Evaluation of Gonadal Alterations in a Population Environmentally Exposed to a Mixture of Endocrine Active Pesticides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Criteria for the Selection of the Study Areas and Pesticide Exposure
2.3. Study Population and Gonadal Diseases
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Pesticide Exposure and Gonadal Dysfunction
4.2. Pesticide Exposure and Gonadal Cancer
4.3. Limitations and Strengths of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernández, A.F.; Parrón, T.; Tsatsakis, A.M.; Requena, M.; Alarcón, R.; López-Guarnido, O. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 2013, 307, 136–145. [Google Scholar] [CrossRef]
- Becerra, T.A.; Bravo, L.X. La agricultura intensiva del poniente almeriense. Diagnóstico e instrumentos de gestión ambiental. M + A. Rev. Electrónica Medioambiente 2010, 8, 1–22. [Google Scholar]
- Atwood, D.; Paisley-Jones, C. Pesticides Industry Sales and Usage. 2008–2012 Market Estimates; U.S. Environmental Protection Agency: Washington, DC, USA, 2017; 32p.
- Jabłońska-Trypuć, A.; Wołejko, E.; Wydro, U.; Butarewicz, A. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D. Green revolution agriculture and chemical hazards. Sci. Total Environ. 1996, 188, S86–S98. [Google Scholar] [CrossRef]
- Damstra, T.; Barlow, S.; Bergman, A.; Kavlock, R.J.; Der Kraak, G.V. Global Assessment of the State-of-the-Science of Endocrine Disruptors; International Programme on Chemical Safety; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Piazza, M.J.; Urbanetz, A.A. Environmental toxins and the impact of other endocrine disrupting chemicals in women’s reproductive health. J. Bras. Reprod. Assist. 2019, 23, 154–164. [Google Scholar] [CrossRef]
- Senthilkumaran, B. Pesticide- and sex steroid analogue-induced endocrine disruption differentially targets hypothalamo-hypophyseal-gonadal system during gametogenesis in teleosts—A review. Gen. Comp. Endocrinol. 2015, 219, 136–142. [Google Scholar] [CrossRef]
- Neghab, M.; Moemenbellah-Fard, M.D.; Naziaghdam, R.; Salahshour, N.; Kazemi, M.; Alipour, H. The effects of exposure to pesticides on the fecundity status of farm workers resident in a rural region of Fars province, southern Iran. Asian Pac. J. Trop. Biomed. 2014, 4, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Sifakis, S.; Androutsopoulos, V.P.; Tsatsakis, A.M.; Spandidos, D.A. Human exposure to endocrine disrupting chemicals: Effects on the male and female reproductive systems. Environ. Toxicol. Pharmacol. 2017, 51, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Da Cuña, R.H.; Pandolfi, M.; Genovese, G.; Piazza, Y.; Ansaldo, M.; Lo Nostro, F.L. Endocrine disruptive potential of endosulfan on the reproductive axis of Cichlasoma dimerus (Perciformes, Cichlidae). Aquat. Toxicol. 2013, 126, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Melgarejo, M.; Mendiola, J.; Koch, H.M.; Moñino-García, M.; Noguera-Velasco, J.A.; Torres-Cantero, A.M. Associations between urinary organophosphate pesticide metabolite levels and reproductive parameters in men from an infertility clinic. Environ. Res. 2015, 137, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, J.; Zhu, H.; Ding, J.; Peng, Y. Proteomics analysis of Xenopus laevis gonad tissue following chronic exposure to atrazine. Environ. Toxicol. Chem. 2015, 34, 1770–1777. [Google Scholar] [CrossRef]
- Monteiro, M.S.; Pavlaki, M.; Faustino, A.; Rêma, A.; Franchi, M.; Gediel, L.; Loureiro, S.; Domingues, I.; von Osten, R.J.; Soares, M.V.M.A. Endocrine disruption effects of p,p’-DDE on juvenile zebrafish. J. Appl. Toxicol. 2015, 35, 253–260. [Google Scholar] [CrossRef]
