 3000 with an early stopping approach for checking the optimal epoch number.

3. Experimental Results
3.1. Results of Feature Selection

We extracted key features on hematopoietic cancer gene expression data by using
DAE approaches. To compare this result with traditional feature selection algorithms, we
used PCA and NMF methods. For this comparison, we coded PCA and NMF algorithms
using a Scikit-learn [36] and DAE model using a Python deep learning library, Pytorch [34].
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For pair comparison, we used t-Distributed Stochastic Neighbor Embedding (tSNE) [37]
which is used in the conversion of high-dimensional data visualization into low-dimensional
embedding. It converts high-dimensional Euclidian distance between data points into
conditional probabilities for mapping low-dimension space and adopts KL-divergence [38]
to minimize mismatch on the low-dimensional data representation. Using this technique,
researchers can acquire more interpretable data visualization on high-dimensional data. In
this experiment, we used the tSNE technique for mapping data into a two-dimensional
plane (dimension X, Y) for DAE feature selection, and the visualization of the extracted
features of each approach is shown in Figure 2.

Among the visualizations of the selected gene expression data using several ap-
proaches, we can see that the result of the DAE-based AE model is the most clearly well
distinguished compared with other results.
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Figure 2. The extracted feature visualization from hematopoietic cancer gene expression data. (a,b) Visualization of training
and test data extracted from principal component analysis (PCA), respectively. (c,d) Visualization of training and test data
extracted from non-negative matrix factorization (NMF), respectively. (e,f) Visualization of training and test data extracted
from the autoencoder (AE) using t-distributed stochastic neighbor embedding (tSNE), respectively. (g,h) Visualization of
training and test data extracted from variational autoencoder (VAE) using tSNE, respectively. LL: lymphoid leukemia; PC:
plasma cell neoplasm; NO: leukemia not otherwise specified (nos); ML: myeloid leukemia; MB: mature B-cell leukemia.

3.2. Results of DAE Training Process

We extracted key features on hematopoietic cancer gene expression data by using
DAE approaches which consist of AE and VAE. Each DAE approach was trained with
3000 epochs for each iteration. We also calculated the loss functions MSE, CE and FL.
During the feature extraction process, we calculated the MSE from the AE model, and
classification loss (CE and FL) was calculated on the model training class. Furthermore, the
total loss was generated by merging MSE and classification loss. Figures 3 and 4 show the
loss function graphs for the cancer classification using MSE as the reconstruction error, CE
and FL as the classification error and total error as the merged MSE and CE on AE and VAE,
respectively. Figures 5 and 6 show loss function graphs using MSE as the reconstruction
error, FL as the classification error and total error as the calculated sum of MSE and FL on
AE and VAE, respectively.
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Figure 3. The training loss graphs on AE-based feature extraction. The mean squared error (MSE) was calculated as
reconstruction loss and cross-entropy loss (CE) was calculated by classification loss. The x-axis represents the number of
epochs and y-axis represents the loss value. (a) CE-based classification loss graph for each epoch (blue). The CE value is
decreased until 5.32 × 10−13; (b) MSE-based reconstruction loss graph for each epoch (red). The MSE value is decreased
until 0.0001. (c) Total loss (CE + MSE) graph for each epoch (green). The value of total loss is decreased until 0.0001.
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Figure 4. The training loss graphs on VAE-based feature extraction. The MSE was calculated as reconstruction loss, and
CE was calculated by classification loss. The x-axis represents the number of epochs and y-axis represents the loss value.
(a) CE-based classification loss graph for each epoch (blue). The CE value is decreased until 5.43 × 10−13. (b) MSE-based
reconstruction loss graph for each epoch (red). The MSE value is decreased until 0.00013. (c) Total loss (CE + MSE) graph
for each epoch (green). The value of total loss is decreased until 0.00014.
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Figure 5. The training loss graphs on AE-based feature extraction. The MSE was calculated as reconstruction loss, and
focal loss (FL) was calculated by classification loss. The x-axis represents the number of epochs and y-axis represents the
loss value. (a) FL-based classification loss graph for each epoch (purple). The FL value is decreased until 5.97 × 10−12.
(b) MSE-based reconstruction loss graph for each epoch (red). The MSE value is decreased until 0.001. (c) Total loss (FL +
MSE) graph for each epoch (green). The value of total loss is decreased until 0.0001.
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Figure 6. The training loss graphs on VAE-based feature extraction. The MSE was calculated as reconstruction loss, and
FL was calculated by classification loss. The x-axis represents the number of epochs and y-axis represents the loss value.
(a) FL-based classification loss graph for each epoch (purple). The FL value is decreased until 5.43 × 10−13; (b) MSE-based
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3.3. Hematopoietic Cancer Subtype Classification Model Interpretation

The Shapley Additive exPlanations (SHAP) method [39], which is based on game
theory [40] and local explanations [41], is often used to describe a model’s output. The top
20 important bio-markers for hematopoietic cancer subtype classification, which were de-
rived from the autoencoder, are shown in Table 2 and in Figure 7 as a SHAP summary plot.

As shown above in Figure 7, the most important bio-marker for hematopoietic cancer
subtype classification is Ring Finger Protein 130 (RNF130). Including RNF130, the top 20
bio-markers are well known as oncogenes and some bio-markers are directly related to
hematopoietic processes. For example, RNF130 is usually related to pathways on the innate
immune system and Class I MHC (Major Histocompatibility Complex)-mediated antigen
processing and presentation. This bio-marker is related to growth factor withdrawal-
induced apoptosis of myeloid precursor cells [42]. Another example is Breast Cancer
Anti-Estrogen Resistance Protein 1, Crk-Associated Substrate (BCAR1). Overexpression of
BCAR1 is usually detected in many cancers such as breast cancer, lung cancer, anaplastic
large cell lymphoma and chronic myelogenous leukemia [43].

