Effects of Short-Term Plyometric Training on Agility, Jump and Repeated Sprint Performance in Female Soccer Players
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Anthropometric Measurements
2.4. Squat and Countermovement Jumps
2.5. Illinois Agility Test
2.6. Running Anaerobic Sprint Test
2.7. Plyometric Training
2.8. Statistical Analysis
3. Results
4. Discussion
5. Limitation of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of plyometric training on vertical jump performance in female athletes: A systematic review and meta-analysis. Sports Med. 2017, 47, 975–986. [Google Scholar] [CrossRef]
- Datson, N.; Hulton, A.; Andersson, H.; Lewis, T.; Weston, M.; Drust, B.; Gregson, W. Applied physiology of female soccer: An update. Sports Med. 2014, 44, 1225–1240. [Google Scholar] [CrossRef] [Green Version]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; Sanchez-Sanchez, J.; Nakamura, F.Y.; Clemente, F.M.; Romero-Moraleda, B.; Ramirez-Campillo, R. Effects of plyometric jump training in female soccer player’s physical fitness: A systematic review with meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 8911. [Google Scholar] [CrossRef] [PubMed]
- Chimera, N.J.; Swanik, K.A.; Swanik, C.B.; Straub, S.J. Effects of plyometric training on muscle-activation strategies and performance in female athletes. J. Athl. Train. 2004, 39, 24–31. [Google Scholar]
- Slimani, M.; Chamari, K.; Miarka, B.; Del Vecchio, F.B.; Chéour, F. Effects of plyometric training on physical fitness in team sport athletes: A systematic review. J. Hum. Kinet. 2016, 53, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef] [PubMed]
- Oxfeldt, M.; Overgaard, K.; Hvid, L.G.; Dalgas, U. Effects of plyometric training on jumping, sprint performance, and lower body muscle strength in healthy adults: A systematic review and meta-analyses. Scand. J. Med. Sci. Sports 2019, 29, 1453–1465. [Google Scholar] [CrossRef]
- Campo, S.S.; Vaeyens, R.; Philippaerts, R.M.; Redondo, J.C.; de Benito, A.M.; Cuadrado, G. Effects of lower-limb plyometric training on body composition, explosive strength, and kicking speed in female soccer players. J. Strength Cond. Res. 2009, 23, 1714–1722. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.G.; Herniman, J.J.; Ricard, M.D.; Cheatham, C.C.; Michael, T.J. The effects of a 6-week plyometric training program on agility. J. Sports Sci. Med. 2006, 5, 459–465. [Google Scholar]
- Ramírez-Campillo, R.; Vergara-Pedreros, M.; Henríquez-Olguín, C.; Martínez-Salazar, C.; Alvarez, C.; Nakamura, F.Y.; De La Fuente, C.I.; Caniuqueo, A.; Alonso-Martinez, A.M.; Izquierdo, M. Effects of plyometric training on maximal-intensity exercise and endurance in male and female soccer players. J. Sports Sci. 2016, 34, 687–693. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zhang, N. Effects of plyometric training on soccer players. Exp. Ther. Med. 2016, 12, 550–554. [Google Scholar] [CrossRef] [Green Version]