- Rattan, S.; Zhou, C.; Chiang, C.; Mahalingam, S.; Brehm, E.; Flaws, J.A. Exposure to endocrine disruptors during adulthood: Consequences for female fertility. J. Endocrinol. 2017, 233, R109–R129. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.Z.; Qi, S.Z.; Cao, F.J.; Mu, X.Y.; Yang, Y.; Wang, C. Quizalofop-P-ethyl exposure increases estrogen axis activity in male and slightly decreases estrogen axis activity in female zebrafish (Danio rerio). Aquat. Toxicol. 2017, 183, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Tebourbi, O.; Sakly, M.; Ben, K. Molecular mechanisms of pesticide toxicity. In Pesticides in the Modern World—Pests Control and Pesticides Exposure and Toxicity Assessment; InTech: Baja California, Mexico, 2011; pp. 297–332. [Google Scholar]
- Parrón, T.; Requena, M.; Hernández, A.F.; Alarcón, R. Environmental exposure to pesticides and cancer risk in multiple human organ systems. Toxicol. Lett. 2014, 230, 157–165. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. Available online: https://gco.iarc.fr/today (accessed on 2 February 2021). [CrossRef] [PubMed] [Green Version]
- Campbell, S.; Gentry-Maharaj, A. The role of transvaginal ultrasound in screening for ovarian cancer. Climacteric 2018, 21, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Znaor, A.; Lortet-Tieulent, J.; Jemal, A.; Bray, F. International variations and trends in testicular cancer incidence and mortality. Eur. Urol. 2014, 65, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Albers, P.; Albrecht, W.; Algaba, F.; Bokemeyer, C.; Cohn-Cedermark, G.; Fizazi, K.; Horwich, A.; Laguna, M.P.; Nicolai, N.; Oldenburg, J. Guidelines on testicular cancer: 2015 update. Eur. Urol. 2015, 68, 1054–1068. [Google Scholar] [CrossRef]
- Dabrowski, J.M.; Shadung, J.M.; Wepener, V. Prioritizing agricultural pesticides used in South Africa based on their environmental mobility and potential human health effects. Environ. Int. 2014, 62, 31–40. [Google Scholar] [CrossRef]
- Sugeng, A.J.; Beamer, P.I.; Lutz, E.A.; Rosales, C.B. Hazard-ranking of agricultural pesticides for chronic health effects in Yuma County, Arizona. Sci. Total Environ. 2013, 463–464, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Cremonese, C.; Piccoli, C.; Pasqualotto, F.; Clapauch, R.; Koifman, R.J.; Koifman, S.; Freire, C. Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reprod. Toxicol. 2017, 67, 174–185. [Google Scholar] [CrossRef]
- Aguilar-Garduño, C.; Lacasaña, M.; Blanco-Muñoz, J.; Rodríguez-Barranco, M.; Hernández, A.F.; Bassol, S.; González-Alzaga, B.; Cebrián, M.E. Changes in male hormone profile after occupational organophosphate exposure. A longitudinal study. Toxicology 2013, 307, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Ventura, C.; Nieto, M.R.R.; Bourguignon, N.; Lux-Lantos, V.; Rodriguez, H.; Cao, G.; Randi, A.; Cocca, C.; Núñez, M. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J. Steroid Biochem. Mol. Biol. 2016, 156, 1–9. [Google Scholar] [CrossRef]
- Skolness, S.Y.; Blanksma, C.A.; Cavallin, J.E.; Churchill, J.J.; Durhan, E.J.; Jensen, K.M.; Johnson, R.D.; Kahl, M.D.; Makynen, E.A.; Villeneuve, D.L.; et al. Propiconazole inhibits Steroidogenesis and Reproduction in the Fathead Minnow (pimephales promelas). Toxicol. Sci. 2013, 132, 284–297. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.C.; Mathur, R.; Gulati, N. Testicular toxicity of chlorpyrifos (an organophosphate pesticide) in albino rat. Toxicol. Ind. Health 2007, 23, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía. Cartografía de Invernaderos en Almería, Granada y Málaga; Año. 2017. Available online: https://www.juntadeandalucia.es/export/drupaljda/Cartografia%20_inv_AL_GR_MA_SEE.pdf (accessed on 28 December 2020).
