Antioxidant, Antihypertensive and Antimicrobial Properties of Phenolic Compounds Obtained from Native Plants by Different Extraction Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Bacterial Strains
2.3. Phenolic Compound Extraction
2.3.1. Mechanical Agitation Extraction
2.3.2. Ultrasound-Assisted Extraction
2.4. Total Phenolic Content (TPC)
2.5. Antioxidant Activity by Free Radical Scavenging Ability Using a Stable DPPH Radical and ABTS Radical Cation
2.6. Assessment of ACE Inhibitory Activity
2.7. Antimicrobial Activity
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quílez, M.; Ferreres, F.; López-Miranda, S.; Salazar, E.; Jordán, M.J. Seed oil from Mediterranean aromatic and medicinal plants of the Lamiaceae family as a source of bioactive components with nutritional. Antioxidants 2020, 9, 510. [Google Scholar] [CrossRef]
- Blanco Salas, J.; Vázquez, F.M.; Alonso, D.; Gutierrez Esteban, M.; Márquez-García, F.; Chaparro, J.; Barrena, M.; Ramos, S.; Hércules, S. Recursos fitogenéticos de las dehesas extremeñas: Plantas medicinales. In Proceedings of the V Congreso Forestal Español, Ávila, Spain, 21–25 September 2009. [Google Scholar]
- Costa, D.C.; Costa, H.S.; Albuquerque, T.G.; Ramos, F.; Castilho, M.C.; Sanches-Silva, A. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci. Technol. 2015, 45, 336–354. [Google Scholar] [CrossRef]
- Pacheco, D.P.; Villalobos, J.R. Contribución al conocimiento de nombres vernáculos de plantas medicinales en la comarca de Zafra-Río Bodión. Rev. Estud. Extremeños 2007, 63, 343–352. [Google Scholar]
- Ruíz, T.T.; Escobar, G.P.; Pérez, C.J.L. La Serena y Sierras Limítrofes: Flora y Vegetación; Consejería de Agricultura y Medio Ambiente, Junta de Extremadura: Mérida, Spain, 2007. [Google Scholar]
- Kamala Kumari, P.V.; Akhila, S.; Srinivasa Rao, Y.; Rama Devi, B. Alternative to artificial preservatives. Sys. Rev. Pharm. 2019, 10, S13–S16. [Google Scholar]
- Suhaj, M. Spice antioxidants isolation and their antiradical activity: A review. J. Food Compost. Ana 2006, 19, 531–537. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comp. Rev. Food Scif. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef]
- Chun, S.S.; Vattem, D.A.; Lin, Y.T.; Shetty, K. Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter Pylori. Process. Biochem. 2005, 40, 809–816. [Google Scholar] [CrossRef]
- Moon, J.K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Kumar, H.; Bhardwaj, K.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Bhardwaj, S.; Bhatia, S.K.; Verma, R.; Kumar, D. Antioxidant functionalized nanoparticles: A combat against oxidative stress. J. Nanomater. 2020, 10, 1334. [Google Scholar] [CrossRef]