Table 2. Top 20 gene/protein bio-markers produced by AE and Shapley Additive exPlanations (SHAP).

No Code Gene/Protein

1 ENSG00000113269.12 RNF130
2 ENSG00000050820.15 BCAR1
3 ENSG00000180535.3 BHLHA15
4 ENSG00000167861.14 HID1
5 ENSG00000126264.8 HCST
6 ENSG00000183508.4 TENT5C
7 ENSG00000173715.14 C11orf80
8 ENSG00000149054.13 ZNF215
9 ENSG00000104635.12 SLC39A14

10 ENSG00000182511.10 FES
11 ENSG00000134285.9 FKBP11
12 ENSG00000171067.9 C11orf24
13 ENSG00000258227.5 CLEC5A
14 ENSG00000258013.2 RPL3P13
15 ENSG00000076554.14 TPD52
16 ENSG00000110665.10 C11orf21
17 ENSG00000110777.10 POU2AF1
18 ENSG00000197879.13 MYO1C
19 ENSG00000177045.7 SIX5
20 ENSG00000151729.9 SLC25A4
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subtype classification.

3.4. Hematopoietic Cancer Subtype Classification Model Evaluation

For evaluating the hematopoietic cancer subtype classification, we used six classifica-
tion performance metrics: accuracy (Acc), precision (Pre), recall (Rec), the harmonic mean
of precision and recall, which is called F1-measure (F1), geometric mean (G-mean, GM)
and index of balanced accuracy (IBA, α = 0.1). Furthermore, we generated a confusion
matrix and a precision–recall curve (PR-curve) which were used for evaluating the im-
balanced data classification performance. The equations below indicate the classification
performance measurement.

Accuracy (Acc) = TP+TN
TP+TN+FP+FN

Precision (Pre) = TP
TP+FP

Recall (Rec) = Sensitivity = TN
TN+FN

Speci f icity (Spe) = TN
TN+FP

F1−measure (F1) = 2×Rec×Pre
Rec+Pre = 2×TP

2×TP+FP+FN

Geometric mean (GM) =
√

Rec× Spe

IBA = {1 + α× (Rec− Spe)} × GM

(3)

where TP, TN, FP and FN are the acronyms of true positive, true negative, false positive
and false negative, respectively. TP and TN are the numbers of subtypes correctly classified
into positive class or negative class, respectively; FP represents the number of instances
of incorrect classification into positive class. Similarly, FN is the number of instances of
incorrect classification into negative class.

Furthermore, for verifying the DAE-based cancer subtype classification models, we
compared these models with traditional statistics and machine learning-based classification
algorithms such as logistic regression (LR) [44,45], random forest (RF) [46,47], k-nearest
neighbor (KNN) [48], artificial neural network (ANN) [49] and support vector machine
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(SVM) [50]. For the class imbalance problem on the classification task, we used an oversam-
pling algorithm named the synthetic minority oversampling technique (SMOTE) [51,52].

The overall designed flowchart of this experiment is shown in Figure 8.
Tables 3–7 represent the results of all combinations of the experiments, which include

statistical approaches (PCA, NMF) and deep learning approaches (AE, VAE). Each results
table includes SMOTE for handling class imbalance on the dataset. The CE, FL, RE,
TOC and TOF keywords in the loss function column represent cross-entropy, focal loss,
reconstruction error, cross-entropy + reconstruction error and focal loss + reconstruction
error respectively.
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Table 3. Evaluation matrices for subtype classification using logistic regression (LR).

Feature
Extraction Loss Sampling Acc Pre Rec Spe F1 GM IBA

PCA No
No 0.9348 0.8843 0.8733 0.9833 0.8772 0.9267 0.8492

SMOTE 0.9361 0.8874 0.8893 0.9867 0.8852 0.9493 0.8946

NMF No
No 0.9416 0.8729 0.8453 0.9850 0.8515 0.9125 0.8210

SMOTE 0.9416 0.8761 0.9008 0.9854 0.8876 0.9417 0.8792

AE

CE
No 0.6563 0.3869 0.3972 0.8541 0.3398 0.5124 0.2482

SMOTE 0.8207 0.7799 0.8358 0.9317 0.7376 0.8552 0.7207

RE
No 0.9457 0.9284 0.8388 0.9890 0.8504 0.9319 0.8589

SMOTE 0.9524 0.8916 0.9054 0.9888 0.8970 0.9533 0.9024

TOC
No 0.9552 0.9065 0.8738 0.9861 0.8858 0.9215 0.8385

SMOTE 0.9633 0.9229 0.9173 0.9882 0.9199 0.9515 0.8988

FL
No 0.4878 0.3914 0.2984 0.8518 0.2484 0.5097 0.2456

SMOTE 0.6808 0.6361 0.7263 0.9435 0.6049 0.8580 0.7242

RE
No 0.9348 0.8946 0.8248 0.9787 0.8352 0.9176 0.8320

SMOTE 0.9429 0.8861 0.8686 0.9770 0.8747 0.9272 0.8513

TOF
No 0.9633 0.9103 0.9079 0.9886 0.9088 0.9304 0.8559

SMOTE 0.9592 0.8991 0.9279 0.9899 0.9114 0.9516 0.8987



Int. J. Environ. Res. Public Health 2021, 18, 2197 13 of 24

Table 3. Cont.