- García-García, C.R.; Parrón, T.; Requena, M.; Alarcón, R.; Tsatsakis, A.M.; Hernández, A.F. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci. 2016, 145, 274–283. [Google Scholar] [CrossRef]
- International Classification of Diseases: [9th] Ninth Revision, Basic Tabulation List with Alphabetic Index; World Health Organization: Geneva, Switzerland, 1978; Available online: https://apps.who.int/iris/handle/10665/39473 (accessed on 10 October 2020).
- European Food Safety Authority. The 2011 European Union report on pesticide residues in food. EFSA J. 2014, 12, 3942. [Google Scholar] [CrossRef]
- Mantovani, A. Endocrine disrupters and the safety of food chains. Horm. Res. Paediatr. 2016, 86, 279–288. [Google Scholar] [CrossRef]
- Fantke, P.; Charles, R.; de Alencastro, L.F.; Friedrich, R.; Jolliet, O. Plant uptake of pesticides and human health: Dynamic modeling of residues in wheat and ingestion intake. Chemosphere 2011, 85, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Requena, M.; Parrón, T.; Navarro, A.; García, J.; Ventura, M.I.; Hernández, A.F.; Alarcón, R. Association between environmental exposure to pesticides and epilepsy. Neurotoxicology 2018, 68, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Warembourg, C.; Debost-Legrand, A.; Bonvallot, N.; Massart, C.; Garlantézec, R.; Monfort, C.; Gaudreau, E.; Chevrier, C.; Cordier, S. Exposure of pregnant women to persistent organic pollutants and cord sex hormone levels. Hum. Reprod. 2016, 31, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Kjeldsen, L.S.; Ghisari, M.; Bonefeld-Jørgensen, E.C. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicol. Appl. Pharmacol. 2013, 272, 453–464. [Google Scholar] [CrossRef]
- Riana Bornman, M.; Bouwman, H. Environmental pollutants and diseases of sexual development in humans and wildlife in South Africa: Harbingers of impact on overall health? Reprod. Domest. Anim. 2012, 47, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive summary to EDC-2: The Endocrine Society’s second Scientific Statement on endocrine-disrupting chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef] [Green Version]
- McGlynn, K.A.; Trabert, B. Adolescent and adult risk factors for testicular cancer. Nat. Rev. Urol. 2012, 9, 339–349. [Google Scholar] [CrossRef]
- Sharma, A.; Mollier, J.; Brocklesby, R.W.K.; Caves, C.; Jayasena, C.N.; Minhas, S. Endocrine-disrupting chemicals and male reproductive health. Reprod. Med. Biol. 2020, 19, 243–253. [Google Scholar] [CrossRef]
- Paoli, D.; Giannandrea, F.; Gallo, M.; Turci, R.; Cattaruzza, M.S.; Lombardo, F.; Lenzi, A.; Gandini, L. Exposure to polychlorinated biphenyls and hexachlorobenzene, semen quality and testicular cancer risk. J. Endocrinol. Investig. 2015, 38, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannandrea, F.; Gandini, L.; Paoli, D.; Turci, R.; Figà-Talamanca, I. Pesticide exposure and serum organochlorine residuals among testicular cancer patients and healthy controls. J. Environ. Sci. Health. B 2011, 46, 780–787. [Google Scholar] [CrossRef]
- Frost, G.; Brown, T.; Harding, A.H. Mortality and cancer incidence among British agricultural pesticide users. Occup. Med. 2011, 61, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Sandler, D.P.; Lynch, C.F.; Louis, L.M.; Blair, A.; Parks, C.G.; Shrestha, S.; Lubin, J.H.; et al. Cancer incidence in the Agricultural Health Study after 20 years of follow-up. Cancer Causes Control 2019, 30, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Samtani, R.; Sharma, N.; Garg, D. Effects of endocrine-disrupting chemicals and epigenetic modifications in ovarian cancer: A review. Reprod. Sci. 2018, 25, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Rachoń, D. Endocrine disrupting chemicals (EDCs) and female cancer: Informing the patients. Rev. Endocr. Metab. Disord. 