- Rubley, M.D.; Haase, A.C.; Holcomb, W.R.; Girouard, T.J.; Tandy, R.D. The effect of plyometric training on power and kicking distance in female adolescent soccer players. J. Strength Cond. Res. 2011, 25, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Álvarez, C.; García-Hermoso, A.; Ramírez-Vélez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-de-Alcaraz, A.; et al. Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Moran, J.; Chaabene, H.; Granacher, U.; Behm, D.G.; García-Hermoso, A.; Izquierdo, M. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand. J. Med. Sci. Sports 2020, 30, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Sanchez-Sanchez, J.; Romero-Moraleda, B.; Yanci, J.; García-Hermoso, A.; Manuel Clemente, F. Effects of plyometric jump training in female soccer player’s vertical jump height: A systematic review with meta-analysis. J. Sports Sci. 2020, 38, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Hachana, Y.; Chaabène, H.; Nabli, M.A.; Attia, A.; Moualhi, J.; Farhat, N.; Elloumi, M. Test-retest reliability, criterion-related validity, and minimal detectable change of the Illinois agility test in male team sport athletes. J. Strength Cond. Res. 2013, 27, 2752–2759. [Google Scholar] [CrossRef]
- Raya, M.A.; Gailey, R.S.; Gaunaurd, I.A.; Jayne, D.M.; Campbell, S.M.; Gagne, E.; Manrique, P.G.; Muller, D.G.; Tucker, C. Comparison of three agility tests with male servicemembers: Edgren Side Step Test, T-Test, and Illinois Agility Test. J. Rehabil. Res. Dev. 2013, 50, 951–960. [Google Scholar] [CrossRef]
- Roozen, M. Action-reaction: Illinois Agility Test. NSCA Perform. Train. J. 2008, 5, 5–6. [Google Scholar]
- Andrade, V.L.; Zagatto, A.M.; Kalva-Filho, C.A.; Mendes, O.C.; Gobatto, C.A.; Campos, E.Z.; Papoti, M. Running-based anaerobic sprint test as a procedure to evaluate anaerobic power. Int. J. Sports Med. 2015, 36, 1156–1162. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, V.L.; Santiago, P.R.; Kalva Filho, C.A.; Campos, E.Z.; Papoti, M. Reproducibility of running anaerobic sprint test for soccer players. J. Sports Med. Phys. Fit. 2014, 56, 34–38. [Google Scholar]
- Zagatto, A.M.; Beck, W.R.; Gobatto, C.A. Validity of the running anaerobic sprint test for assessing anaerobic power and predicting short-distance performances. J. Strength Cond. Res. 2009, 23, 1820–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Ronnestad, B.R.; Kvamme, N.H.; Sunde, A.; Raastad, T. Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. J. Strength Cond. Res. 2008, 22, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Váczi, M.; Tollár, J.; Meszler, B.; Juhász, I.; Karsai, I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J. Hum. Kinet. 2013, 36, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Yanci, J.; Castillo, D.; Iturricastillo, A.; Ayarra, R.; Nakamura, F.Y. Effects of two different volume-equated weekly distributed short-term plyometric training programs on futsal players’ physical performance. J. Strength Cond. Res. 2017, 31, 1787–1794. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; García-Pinillos, F.; García-Ramos, A.; Yanci, J.; Gentil, P.; Chaabene, H.; Granacher, U. Effects of different plyometric training frequencies on components of physical fitness in amateur female soccer players. Front. Physiol. 2018, 9, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozbar, N.; Ates, S.; Agopyan, A. The effect of 8-week plyometric training on leg power, jump and sprint performance in female soccer players. J. Strength Cond. Res. 2014, 28, 2888–2894. [Google Scholar] [CrossRef]
- Yanci, J.; Los Arcos, A.; Camara, J.; Castillo, D.; García, A.; Castagna, C. Effects of horizontal plyometric training volume on soccer players’ performance. Res. Sports Med. 2016, 24, 308–319. [Google Scholar] [CrossRef]