Feature
Extraction Loss Sampling Acc Pre Rec Spe F1 GM IBA

VAE

CE
No 0.3125 0.1814 0.1979 0.7998 0.1852 0.3997 0.1502

SMOTE 0.1984 0.1954 0.1560 0.7974 0.1618 0.3951 0.1467

RE
No 0.3234 0.2118 0.2078 0.7962 0.1968 0.3836 0.1382

SMOTE 0.2215 0.2067 0.2149 0.7998 0.1893 0.4016 0.1517

TOC
No 0.3505 0.2649 0.2299 0.7923 0.2233 0.3956 0.1472

SMOTE 0.2418 0.2413 0.2317 0.7985 0.2092 0.4105 0.1586

FL
No 0.3111 0.2120 0.2639 0.8130 0.1961 0.4360 0.1791

SMOTE 0.2106 0.1971 0.1876 0.8000 0.1752 0.3816 0.1366

RE
No 0.3288 0.2230 0.2110 0.8021 0.2039 0.4026 0.1524

SMOTE 0.2174 0.2174 0.2209 0.7941 0.1924 0.3759 0.1326

TOF
No 0.3152 0.1916 0.2006 0.8004 0.1884 0.4003 0.1506

SMOTE 0.2269 0.2096 0.2082 0.8018 0.1894 0.3930 0.1451

CE = Cross entropy loss, FL = Focal loss, RE = Reconstruction error, TOC = CE + RE, TOF = FL + RE, Bold = The highest score.

Table 4. Evaluation matrices for subtype classification using k-nearest neighbor (KNN).

Feature
Extraction Loss Sampling Acc Pre Rec Spe F1 GM IBA

PCA No
No 0.9171 0.8293 0.8047 0.9787 0.8136 0.8874 0.7738

SMOTE 0.9171 0.8225 0.8317 0.9794 0.8248 0.9025 0.8025

NMF No
No 0.9117 0.8127 0.8049 0.9772 0.8040 0.8869 0.7730

SMOTE 0.9185 0.8294 0.8602 0.9798 0.8428 0.9180 0.8327

AE

CE
No 0.9389 0.8888 0.8235 0.9870 0.8341 0.9195 0.8345

SMOTE 0.9402 0.8685 0.9074 0.9850 0.8830 0.9525 0.9015

RE
No 0.9307 0.8908 0.8242 0.9866 0.8366 0.9155 0.8267

SMOTE 0.9117 0.8123 0.8651 0.9842 0.8341 0.9376 0.8712

TOC
No 0.9538 0.9306 0.8637 0.9873 0.8788 0.9144 0.8243

SMOTE 0.9606 0.8934 0.9382 0.9860 0.9131 0.9401 0.8760

FL
No 0.9198 0.8576 0.7990 0.9783 0.7879 0.8711 0.7435

SMOTE 0.8927 0.8060 0.8605 0.9777 0.8209 0.9107 0.8187

RE
No 0.9402 0.8875 0.8441 0.9802 0.8494 0.8971 0.7920

SMOTE 0.9185 0.8059 0.8647 0.9770 0.8290 0.9242 0.8453

TOF
No 0.9524 0.8937 0.8758 0.9900 0.8773 0.9270 0.8488

SMOTE 0.9457 0.8554 0.9365 0.9912 0.8855 0.9659 0.9284

VAE

CE
No 0.3207 0.2094 0.2108 0.7959 0.2056 0.3864 0.1402

SMOTE 0.0918 0.3292 0.1843 0.7991 0.0909 0.3946 0.1463

RE
No 0.3356 0.3459 0.2265 0.7971 0.2258 0.3884 0.1417

SMOTE 0.1087 0.1345 0.2258 0.7966 0.0997 0.3701 0.1284

TOC
No 0.3166 0.2615 0.2166 0.7996 0.2157 0.3965 0.1478

SMOTE 0.1168 0.1397 0.2424 0.8011 0.1059 0.4075 0.1562

FL
No 0.2826 0.1707 0.1900 0.9787 0.1760 0.8874 0.7738

SMOTE 0.0951 0.1475 0.1797 0.9794 0.0855 0.9025 0.8025

RE
No 0.3057 0.1852 0.2011 0.9772 0.1923 0.8869 0.7730

SMOTE 0.0883 0.1473 0.1710 0.9798 0.0813 0.9180 0.8327

TOF
No 0.2988 0.1691 0.1850 0.9870 0.1762 0.9195 0.8345

SMOTE 0.1101 0.2022 0.2265 0.9850 0.1012 0.9525 0.9015

CE = Cross entropy loss, FL = Focal loss, RE = Reconstruction error, TOC = CE + RE, TOF = FL + RE, Bold = The highest score.
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Table 5. Evaluation matrices for subtype classification using random forest (RF).