2015, 16, 359–364. [Google Scholar] [CrossRef] [Green Version]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X.; et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2015, 72, 736–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zama, A.M.; Uzumcu, M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology 2009, 150, 4681–4691. [Google Scholar] [CrossRef]
- Shah, H.K.; Sharma, T.; Banerjee, B.D. Organochlorine pesticides induce inflammation, ROS production, and DNA damage in human epithelial ovary cells: An In Vitro study. Chemosphere 2020, 246, 125691. [Google Scholar] [CrossRef] [PubMed]
Gonadal Alterations | Exposure | Age (Mean (SD)) | p Value * |
---|---|---|---|
OvarianCancer | High exposure | 51.97 (15.68) | <0.05 |
Lowexposure | 53.54 (16.15) | ||
Testicular Cancer | High exposure | 31.17 (17.04) | >0.05 |
Lowexposure | 31.90 (17.45) | ||
OvarianDysfunction | High exposure | 33.57 (9.40) | >0.05 |
Lowexposure | 33.93 (11.86) | ||
Testicular Dysfunction | High exposure | 43.16 (19.17) | >0.05 |
Lowexposure | 43.93(15.96) |
Gonadal Alterations (n = 5332) | High Exposure | Low Exposure | OR (95% CI) | p Value * |
---|---|---|---|---|
OvarianCancer (n = 2838) | 4.87 | 3.04 | 1.39 (1.15–1.38) | <0.001 |
Testicular Cancer (n = 766) | 1.04 | 0.19 | 1.37 (1.12–1.60) | <0.001 |
OvarianDysfunction (n = 1489) | 2.22 | 1.83 | 1.12 (1.10–1.30) | <0.05 |
Testicular Dysfunction (n = 239) | 0.27 | 0.08 | 1.36 (1.02–1.89) | <0.05 |
Thyroid Alterations | Risk Factor | OR * | 95% CI | p Value |
---|---|---|---|---|
OvarianCancer | Exposure | 1.41 | 1.24–1.60 | <0.001 |
Age | 1.03 | 1.03–1.04 | <0.001 | |
Testicular Cancer | Exposure | 1.59 | 1.37–1.85 | <0.001 |
Age | 1.01 | 1.07–1.16 | <0.001 | |
OvarianDysfunction | Exposure | 1.38 | 1.05–1.82 | <0.01 |
Age | 0.97 | 0.96–0.97 | <0.001 | |
Testicular Dysfunction | Exposure | 1.29 | 1.13–1.34 | <0.01 |
Age | 1.10 | 1.09–1.18 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Requena-Mullor, M.; Navarro-Mena, A.; Wei, R.; López-Guarnido, O.; Lozano-Paniagua, D.; Alarcon-Rodriguez, R. Evaluation of Gonadal Alterations in a Population Environmentally Exposed to a Mixture of Endocrine Active Pesticides. Int. J. Environ. Res. Public Health 2021, 18, 2355. https://doi.org/10.3390/ijerph18052355
Requena-Mullor M, Navarro-Mena A, Wei R, López-Guarnido O, Lozano-Paniagua D, Alarcon-Rodriguez R. Evaluation of Gonadal Alterations in a Population Environmentally Exposed to a Mixture of Endocrine Active Pesticides. International Journal of Environmental Research and Public Health. 2021; 18(5):2355. https://doi.org/10.3390/ijerph18052355
Chicago/Turabian StyleRequena-Mullor, Mar, Angeles Navarro-Mena, Ruqiong Wei, Olga López-Guarnido, David Lozano-Paniagua, and Raquel Alarcon-Rodriguez. 2021. "Evaluation of Gonadal Alterations in a Population Environmentally Exposed to a Mixture of Endocrine Active Pesticides" International Journal of Environmental Research and Public Health 18, no. 5: 2355. https://doi.org/10.3390/ijerph18052355
APA StyleRequena-Mullor, M., Navarro-Mena, A., Wei, R., López-Guarnido, O., Lozano-Paniagua, D., & Alarcon-Rodriguez, R. (2021). Evaluation of Gonadal Alterations in a Population Environmentally Exposed to a Mixture of Endocrine Active Pesticides. International Journal of Environmental Research and Public Health, 18(5), 2355. https://doi.org/10.3390/ijerph18052355