- Pate, K.M.; Rogers, M.; Reed, J.W.; van der Munnik, N.; Vance, S.Z.; Moss, M.A. Anthoxanthin polyphenols attenuate Aβ oligomer-induced neuronal responses associated with Alzheimer’s disease. CNS Neurosci. Ther. 2017, 23, 135–144. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Burri, S.C.; Ekholm, A.; Bleive, U.; Jensen, M.; Hellstr, J.; Mńkinen, S.; Korpineng, R.; Mattilah, P.H.; Radenkovsi, V.; Segliņai, D.; et al. Lipid oxidation inhibition capacity of plant extracts and powders in a processed meat model system. Meat. Sci. 2020, 162, 108033. [Google Scholar] [CrossRef]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cáceres, M.; Hidalgo, W.; Stashenko, E.; Torres, R.; Ortiz, C. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics 2020, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Gomes, F.; Dias, M.I.; Lima, Â.; Barros, L.; Rodrigues, M.E.; Ferreira, I.C.; Henriques, M. Satureja montana L. and Origanum majorana L. decoctions: Antimicrobial activity, mode of action and phenolic characterization. Antibiotics 2020, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.; Jeon, B. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front. Microbiol. 2015, 6, 1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanhueza, L.; Melo, R.; Montero, R.; Maisey, K.; Mendoza, L.; Wilkens, M. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PLoS ONE 2017, 12, e0172273. [Google Scholar] [CrossRef]
- Vieitez, I.; Maceiras, L.; Jachmanián, I.; Alborés, S. Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. J. Supercrit. Fluid 2018, 133, 58–64. [Google Scholar] [CrossRef]
- Weerakkody, N.S.; Caffin, N.; Turner, M.S.; Dykes, G.A. In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control 2010, 21, 1408–1414. [Google Scholar] [CrossRef]
- Mihailovic-Stanojevic, N.; Belščak-Cvitanović, A.; Grujić-Milanović, J.; Ivanov, M.; Jovović, D.; Bugarski, D.; Miloradović, Z. Antioxidant and antihypertensive activity of extract from Thymus serpyllum L. in experimental hypertension. Plant Foods Hum. Nutr. 2013, 68, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Vargas-León, E.A.; Díaz-Batalla, L.; González-Cruz, L.; Bernardino-Nicanor, A.; Castro-Rosas, J.; Reynoso-Camacho, R.; Gómez-Aldapa, C.A. Effects of acid hydrolysis on the free radical scavenging capacity and inhibitory activity of the angiotensin converting enzyme of phenolic compounds of two varieties of jamaica (Hibiscus sabdariffa). IND Crops Prod. 2018, 116, 201–208. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.; Teles, A.S.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, G.R.; Godoy, L.R.; Cabral, L.M.C.; Tonon, R.V. Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. IND Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Wettasinghe, M.; Shahidi, F. Evening primrosemeal: A source of natural antioxidants and scavenger of hydrogen peroxide and oxygen-derived free radicals. J. Agric. Food Chem. 1999, 47, 1801–1812. [Google Scholar] [CrossRef]
- Teixeira, D.M.; Canelas, V.C.; Martins do Canto, A.; Teixeira, J.M.G.; Dias, C.B. HPLC-DAD quantification of phenolic compounds contributing to the antioxidant activity of Maclura pomifera, Ficus carica and Ficus elastica extracts. Anal. Lett. 2009, 42, 2986–3003. [Google Scholar] [CrossRef]
- Cano, A.; Acosta, M.; Armao, M.B. A method to measure antioxidant activity in organic media: Application to lipophilic vitamins. Redox Rep. 2000, 5, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Sentandreu, M.A.; Toldrá, F. A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme. Food Chem. 2006, 97, 546–554. [Google Scholar] [CrossRef]