Feature
Extraction Loss Sampling Acc Pre Rec Spe F1 GM IBA

PCA No
No 0.9416 0.8836 0.8444 0.9869 0.8584 0.9232 0.8417

SMOTE 0.9511 0.8994 0.8886 0.9878 0.8936 0.9369 0.8691

NMF No
No 0.9402 0.9053 0.8247 0.9845 0.8381 0.9019 0.8005

SMOTE 0.9511 0.9165 0.8802 0.9875 0.8951 0.9351 0.8655

AE

CE
No 0.9212 0.9470 0.7616 0.9660 0.7668 0.8231 0.6595

SMOTE 0.9389 0.8857 0.8439 0.9686 0.8620 0.8637 0.7313

RE
No 0.9429 0.9118 0.8091 0.9874 0.8228 0.9081 0.8120

SMOTE 0.9592 0.9114 0.9107 0.9901 0.9109 0.9561 0.9080

TOC
No 0.9511 0.9307 0.8335 0.9867 0.8519 0.9060 0.8082

SMOTE 0.9660 0.9289 0.9102 0.9888 0.9182 0.9391 0.8734

FL
No 0.8682 0.7197 0.7423 0.9759 0.7257 0.8610 0.7253

SMOTE 0.8886 0.8569 0.7990 0.9774 0.8055 0.8874 0.7739

RE
No 0.9497 0.9359 0.8272 0.9780 0.8384 0.8803 0.7605

SMOTE 0.9620 0.9123 0.9021 0.9853 0.9067 0.9336 0.8628

TOF
No 0.9470 0.9044 0.8393 0.9882 0.8513 0.9144 0.8242

SMOTE 0.9606 0.9131 0.9157 0.9911 0.9142 0.9487 0.8926

VAE

CE
No 0.3696 0.2268 0.2258 0.7936 0.1938 0.3864 0.1403

SMOTE 0.3016 0.1677 0.1879 0.7974 0.1762 0.3927 0.1449

RE
No 0.3261 0.1764 0.1972 0.8023 0.1618 0.4063 0.1552

SMOTE 0.3166 0.1824 0.2017 0.7969 0.1905 0.3907 0.1434

TOC
No 0.3682 0.1822 0.2229 0.7943 0.1822 0.3868 0.1405

SMOTE 0.2894 0.2216 0.1913 0.7978 0.1877 0.3953 0.1468

FL
No 0.3465 0.2101 0.2104 0.8049 0.1765 0.4108 0.1587

SMOTE 0.2840 0.2072 0.1895 0.7989 0.1844 0.3963 0.1476

RE
No 0.3111 0.1735 0.1897 0.8067 0.1588 0.4146 0.1617

SMOTE 0.3207 0.3877 0.2109 0.8031 0.2054 0.4055 0.1546

TOF
No 0.3329 0.1798 0.2026 0.8004 0.1700 0.4012 0.1513

SMOTE 0.2745 0.2227 0.1777 0.8077 0.1727 0.4171 0.1637

CE = Cross entropy loss, FL = Focal loss, RE = Reconstruction error, TOC = CE + RE, TOF = FL + RE, Bold = The highest score.

The results of hematopoietic cancer subtype classification using the logistic regression
classification algorithm are shown in Table 3. The result of AE using merged loss, which
combined cross-entropy loss and reconstruction loss, with SMOTE shows the highest
results on accuracy (96.33%), recall (91.73%) and F1-measure (91.99%). In addition, the
result of AE using reconstruction error with SMOTE shows the highest result on G-mean
(95.33%) and IBA (95.24%).

Table 4 shows the results of hematopoietic cancer subtype classification using the
k-nearest neighborhood classification algorithm. The result of AE using merged loss, which
combined cross-entropy loss and reconstruction loss, with SMOTE shows the highest
results on accuracy (96.06%), recall (93.82%) and F1-measure (91.31%), and the result of
AE using merged loss, which combined focal loss and reconstruction error, with SMOTE
shows the highest results on specificity (99.12%), G-mean (96.59%) and IBA (92.84%).

The results of hematopoietic cancer subtype classification using the random forest
classification algorithm are shown in Table 5. The result of AE using merged loss, which
combined with cross-entropy loss and reconstruction loss, with SMOTE shows the high-
est results on accuracy (96.60%), and F1-measure (91.82%), and the result of AE using
reconstruction error with SMOTE shows the highest results on G-mean (99.12%), and
IBA (90.80%).

In Table 6, the results of hematopoietic cancer subtype classification using the support



Int. J. Environ. Res. Public Health 2021, 18, 2197 15 of 24

vector machine classification algorithm are shown. The result of AE using merged loss,
which combined focal loss and reconstruction loss, with SMOTE shows the best results on
the evaluation matrices of accuracy (97.01%), precision (92.68%), recall (94.60%), specificity
(99.52%), F1-measure (93.54%), G-mean (97.87%) and IBA (95.46%).

In Table 7, the results of hematopoietic cancer subtype classification using the artificial
neural network classification algorithm are shown. The result of AE using merged loss,
which combined cross-entropy loss and reconstruction loss, with SMOTE shows the highest
results on accuracy (96.74%), precision (93.62%) and F1-measure (92.47%), and the result of
AE using reconstruction error without the oversampling method shows the highest results
on G-mean (95.39%) and IBA (90.32%).

Combining all of above results, the top 10 results based on F1-measure are summarized
in Table 8. As a summary of this experiment, we found that the result of autoencoder
feature selection based on the support vector machine classification algorithm with the
total loss, which combined focal loss and reconstruction loss, with SMOTE showed the
best performance in accuracy (97.01%), recall (94.60%), specificity (99.52%), F1-measure
(93.53%), G-mean (97.87%) and IBA (95.46%).

Figure 9, below, shows the top six PR-curves and Figure 10 shows the top six confusion
matrices among the results shown in Table 8.

Table 6. Evaluation matrices for subtype classification using support vector machine (SVM).