- De Villarreal, E.S.S.; González-Badillo, J.J.; Izquierdo, M. Low and moderate plyometric training frequency produces greater jumping and sprinting gains compared with high frequency. J. Strength Cond. Res. 2008, 22, 715–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Campillo, R.; Andrade, D.C.; Alvarez, C.; Henríquez-Olguín, C.; Martínez, C.; Báez-Sanmartín, E.; Silva-Urra, J.; Burgos, C.; Izquierdo, M. The effects of interset rest on adaptation to 7 weeks of explosive training in young soccer players. J. Sports Sci. Med. 2014, 13, 287–296. [Google Scholar] [PubMed]
- Read, M.M.; Cisar, C. The influence of varied rest interval lengths on depth jump performance. J. Strength Cond. Res. 2001, 15, 279–283. [Google Scholar] [PubMed]
- Ramírez-Campillo, R.; Burgos, C.H.; Henríquez-Olguín, C.; Andrade, D.C.; Martínez, C.; Álvarez, C.; Castro-Sepúlveda, M.; Marques, M.C.; Izquierdo, M. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Campillo, R.; Gallardo, F.; Henriquez-Olguín, C.; Meylan, C.M.; Martínez, C.; Álvarez, C.; Caniuqueo, A.; Cadore, E.L.; Izquierdo, M. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1784–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Weeks | Day | Volume | Number of Exercise | Exercise Description | Sets × Reps | Intensity (Volume—No. of Contacts) |
---|---|---|---|---|---|---|
I | MON | 50 | 1 | Double-leg jump over 5 hurdles | 4 × 5 | low (107) |
2 | Single-leg jump over 5 hurdles | 3 × 5 | ||||
3 | Forward double-leg jump 1 hurdle and sideways single-leg jump over 1 hurdle, and sideways to target and back | 3 × 5 | ||||
FRI | 57 | 4 | Double-leg jump over 5 hurdles and single-leg jump sideways to target at the end | 4 × 6 | ||
5 | Single-leg jump over 5 hurdles and double-leg jump over 1 hurdle sideways at the end | 3 × 6 | ||||
6 | Forward double-leg jump over 1 hurdle and single-leg jump sideways over 1 hurdle and sideways to target and back with 90° turn at the end | 3 × 5 | ||||
II | MON | 68 | 7 | 3 single-leg jumps to target and sideways, single-leg jump between hurdle 4x, single- leg jump over hurdle at the end | 2 × 12 | Moderate (133) |
8 | Single-leg jump over 3 hurdles with sideways jump to target 2×, single-leg sideways jump over 1 hurdle at the end | 2 × 10 | ||||
9 | Double-leg jump over 1 hurdle and single-leg jump to designated area and return, repeated for other side and return | 3 × 8 | ||||
FRI | 65 | 10 | Single-leg jump over 1 hurdle and sideways jump over 1 hurdle, 3 single-leg jumps to target and sideways single-leg jump between hurdle 3×, forward single-leg jump over hurdle at the end | 2 × 10 | ||
11 | Single-leg forward jump over 3 hurdles, halfway, double-leg sideways jump over 1 hurdle and single-leg forward jump over 3 hurdles | 3 × 7 | ||||
12 | Double-leg jump over 1 hurdle and single-leg jump to designated area and return, the same for other side and return | 3 × 8 | ||||
III | MON | 95 | 13 | Double-leg jump over 1 hurdle, single-leg jump to designated area 2× and on the other side, double-leg forward jump over 1 hurdle 2×, at the end, double-leg jump over 1 hurdle and 2 single-leg jumps to target | 3 × 15 | High (159) |
14 | Single-leg forward jump over 3 hurdles, double-leg jump with 90° turn over 1 hurdle, 2 single-leg forward jumps 1× and double-leg forward jump with 90° turn, 2 single-leg jumps with 90° final turn | 3 × 10 | ||||
15 | Double-leg forward jump 1×, single-leg jump to designated areas, 3x sideways jump over hurdle and 3× jump to target, double-leg forward jump 1× and 2 single-leg jumps | 2 × 10 | ||||