- Sentandreu, M.A.; Toldrá, F. A fluorescence-based protocol for quantifying angiotensin-converting enzyme activity. Nat. Protoc. 2006, 1, 2423–2427. [Google Scholar] [CrossRef]
- Bimakr, M.; Ganjloo, A.; Zarringhalami, S.; Ansarian, E. Ultrasound-assisted extraction of bioactive compounds from Malva sylvestris leaves and its comparison with agitated bed extraction technique. Food Sci. Biotechnol. 2017, 26, 1481–1490. [Google Scholar] [CrossRef]
- He, B.; Zhang, L.L.; Yue, X.Y.; Liang, J.; Jiang, J.; Gao, X.L.; Yue, P.X. Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 2016, 204, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Abu-Orabi, S.T.; Al-Qudah, M.A.; Saleh, N.R.; Bataineh, T.T.; Obeidat, S.M.; Al-Sheraideh, M.S.; Al-Jaber, H.I.; Tashtoush, H.I.; Lahham, J.N. Antioxidant activity of crude extracts and essential oils from flower buds and leaves of Cistus creticus and Cistus salviifolius. Arab. J. Chem. 2020, 13, 6256–6266. [Google Scholar] [CrossRef]
- Amessis-Ouchemoukh, N.; Ouchemoukh, S.; Meziant, N.; Idiri, Y.; Hernanz, D.; Stinco, C.M.; Rodríguez-Pulido, F.J.; Heredia, F.J.; Madani, K.; Luis, J. Bioactive metabolites involved in the antioxidant, anticancer and anticalpain activities of Ficus carica L., Ceratonia siliqua L. and Quercus ilex L. extracts. IND Crops Prod. 2017, 95, 6–17. [Google Scholar] [CrossRef]
- Hadidi, L.; Babou, L.; Zaidi, F.; Valentão, P.; Andrade, P.B.; Grosso, C. Quercus ilex L.: How season, plant organ and extraction procedure can influence chemistry and bioactivities. Chem. Biodivers 2017, 14, e1600187. [Google Scholar] [CrossRef] [PubMed]
- Márquez, C.J.; Otero, C.M.; Rojano, B.A.; Osorio, J.A. Actividad Antioxidante y Concentración de Compuestos Fenólicos del Tomate de Árbol (Cyphomandra betacea S.) en Poscosecha. Temas Agrarios 2014, 19, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Puertas-Mejía, M.A.; Rivera-Echeverry, F.; Villegas-Guzmán, P.; Rojano, C.B.A.; Palaez-Jaramillo, C. Comparación entre el Estado de Maduración del Fruto de Café (Coffee arabica L.), el Contenido de Antocianinas y su Capacidad Antioxidante. Rev. Cuba. Plantas Med. 2012, 17, 360–367. [Google Scholar]
- Stępień, A.; Aebisher, D.; Bartusik-Aebisher, D. Biological properties of Cistus species. Eur. J. Clin. Exp. Med. 2018, 16, 127–132. [Google Scholar] [CrossRef]
- Arina, M.I.; Harisun, Y. Effect of extraction temperatures on tannin content and antioxidant activity of Quercus infectoria (Manjakani). Biocatal. Agric. Biotechnol. 2019, 19, 101104. [Google Scholar] [CrossRef]
- Chaudhary, N.; Sabikhi, L.; Hussain, S.A.; Sathish Kumar, M.H. A comparative study of the antioxidant and ACE inhibitory activities of selected herbal extracts. J. Herb. Med. 2020, 22, 100343. [Google Scholar] [CrossRef]