Feature
Extraction Loss Sampling Acc Pre Rec Spe F1 GM IBA

PCA No
No 0.8614 0.8709 0.6119 0.9613 0.6202 0.7670 0.5677

SMOTE 0.9063 0.7963 0.8620 0.9778 0.816 0.9181 0.8332

NMF No
No 0.8696 0.7725 0.6141 0.9627 0.6215 0.7689 0.5705

SMOTE 0.9022 0.7806 0.8453 0.9778 0.7994 0.9104 0.8181

AE

CE
No 0.9253 0.7492 0.7722 0.9746 0.7589 0.8645 0.7318

SMOTE 0.9334 0.8690 0.8902 0.9773 0.8764 0.9245 0.8459

RE
No 0.9457 0.8994 0.8349 0.9887 0.8527 0.9378 0.8708

SMOTE 0.9606 0.9158 0.9164 0.9897 0.9160 0.9647 0.9261

TOC
No 0.9579 0.9173 0.8759 0.9894 0.8886 0.9332 0.8614

SMOTE 0.9688 0.9256 0.9309 0.9911 0.9281 0.9601 0.9162

FL
No 0.9171 0.7445 0.7720 0.9767 0.7562 0.8663 0.7349

SMOTE 0.9008 0.8353 0.8633 0.9787 0.8404 0.9177 0.8322

RE
No 0.9538 0.9121 0.8485 0.9814 0.8630 0.9021 0.8013

SMOTE 0.9565 0.8981 0.8936 0.9846 0.8952 0.9371 0.8700

TOF
No 0.9592 0.9116 0.8865 0.9929 0.8968 0.9554 0.9061

SMOTE 0.9701 0.9268 0.9460 0.9952 0.9354 0.9787 0.9546

VAE

CE
No 0.3261 0.1674 0.1981 0.7941 0.1600 0.3867 0.1405

SMOTE 0.3003 0.1672 0.1874 0.7951 0.1701 0.3898 0.1428

RE
No 0.3234 0.1316 0.1944 0.7983 0.1550 0.3962 0.1475

SMOTE 0.3165 0.1877 0.1967 0.7967 0.1761 0.3916 0.1441

TOC
No 0.3872 0.2027 0.2352 0.7961 0.1926 0.3907 0.1434

SMOTE 0.375 0.2080 0.2328 0.7995 0.2096 0.3982 0.1490

FL
No 0.3179 0.2273 0.1931 0.8088 0.1553 0.4192 0.1654

SMOTE 0.3098 0.1740 0.1940 0.8135 0.1744 0.4302 0.1743

RE
No 0.3438 0.3387 0.2075 0.8022 0.1650 0.4046 0.1539

SMOTE 0.3220 0.1881 0.2015 0.8047 0.1824 0.4117 0.1595

TOF
No 0.3438 0.2372 0.2080 0.8049 0.1690 0.4112 0.1590

SMOTE 0.3356 0.1971 0.2090 0.8064 0.1904 0.4149 0.1619

CE = Cross entropy loss, FL = Focal loss, RE = Reconstruction error, TOC = CE + RE, TOF = FL + RE, Bold = The highest score.
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Table 7. Evaluation matrices for subtype classification using artificial neural network (ANN).

Feature
Extraction Loss Sampling Acc Pre Rec Spe F1 GM IBA

PCA No
No 0.9416 0.8677 0.8431 0.9820 0.8495 0.9179 0.8320

SMOTE 0.9280 0.8660 0.8428 0.9665 0.8434 0.8799 0.7615

NMF No
No 0.9524 0.9028 0.8668 0.9867 0.8783 0.9225 0.8404

SMOTE 0.9443 0.8728 0.8899 0.9851 0.8807 0.9344 0.8645

AE

CE
No 0.9130 0.7423 0.7141 0.9677 0.7184 0.8421 0.6926

SMOTE 0.9402 0.8798 0.9086 0.9682 0.8888 0.9173 0.8331

RE
No 0.9592 0.9367 0.8865 0.9914 0.9028 0.9539 0.9032

SMOTE 0.9592 0.9318 0.8910 0.9893 0.9054 0.9472 0.8898

TOC
No 0.9620 0.9250 0.8741 0.9896 0.8884 0.9386 0.8721

SMOTE 0.9674 0.9362 0.9151 0.9880 0.9247 0.9353 0.8658

FL
No 0.9022 0.7005 0.7589 0.9675 0.7275 0.8267 0.6656

SMOTE 0.8777 0.8047 0.8490 0.9763 0.8124 0.9126 0.8225

RE
No 0.9620 0.9180 0.9058 0.9846 0.9111 0.9284 0.8525

SMOTE 0.9565 0.9086 0.8970 0.9826 0.9015 0.9243 0.8448

TOF
No 0.9633 0.9235 0.8987 0.9923 0.9093 0.9515 0.8981

SMOTE 0.9633 0.9165 0.9268 0.9906 0.9210 0.9385 0.8719

VAE

CE
No 0.3111 0.1986 0.2063 0.7926 0.2003 0.3754 0.1322

SMOTE 0.2731 0.1914 0.1920 0.7976 0.1909 0.3940 0.1459

RE
No 0.3030 0.1824 0.1944 0.7965 0.1874 0.3853 0.1394

SMOTE 0.3030 0.2065 0.2031 0.7969 0.2006 0.3967 0.1479

TOC
No 0.3030 0.2098 0.2005 0.8054 0.1979 0.4072 0.1559

SMOTE 0.3315 0.2319 0.2455 0.8071 0.2473 0.4174 0.1639

FL
No 0.2921 0.1910 0.1939 0.8068 0.1893 0.4162 0.1630

SMOTE 0.3152 0.2256 0.2210 0.8001 0.2208 0.3988 0.1495

RE
No 0.2677 0.1737 0.1772 0.8029 0.1732 0.4062 0.1551

SMOTE 0.3043 0.2220 0.2213 0.8031 0.2205 0.4145 0.1617

TOF
No 0.3193 0.2127 0.2091 0.8064 0.2052 0.4114 0.1592

SMOTE 0.2935 0.1934 0.1956 0.8005 0.1929 0.4203 0.1664

CE = Cross entropy loss, FL = Focal loss, RE = Reconstruction error, TOC = CE + RE, TOF = FL + RE, Bold = The highest score.