FRI | 64 | 16 | Single-leg jump over 1 hurdle, sideways jump to designated area 2x, at the end, 1 single-leg jump forwards with 1 sideways jump | 2 × 10 | ||
17 | 3 forward single-leg jumps, 1 double-leg forward jump with 900 turn, 3 single-leg forward jumps, 2 double-leg jumps over hurdle with 900 turn at the end | 2 × 10 | ||||
18 | Sideways single-leg jump from designated areas above hurdles | 4 × 6 | ||||
IV | MON | 68 | 7 | 3 single-leg jumps to target and sideways single-leg jump between hurdle 4×, single-leg jump over hurdle at the end | 2 × 12 | |
8 | Single-leg jump over 3 hurdles with sideways jump to target 2×, single-leg jump over 1 hurdle at the end | 2 × 10 | Moderate (125) | |||
9 | Double-leg jump over 1 hurdle, single-leg jump to designated area and return, the same for other side, and return | 3 × 8 | ||||
FRI | 60 | 10 | Single-leg jump over 1 hurdle and sideways jump over 1 hurdle, 3 single-leg jumps to target and sideways one-single-leg jump between hurdle 3×, single-leg forward jump over hurdle at the end | 2 × 10 | ||
11 | Single-leg forward jump over 3 hurdles, halfway, double-leg sideways jump over 1 hurdle and single-leg forward jump over 3 hurdles | 3 × 7 | ||||
12 | Double-leg jump over 1 hurdle and single-leg jump to designated area and return, the same for other side and return | 2 × 8 |
Variable | Group | Training | p (post-hoc) | ES (Cohen’s d) | |
---|---|---|---|---|---|
Baseline | Post-Training | ||||
Pmax/BM (W/kg) | PLY | 6.23 ± 1.12 | 6.76 ± 1.42 | 0.60 | 0.42 |
CON | 6.29 ± 0.86 | 6.51 ± 1.33 | 0.96 | 0.20 | |
Pmax (W) | PLY | 370.8 ± 54.36 | 404.2 ± 65.71 | 0.48 | 0.56 |
CON | 344.8 ± 48.48 | 361.8 ± 78.31 | 0.98 | 0.27 | |
Pmean (W) | PLY | 314.96 ± 46.10 | 340.5 ± 74.43 | 0.52 | 0.42 |
CON | 294.79 ± 38.78 | 313.8 ± 51.94 | 0.76 | 0.42 | |
FI (W/s) | PLY | 3.0 ± 0.84 | 3.02 ± 0.60 | 0.99 | 0.03 |
CON | 2.58 ± 1.03 | 2.38 ± 1.42 | 0.98 | 0.16 | |
IAT (s) | PLY | 16.8 ± 0.88 | 16.2 ± 0.84 | 0.003 | 0.7 |
CON | 16.91 ± 0.58 | 16.72 ± 0.86 | 0.57 | 0.26 | |
SJ (cm) | PLY | 26.23 ± 5.14 | 28.63 ± 4.76 | 0.04 | 0.48 |
CON | 27.17 ± 4.38 | 28.24 ± 4.20 | 0.59 | 0.25 | |
CMJ (cm) | PLY | 28.11 ± 4.56 | 29.93 ± 5.01 | 0.009 | 0.42 |
CON | 28.14 ± 3.91 | 28.64 ± 3.91 | 0.75 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejczyk, M.; Błyszczuk, R.; Drwal, A.; Nowak, B.; Strzała, M. Effects of Short-Term Plyometric Training on Agility, Jump and Repeated Sprint Performance in Female Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 2274. https://doi.org/10.3390/ijerph18052274
Maciejczyk M, Błyszczuk R, Drwal A, Nowak B, Strzała M. Effects of Short-Term Plyometric Training on Agility, Jump and Repeated Sprint Performance in Female Soccer Players. International Journal of Environmental Research and Public Health. 2021; 18(5):2274. https://doi.org/10.3390/ijerph18052274
Chicago/Turabian StyleMaciejczyk, Marcin, Renata Błyszczuk, Aleksander Drwal, Beata Nowak, and Marek Strzała. 2021. "Effects of Short-Term Plyometric Training on Agility, Jump and Repeated Sprint Performance in Female Soccer Players" International Journal of Environmental Research and Public Health 18, no. 5: 2274. https://doi.org/10.3390/ijerph18052274
APA StyleMaciejczyk, M., Błyszczuk, R., Drwal, A., Nowak, B., & Strzała, M. (2021). Effects of Short-Term Plyometric Training on Agility, Jump and Repeated Sprint Performance in Female Soccer Players. International Journal of Environmental Research and Public Health, 18(5), 2274. https://doi.org/10.3390/ijerph18052274