- Mahmoudi, H.; Aouadhi, C.; Kaddour, R.; Gruber, M.; Zargouni, H.; Zaouali, W.; Ben Hamida, N.; Ben Nasri, M.; Ouerghi, Z.; Hosni, K. Comparison of antioxidant and antimicrobial activities of two cultivated Cistus species from Tunisia. J. Biosci. 2016, 32, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef] [PubMed]
- López-Hidalgo, C.; Trigueros, M.; Menéndez, M.; Jorrin-Novo, J.V. Phytochemical composition and variability in Quercus ilex acorn morphotypes as determined by NIRS and MS-based approaches. Food Chem. 2021, 338, 127803. [Google Scholar] [CrossRef]
- Karioti, A.; Sokovic, M.; Ciric, A.; Koukoulitsa, C.; Bilia, A.R.; Skaltsa, H. Antimicrobial properties of Quercus ilex L. proanthocyanidin dimers and simple phenolics: Evaluation of their synergistic activity with conventional antimicrobials and prediction of their pharmacokinetic profile. J. Agric. Food Chem. 2011, 59, 6412–6422. [Google Scholar] [CrossRef] [PubMed]
- Burlacu, E.; Nisca, A.; Tanase, C. A comprehensive review of phytochemistry and biological activities of Quercus species. Forests 2020, 11, 904. [Google Scholar] [CrossRef]
- Ceylan, S.; Cetin, S.; Camadan, Y.; Saral, O.; Ozsen, O.; Tutus, A. Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Ir. J. Med. Sci. 2019, 188, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Merghache, D.; Boucherit-Otmani, Z.; El Haci, I.A.; Chikhi, I.; Boucherit, K. Inhibitory effect of Quercus ilex wood ash on the growth of pathogenic microorganisms. Phytothérapie 2018, 16, S269–S272. [Google Scholar] [CrossRef]
Plant | Agitation | Ultrasound | p2 |
---|---|---|---|
Mean SD 1 | Mean SD | ||
Calendula officinalis | 276.73 ± 13.41 cde | 95.46 ± 2.24 hi | <0.001 |
Rosmarinus officinalis | 160.72 ± 14.93 de | 314.01 ± 14.65 fghi | 0.001 |
Cistus ladanifer | 802.89 ± 45.52 ab | 655.05 ± 62.55 cdef | 0.03 |
Cistus multiflorus | 408.66 ± 52.27 cde | 514.26 ± 39.86 fgh | 0.08 |
Cistus albidus | 580.25 ± 93.34 bc | 1260.47 ± 472.40 a | 0.152 |
Cistus salviifolius | 554.8 ± 59.73 bc | 1029.99 ± 140.38 ab | 0.048 |
Lavandula stoechas | 1029.25 ± 23.15 a | 554.07 ± 13.66 efg | <0.001 |
Crataegus monogyna | 387.96 ± 29.43 cd | 855.23 ± 18.67 bcde | <0.001 |
Malva sylvestris | 67.00 ± 9.33 de | 156.32 ± 6.69 hi | 0.001 |
Rubus ulmifolius | 305.24 ± 8.79 cde | 953.61 ± 76.27 abc | <0.001 |
Quercus ilex | 387.54 ± 36.58 cd | 927.84 ± 112.79 abcd | 0.001 |
Morus alba | 26.95 ± 3.92 de | 286.38 ± 10.07 ghi | <0.001 |
Ulmus sp. | 131.71 ± 22.41 de | 263.36 ± 3.17 ghi | 0.001 |
Asparagus sp. | 92.08 ± 4.19 de | 302.57 ± 18.61 fghi | <0.001 |
Urginea maritima | 7.95 ± 5.21 e | 57.94 ± 3.71 i | <0.001 |
Plant | DPPH | p1 | ABTS | p | IC50 | p | |||
---|---|---|---|---|---|---|---|---|---|
AE | UE | AE | UE | AE | UE | ||||
Calendula officinalis | 60.51 c | 183.69 c | <0.001 | 67.05 f | 335.94 e | <0.001 | 180.19 bcd | 153.85 ab | 0.418 |
Rosmarinus officinalis | 100.98 c | 95.75 c | 0.57 | 256.66 e | 273.40 ef | <0.001 | 139.91 de | 115.86 ab | 0.234 |
Cistus ladanifer | 2397.47 a | 2363.34 a | 0.015 | 467.93 d | 753.75 bc | <0.001 | 11.27 f | 5.85 d | 0.056 |
Cistus multiflorus | 793.67 bc | 953.12 bc | 0.007 | 374.72 de | 504.78 d | <0.001 | 187.13 bcd | 65.46 cd | 0.008 |