Table 8. Top 10 performances for hematopoietic cancer subtype classification ordered by F1-measure.

Feature
Extraction Loss Sampling Acc Pre Rec Spe F1 GM IBA

SVM AE TOF SMOTE 0.9701 0.9268 0.9460 0.9952 0.9354 0.9787 0.9546

SVM AE TOC SMOTE 0.9688 0.9256 0.9309 0.9911 0.9281 0.9601 0.9162

ANN AE TOC SMOTE 0.9674 0.9362 0.9151 0.988 0.9247 0.9353 0.8658

ANN AE TOF SMOTE 0.9633 0.9165 0.9268 0.9906 0.921 0.9385 0.8719

LR AE TOC SMOTE 0.9633 0.9229 0.9173 0.9882 0.9199 0.9515 0.8988

RF AE TOC SMOTE 0.966 0.9289 0.9102 0.9888 0.9182 0.9391 0.8734

SVM AE RE SMOTE 0.9606 0.9158 0.9164 0.9897 0.916 0.9647 0.9261

RF AE TOF SMOTE 0.9606 0.9131 0.9157 0.9911 0.9142 0.9487 0.8926

KNN AE TOC SMOTE 0.9606 0.8934 0.9382 0.986 0.9131 0.9401 0.876

LR AE TOF SMOTE 0.9592 0.8991 0.9279 0.9899 0.9114 0.9516 0.8987

CE = Cross entropy loss, FL = Focal loss, RE = Reconstruction error, TOC = CE + RE, TOF = FL + RE, Bold = The highest score.
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Figure 9. Precision–recall curves (PR-curves) for the top six hematopoietic subtype cancer classification results by F1-
measure. (a) PR-curve for the autoencoder using FL + RE with synthetic minority oversampling technique (SMOTE) on 
support vector machine (SVM) classifier; (b) PR-curve for the autoencoder using CL + RE with SMOTE on SVM classifier; 
(c) PR-curve for the autoencoder using CL + RE with SMOTE on artificial neural network (ANN) classifier; (d) PR-curve 
for the autoencoder using FL + RE with SMOTE on ANN classifier; (e) PR-curve for the autoencoder using CL + RE with 
SMOTE on LR classifier; (f) PR-curve for the autoencoder using CL + RE with SMOTE on RF classifier. 

Figure 9. Precision–recall curves (PR-curves) for the top six hematopoietic subtype cancer classifica-
tion results by F1-measure. (a) PR-curve for the autoencoder using FL + RE with synthetic minority
oversampling technique (SMOTE) on support vector machine (SVM) classifier; (b) PR-curve for the
autoencoder using CL + RE with SMOTE on SVM classifier; (c) PR-curve for the autoencoder using
CL + RE with SMOTE on artificial neural network (ANN) classifier; (d) PR-curve for the autoencoder
using FL + RE with SMOTE on ANN classifier; (e) PR-curve for the autoencoder using CL + RE with
SMOTE on LR classifier; (f) PR-curve for the autoencoder using CL + RE with SMOTE on RF classifier.
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Figure 10. Confusion matrix for the top six hematopoietic subtype cancer classification results by 
F1-measure. (a) represents the confusion matrix for the autoencoder using FL + RE with SMOTE 
on SVM classifier; (b) represents the confusion matrix for the autoencoder using CL + RE with 
SMOTE on SVM classifier; (c) represents the confusion matrix for the autoencoder using CL + RE 
with SMOTE on ANN classifier; (d) represents the confusion matrix for the autoencoder using FL 
+ RE with SMOTE on ANN classifier; (e) represents the confusion matrix for the autoencoder 
using CL + RE with SMOTE on LR classifier; (f) represents the confusion matrix for the 
autoencoder using CL + RE with SMOTE on RF classifier. 

4. Discussion 
In this paper, we suggested an autoencoder-based feature extraction approach for 

hematopoietic cancer subtype classification. The five major hematopoietic cancer 
subtypes were selected to create experimental data based on gene expression level. We 
also compared our approach with traditional feature extraction algorithms, PCA and 

Figure 10. Confusion matrix for the top six hematopoietic subtype cancer classification results by
F1-measure. (a) represents the confusion matrix for the autoencoder using FL + RE with SMOTE
on SVM classifier; (b) represents the confusion matrix for the autoencoder using CL + RE with
SMOTE on SVM classifier; (c) represents the confusion matrix for the autoencoder using CL + RE
with SMOTE on ANN classifier; (d) represents the confusion matrix for the autoencoder using
FL + RE with SMOTE on ANN classifier; (e) represents the confusion matrix for the autoencoder
using CL + RE with SMOTE on LR classifier; (f) represents the confusion matrix for the autoencoder
using CL + RE with SMOTE on RF classifier.

4. Discussion

In this paper, we suggested an autoencoder-based feature extraction approach for
hematopoietic cancer subtype classification. The five major hematopoietic cancer subtypes
were selected to create experimental data based on gene expression level. We also com-
pared our approach with traditional feature extraction algorithms, PCA and NMF, which
are widely used in cancer classification based on gene expression data. In addition, in
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consideration of the class imbalance problem occurring in multi-label classification, we
applied the SMOTE oversampling algorithm.

In the experimental results, the traditional feature selection approaches, NMF and
PCA, showed good performance, but our proposed DAE-based approach for subtype
classification showed a better performance. For example, in the results of the SVM classifier
using the SMOTE oversampling method, the PCA and NMF feature extraction approaches
showed 90.63% and 90.22% accuracy, respectively, and the AE-based feature extraction
approaches with cross-entropy error (CE), reconstruction error (RE) and merged error
(CE + RE) showed 93.34%, 96.06% and 96.88% classification accuracy, respectively. This
result was also the same when focal loss was applied instead of cross-entropy loss. The
accuracy for each focal loss case that applied the AE-based feature extraction approach
with focal loss (FL), reconstruction error (RE) and merged error (FL + RE) was 90.08%,
95.65% and 97.01%, respectively. Although SVM showed the best result with merged
error (FL + RE) using focal loss, in other cases, we found that the merged error (CE + RE)
using cross-entropy error showed the best performance in the other feature extraction
approaches. Using those extracted results on classification algorithm, the result of subtype
classification using the DAE-based feature selection approach showed better performance
than traditional statistics and machine learning feature extraction approaches.

Furthermore, as shown in Table 8, when all of the results were summarized, we found
that the AE-based feature extraction approach shows better performance than other feature
extraction methods. In addition, when comparing the loss function, the results of applying
both the classification error (FL/CE) and the reconstruction error (RE) together showed
better performance rather than the single loss function, and the sampling method also
showed better results when applying the SMOTE oversampling technique.

5. Conclusions

In this paper, we focused on the autoencoder-based feature extraction method to
extract biological information from complex cancer data such as gene expression, clinical
data and methylation data. We evaluated the proposed method on TCGA data samples
from 2457 patients with hematopoietic cancer: lymphoid leukemia, myeloid leukemia,
leukemia nos (not otherwise specified), mature B-cell leukemia and plasma cell neoplasm.
To the best of our knowledge, there is no other research work on hematopoietic cancer
using deep learning-based feature extraction techniques. We compared the proposed
autoencoder-based method to the traditional state-of-the-art algorithms PCA and NMF,
as well as another generative deep learning technique, VAE. We provided comprehensive
experimental results that show the efficiency of our proposed method.

As shown in the experimental results, the proposed method shows higher performance
than the other compared techniques in terms of various evaluation metrics. The proposed
method with TOF loss achieved the highest accuracy (97.01%), precision (92.68%), recall
(94.60%), specificity (99.52%), F1-measure (93.53%), G-mean (97.87%) and index imbalanced
accuracy (95.46%) followed by the SVM classifier, which was trained on the sampled
data by SMOTE. The learned representations contain rich, valuable information related to
hematopoietic cancer which also can be used for other downstream tasks such as regression,
classification, survival analysis, etc. We also applied the SHAP feature interpretation
technique to our pre-trained model to explain the black box and show the importance of
each bio-marker. By extracting bio-markers using deep learning structures, this study is
expected to be helpful in enabling gene-specific treatment of patients. Furthermore, it is
expected that this model will be helpful in the development of public healthcare through
extensibility that can be applied not only to cancer but also to various diseases.

In conclusion, we found that our autoencoder-based feature extraction approach for
hematopoietic cancer subtype classification algorithm showed good classification perfor-
mance in multiclass classification, and our suggested approach showed better performance
than PCA and NMF, which are widely used feature extraction methods for cancer clas-
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sification. Furthermore, the problem of unbalanced data can be solved by applying the
SMOTE method.
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Appendix A. Autoencoder

In this paper, we used an autoencoder (AE) and a variational autoencoder (VAE) as
non-linear feature extraction methods. The structure of an AE is divided into two main
parts: encoder and decoder. The encoder has an input layer with three fully connected
hidden layers with 2000, 500 and 100 nodes. The decoder is comprised of two hidden
layers, which are fully connected. These layers transpose the weights of the encoding and
decoding using the equations below:

hiddenencode1 = ReLU(W1 × input + b1)

hiddenencode2 = ReLU
(
W2 × hiddenencode1 + b2

)
hiddenencode3 = ReLU

(
W3 × hiddenencode2 + b3

)
hiddendecode1 = ReLU

(
W3 ′ × hiddenencode3 + b3 ′

)
hiddendecode2 = ReLU

(
W2 ′ × hiddendecode1 + b2 ′

)
reconstructioninput = sigmoid

(
W1

′ × hiddendecode2 + b1
′
)

(A1)

where, W1, W2 and W3 are the weight vectors between each layer. Assume that the input
size is N, the size of each W1, W2 and W3 is N× 2000, 2000× 500 and 500× 100, respectively.
The b1, b2 and b3 are the bias information for each layer. Rectified Linear Unit (ReLU) and
sigmoid function were applied for non-linear activation functions. The hiddendecode1 was
used as the extracted features of AE. For measuring reconstruction loss, we used MSE as a
loss function between the original data (xi) and reconstructed data (x̂i). The equation of
MSE is shown below.

MSE =
1
N ∑(xi − x̂i)

2 (A2)

This sequence of autoencoder processes is shown in Figure A1.
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Figure A1. The procedure of autoencoder (AE) feature selection method. The encoder consists of 
three fully connected hidden layers which contain 2000, 500 and 100 nodes and the decoder 
consists of two fully connected hidden layers which contains 500 and 2000 nodes. This 
autoencoder structure is evaluated by reconstruction error using MSE measurement. 
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Figure A1. The procedure of autoencoder (AE) feature selection method. The encoder consists of
three fully connected hidden layers which contain 2000, 500 and 100 nodes and the decoder consists
of two fully connected hidden layers which contains 500 and 2000 nodes. This autoencoder structure
is evaluated by reconstruction error using MSE measurement.