Cistus albidus | 276.51 c | 262.64 c | 0.061 | 434.68 d | 825.51 b | <0.001 | 30.37 f | 21.69 d | 0.322 |
Cistus salviifolius | 40.27 c | 100.80 c | <0.001 | 804.74 b | 832.72 b | 0.305 | 62.13 ef | 16.53 cd | 0.107 |
Lavandula stoechas | 18.93 c | 91.23 c | <0.001 | 45.74 f | 256.32 f | <0.001 | 172.47 bcd | 189.79 a | 0.362 |
Crataegus monogyna | 106.25 c | 216.46 c | 0.001 | 532.99 cd | 718.05 bc | 0.012 | 174.61 bcd | 151.77 ab | 0.267 |
Malva sylvestris | 37.65 c | 147.53 c | 0.001 | 77.40 f | 262.93 f | <0.001 | 202.73 bc | 112.92 ab | 0.039 |
Rubus ulmifolius | 93.28 c | 131.50 c | <0.001 | 644.23 c | 842.33 b | 0.001 | 315.58 a | 65.40 cd | 0.036 |
Quercus ilex | 1531.95 b | 1611.59 b | 0.599 | 2531.41 a | 2306.17 a | 0.117 | 198.58 bc | 80.38 bc | 0.001 |
Morus alba | 29.45 c | 255.42 c | <0.001 | 60.92 f | 303.40 ef | <0.001 | 232.66 b | 137.89 ab | 0.042 |
Ulmus sp. | 70.76 c | 366.43 c | <0.001 | 261.76 e | 397.37 e | <0.001 | 142.77 de | 72.63 bc | 0.055 |
Asparagus sp. | 40.32 c | 244.87 c | 0.013 | 99.46 f | 260.48 f | 0.002 | 110.86 de | 99.37 bc | 0.412 |
Urginea maritima | 17.05 c | 132.08 c | 0.05 | 41.96 f | 154.62 f | 0.002 | 198.37 bc | 152.02 ab | 0.032 |
L. Monocytogenes | L. Innocua | S. Aureus | B. Cereus | E. Coli | S. Choleraesuis | |
---|---|---|---|---|---|---|
Plant | Mean SD | Mean SD | Mean SD | Mean SD | Mean SD | Mean SD |
Cistus multiflorus | - | - | - | - | - | 5.26 ± 4.68 c |
Cistus albidus | 1.62 ± 2.40 d | 2.89 ± 4.28 d | 3.19 ± 4.72 d | 2.62 ± 3.87 c | 2.35 ± 3.47 g | 5.28 ± 2.80 c |
Cistus ladanifer | 1.85 ± 2.76 c | 3.23 ± 4.78 c | 3.22 ± 3.57 d | 3.00 ± 4.46 b | 2.86 ± 4.24 e | 7.82 ± 2.97 a |
Cistus salviifolius | 0.83 ± 1.93 g | 5.29 ± 4.10 a | 3.28 ± 3.56 d | - | 4.25 ± 3.28 b | 4.22 ± 3.79 d |
Lavandula stoechas | 1.38 ± 3.21 e | - | 1.49 ± 3.48 f | - | - | 0.87 ± 2.03 i |
Quercus ilex | 3.88 ± 4.69 a | 3.56 ± 4.04 b | 5.45 ± 2.97 a | 3.79 ± 3.34 a | 5.07 ± 3.86 a | 6.27 ± 3.55 b |
Rosmarinus officinalis | 1.15 ± 2.69 f | - | 1.88 ± 2.91 e | 0.99 ± 2.32 ef | 0.00 ± 0.00 k | - |
Rubus ulmifolius | 2.18 ± 3.23 b | 2.76 ± 3.56 d | 3.98 ± 3.08 c | 1.89 ± 2.81 d | 3.93 ± 2.93 c | 3.57 ± 2.06 f |
Crataegus monogyna | - | - | 1.85 ± 2.76 e | - | 3.75 ± 3.98 d | - |
Asparagus sp. | - | - | - | - | 2.00 ± 2.95 h | - |
Malva sylvestris | - | - | 4.3 ± 6.60 b | 3.88 ± 5.73 a | 2.56 ± 3.79 f | 3.37 ± 4.98 f |
Morus alba | - | - | - | - | - | 3.85 ± 5.69 e |
Urginea maritima | - | - | 1.18 ± 2.76 g | 1.04 ± 2.44 e | 1.37 ± 3.19 i | 1.52 ± 3.54 g |
Ulmus sp. | - | - | 1.16 ± 2.71 g | 0.86 ± 2.00 f | 1.18 ± 2.76 j | 1.19 ± 2.78 g |
Extraction method | - | |||||
Agitation | 0.63 ± 1.99 | 0.85 ± 2.53 | 2.30 ± 3.41 | 1.38 ± 3.00 | 2.19 ± 3.33 | 2.66 ± 3.78 |
Ultrasound | 1.21 ± 2.71 | 1.68 ± 3.35 | 2.13 ± 3.77 | 1.20 ± 2.93 | 1.99 ± 3.27 | 3.51 ± 4.18 |
Concentration (mg/mL) | ||||||
2 | 2.10 ± 3.33 a | 2.44 ± 4.12 a | 4.95 ± 4.44 a | 3.39 ± 4.18 a | 4.34 ± 3.86 a | 5.76 ± 4.80 a |
1 | 0.51 ± 1.85 b | 0.95 ± 2.38 b | 1.36 ± 2.41 b | 0.40 ± 1.48 b | 1.75 ± 2.82 b | 2.36 ± 3.07 b |