Appendix B. Variational Autoencoder

Similar to the AE structure, the VAE also has an encoder and a decoder. This VAE
is normally used in semi-supervised learning models nowadays. Furthermore, it can
learn approximate inferences and be trained using the gradient descent method. The
main approach of VAEs is using probability distribution to obtain samples which match
the distribution. This VAE calculates objective function using reconstruction loss and
Kullback–Leibler divergence (KLdivergence) [38].

L(X) = E[log P(X|Z)]− DKL[Q(Z|X)||P(Z)] (A3)

where L is a VAE objective function, which is known as a variational lower bound; X is
input data and Z is a latent variable. The left term of VAE is the reconstruction loss—it
makes the decoder reconstruct input. The right term is referred to as KL-divergence for min-
imizing the difference between the encoder’s distribution Q(Z|X) and prior distribution
P(Z). For calculating distribution, it generates mean and standard deviation. The goal of
this objective function is to maximize the variational lower bound using the maximization
of data generation and minimization the KL-divergence. In this paper, the VAE shared the
construction with AE; however, due to the VAE considering the distribution of the input,
the VAE applies the distribution calculating part before generating the latent space. Almost
the same as the AE, the VAE transposes the weights of the encoding and decoding using
the below equations:

hiddenencode1 = ReLU(W1 × input + b1)

hiddenencode2 = ReLU
(
W2 × hiddenencode1 + b2

)
hiddenencode3 = E[log P(X|Z)]− DKL[Q(Z|X)||P(Z)]

hiddendecode1 = ReLU
(
W3 × hiddenencode3 + b3

)
hiddendecode2 = ReLU

(
W2 ′ × hiddendecode1 + b2 ′

)
reconstructioninput = sigmoid

(
W1

′ × hiddendecode2 + b1
′
)

(A4)

where, W1, W2 and W3 are the weight vectors between each layer. Assume that the input
size is N, the size of W1 and W2 is N × 2000 and 2000× 500 respectively. In the third
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layer on the encoder, the distribution of input is computed and the mean (µ) and standard
deviation (σ) of input are generated for calculating latent space (Z). The b1, b2 and b3 are
the bias information for each layer. In VAE, ReLU and sigmoid functions are also used as
non-linear activation functions. The result hiddendecode1 , called latent space (Z), is used as
the extracted feature of the VAE. For measuring reconstruction loss, MSE is used as a loss
function between the original data and reconstructed data, same as the AE.

This sequence of variational autoencoder processes is shown in Figure A2.
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Figure A2. The procedure of the variational autoencoder (VAE) feature selection method. The
encoder consists of three fully connected hidden layers which contain 2000, 500 and 100 nodes and
the decoder consists two fully connected hidden layers which contain 500 and 2000 nodes. Unlike
the autoencoder, this method uses Kullback–Leibler divergence (KL-divergence) for calculating
reconstruction loss for variational autoencoder.

Appendix C. Subtype Classification Neural Network

For the NN for the subtype classification on hematopoietic cancer, we generated a feed-
forward neural network (NN), which has one input layer, one hidden layer with 100 nodes
and one output layer. The features we extracted from DAE utilized the input of NN.

hiddenlayer = ReLU
(
W4 × hiddenencode3 + b4

)
output = sigmoid

(
W5 × hiddenlayer + b5

) (A5)

where W4 and W5 indicate the weight vector between the layers between 100× 100 and
100× C; C indicates the number of class labels—in this case, it is 5—and b4 and b5 are the
bias of each NN layer’s node.

Appendix D. Cross-Entropy Loss and Focal Loss

For calculating classification loss, we used two loss functions: cross-entropy loss (CE)
and focal loss (FL). CE is the most widely used loss function in classification models. The
equation of CE is shown in the below equation:

CE(p, y) = −
N

∑
i=1

yi log(P(i|S)) (A6)

where y is the class label of the instance; N is the number of classification labels on the
dataset; P(i|S) is the predicted probability. If the model predicts an instance correctly as yi,
P(i|S) heads to the true distribution of yi. As a result, the loss function will be decreased.
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For simplicity, if pi is defined in the estimated probability of the model when class label
yi = 1, it can be written by the below equation:

CE(p, y) = CE(pi) = − log(pi) (A7)

However, if there are plenty of class labels with the imbalance status, it incurs a loss
with the non-trivial magnitude. If there are a lot of easy examples to be classified, which
means there is a large class imbalance on the dataset, the CE of major class labels is going
to be larger than the minor classes.

For handling this class imbalance problem, a modulating factor is added to CE, defined
as focal loss (FL). This modulating factor in focal loss is (1− pi)

γ. Here, γ is a focusing
factor which can be changeable parameter that ranges γ ≥ 0. Therefore, the FL can be
formulated as the below equation:

FL(p, y) = FL(pi) = −(1− pi)
γ log(pi) (A8)

For instance, if the focusing factor is set as γ = 2 and a sample probability pt = 0.9,
the loss contribution is 100 times lower than CE. On the other hand, the modulating factor
makes the loss contribution of the example lower and makes it easier to classify and
compare than when using traditional CE. Due to this advantage, using FL can prevent the
overfitting problem which can be accompanied by class imbalance.
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