0.5 | 0.15 ± 0.80 c | 0.41 ± 1.49 c | 0.34 ± 1.24 c | 0.08 ± 0.42 c | 0.19 ± 0.99 c | 1.14 ± 2.09 c |
Pplants | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Pextraction | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Pconcentration | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Pplant × extraction | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Plant | C. Boidinii | K. Fluxuum | P. Carsonii | Z. Bailii |
---|---|---|---|---|
Mean SD | Mean SD | Mean SD | Mean SD | |
Cistus albidus | 2.83 ± 4.2 d | 5.17 ± 4.11 b | 4.87 ± 3.76 c | 5.31 ± 3.04 c |
Cistus ladanifer | 7.55 ± 2.7 a | 7.83 ± 3.21 a | 8.11 ± 3.08 a | 7.69 ± 2.93 a |
Cistus salviifolius | 1.62 ± 3.79 e | 4.53 ± 4.04 bc | - | 1.31 ± 3.06 d |
Lavandula stoechas | - | 1.54 ± 2.98 d | 2.33 ± 3.50 d | 1.33 ± 3.09 d |
Quercus ilex | 5.46 ± 6.09 b | 7.53 ± 4.89 a | 3.37 ± 4.65 b | 6.52 ± 5.03 b |
Rosmarinus officinalis | - | 1.025 ± 2.39 d | 1.2 ± 2.80 e | - |
Rubus ulmifolius | 3.15 ± 4.89 c | 3.51 ± 3.71 c | 1.01 ± 2.37 f | 1.16 ± 2.71 e |
Extraction method | ||||
Agitation | 1.87 ± 3.57 | 3.62 ± 3.41 | 2.76 ± 3.73 | 3.24 ± 4.14 |
Ultrasound | 4.02 ± 5.04 | 5.27 ± 5.01 | 3.78 ± 4.43 | 3.42 ± 4.26 |
Concentration (mg/mL) | ||||
2 | 5.97 ± 5.53 a | 7.05 ± 5.26 a | 5.88 ± 4.87 a | 6.12 ± 4.89 a |
1 | 2.14 ± 3.53 b | 4.79 ± 2.83 b | 3.20 ± 3.31 b | 2.87 ± 3.46 b |
0.5 | 0.73 ± 1.83 c | 1.51 ± 2.49 c | 0.73 ± 1.82 c | 0.99 ± 1.96 c |
Pplants | <0.001 | <0.001 | <0.001 | <0.001 |
Pextraction | <0.001 | <0.001 | <0.001 | <0.001 |
Pconcentration | <0.001 | <0.001 | <0.001 | <0.001 |
Pplant × extraction | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boy, F.R.; Casquete, R.; Martínez, A.; Córdoba, M.d.G.; Ruíz-Moyano, S.; Benito, M.J. Antioxidant, Antihypertensive and Antimicrobial Properties of Phenolic Compounds Obtained from Native Plants by Different Extraction Methods. Int. J. Environ. Res. Public Health 2021, 18, 2475. https://doi.org/10.3390/ijerph18052475
Boy FR, Casquete R, Martínez A, Córdoba MdG, Ruíz-Moyano S, Benito MJ. Antioxidant, Antihypertensive and Antimicrobial Properties of Phenolic Compounds Obtained from Native Plants by Different Extraction Methods. International Journal of Environmental Research and Public Health. 2021; 18(5):2475. https://doi.org/10.3390/ijerph18052475
Chicago/Turabian StyleBoy, Francisco Ramiro, Rocío Casquete, Ana Martínez, María de Guía Córdoba, Santiago Ruíz-Moyano, and María José Benito. 2021. "Antioxidant, Antihypertensive and Antimicrobial Properties of Phenolic Compounds Obtained from Native Plants by Different Extraction Methods" International Journal of Environmental Research and Public Health 18, no. 5: 2475. https://doi.org/10.3390/ijerph18052475
APA StyleBoy, F. R., Casquete, R., Martínez, A., Córdoba, M. d. G., Ruíz-Moyano, S., & Benito, M. J. (2021). Antioxidant, Antihypertensive and Antimicrobial Properties of Phenolic Compounds Obtained from Native Plants by Different Extraction Methods. International Journal of Environmental Research and Public Health, 18(5), 2475. https://doi.org/10.3390/ijerph18052475