Response of the Cardiac Autonomic Control to Exposure to Nanoparticles and Noise: A Cross-Sectional Study of Airport Ground Staff
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Personal Exposure Assessment
- -
- Standard Deviation of normal-to-normal (NN) intervals (SDNN, ms);
- -
- Root Mean Square of successive differences in adjacent NN intervals (RMSSD, ms);
- -
- Triangular index (T-index), corresponding to the integral of the density distribution divided by its maximum value;
- -
- Very low frequency power (VLF, ms2) in the range 0.003–0.04 Hz;
- -
- Low-frequency power (LF, ms2) in the range 0.04–0.15 Hz;
- -
- High-frequency power (HF, ms2) in the range 0.15–0.40 Hz;
- -
- LF/HF ratio (Ratio LF [ms2]/HF [ms2]);
- -
- Total Power (TP, ms2): variance of NN intervals over the temporal segment, approximately in a range ≤ 0.4 Hz.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buonanno, G.; Bernabei, M.; Avino, P.; Stabile, L. Occupational exposure to airborne particles and other pollutants in an aviation base. Environ. Pollut. 2012, 170, 78–87. [Google Scholar] [CrossRef]
- Campagna, M.; Frattolillo, A.; Pili, S.; Marcias, G.; Angius, N.; Mastino, C.C.; Cocco, P.; Buonanno, G. Environmental exposure to ultrafine particles inside and nearby a military airport. Atmosphere (Basel) 2016, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Marcias, G.; Casula, M.; Uras, M.; Falqui, A.; Miozzi, E.; Sogne, E.; Pili, S.; Pilia, I.; Fabbri, D.; Meloni, F.; et al. Occupational fine/ultrafine particles and noise exposure in aircraft personnel operating in airport taxiway. Environments 2019, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Boldo, E.; Medina, S.; Le Tertre, A.; Hurley, F.; Mücke, H.-G.; Ballester, F.; Aguilera, I. Apheis: Health impact assessment of long-term exposure to PM2.5 in 23 European cities. Eur. J. Epidemiol. 2006, 21, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Bostan, H.B.; Rezaee, R.; Valokala, M.G.; Tsarouhas, K.; Golokhvast, K.; Tsatsakis, A.M.; Karimi, G. Cardiotoxicity of nano-particles. Life Sci. 2016, 165, 91–99. [Google Scholar] [CrossRef]
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Outdoor Air Pollution; IARC: Geneva, Switzerland, 2013; Volume 109.
- Cho, W.S.; Duffn, R.; Poland, C.A.; Howie, S.E.M.; Macnee, W.; Bradley, M.; Megson, I.L.; Donaldson, K. Metal oxide nanoparticles induce unique infammatory footprints in the lung: Important implications for nanoparticle testing. Environ. Health Perspect. 2010, 118, 1699–1706. [Google Scholar] [CrossRef] [Green Version]
- Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res. Int. 2013, 2013, 942916. [Google Scholar] [CrossRef] [Green Version]
- Pietroiusti, A. Health implications of engineered nanomaterials. Nanoscale 2012, 4, 1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.; Hao, Y.; Guo, X. Ultrafine carbon black disturbs heart rate variability in mice. Toxicol. Lett. 2012, 211, 274–280. [Google Scholar] [CrossRef]
- Tobaldini, E.; Bollati, V.; Prado, M.; Fiorelli, E.M.; Pecis, M.; Bissolotti, G.; Albetti, B.; Cantone, L.; Favero, C.; Cogliati, C.; et al. Acute particulate matter affects cardiovascular autonomic modulation and IFN-γ methylation in healthy volunteers. Environ. Res. 2018, 161, 97–103. [Google Scholar] [CrossRef]
- Shutt, R.H.; Kauri, L.M.; Weichenthal, S.; Kumarathasan, P.; Vincent, R.; Thomson, E.M.; Liu, L.; Mahmud, M.; Cakmak, S.; Dales, R. Exposure to air pollution near a steel plant is associated with reduced heart rate variability: A randomised crossover study. Environ. Health 2017, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef] [Green Version]
- Héritier, H.; Vienneau, D.; Foraster, M.; Eze, I.C.; Schaffner, E.; Thiesse, L.; Rudzik, F.; Habermacher, M.; Köpfli, M.; Pieren, R.; et al. Transportation noise exposure and cardiovascular mortality: A nationwide cohort study from Switzerland. Eur. J. Epidemiol. 2017, 32, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Lusk, S.L.; Gillespie, B.; Bonnie, M.H.; Ziemba, R.A. Acute effects of noise on blood pressure and heart rate. Arch. Environ. Health 2004, 59, 392–399. [Google Scholar] [CrossRef]
- Kraus, U.; Schneider, A.; Breitner, S.; Hampel, R.; Rückerl, R.; Pitz, M.; Geruschkat, U.; Belcredi, P.; Radon, K.; Peters, A. Individual daytime noise exposure during routine activities and heart rate variability in adults: A repeated measures study. Environ. Health Perspect. 2013, 121, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Sim, C.S.; Sung, J.H.; Cheon, S.H.; Lee, J.M.; Lee, J.W.; Lee, J. The effects of different noise types on heart rate variability in men. Yonsei Med. J. 2015, 56, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, A.W.; Peters, J.L.; Levy, J.I.; Melly, S.; Dominici, F. Residential exposure to aircraft noise and hospital admissions for cardiovascular diseases: Multi-airport retrospective study. BMJ 2013, 347. [Google Scholar] [CrossRef] [Green Version]
- Hansell, A.L.; Blangiardo, M.; Fortunato, L.; Floud, S.; de Hoogh, K.; Fecht, D.; Ghosh, R.E.; Laszlo, H.E.; Pearson, C.; Beale, L.; et al. Aircraft noise and cardiovascular disease near Heathrow airport in London: Small area study. [Erratum appears in BMJ. 2014;348:g3504]. BMJ 2013, 347, f5432. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, M.; Andersen, Z.J.; Nordsborg, R.B.; Jensen, S.S.; Lillelund, K.G.; Beelen, R.; Schmidt, E.B.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Road traffic noise and incident myocardial infarction: A prospective cohort study. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Huss, A.; Spoerri, A.; Egger, M.; Röösli, M. Aircraft noise, air pollution, and mortality from myocardial infarction. Epidemiology 2010, 21, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.Q.; Davies, H.W.; Koehoorn, M.; Brauer, M. Association of long-term exposure to community noise and traffic-related air pollution with coronary heart disease mortality. Am. J. Epidemiol. 2012, 175, 898–906. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.; Hampel, R.; Cyrys, J.; Breitner, S.; Geruschkat, U.; Kraus, U.; Zareba, W.; Schneider, A. Elevated particle number concentrations induce immediate changes in heart rate variability: A panel study in individuals with impaired glucose metabolism or diabetes. Part. Fibre Toxicol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, T.; Wang, Z.; Su, L.; Fang, S.; Cavallari, J.; Byun, H.M.; Lin, X.; Baccarelli, A.A.; Christiani, D.C. Cardiovascular responses and global DNA methylation changes after short-term occupational metal fume exposure. Am. J. Respir. Crit. Care Med. 2014, 189, A1669. [Google Scholar]
- Lee, M.S.; Eum, K.D.; Rodrigues, E.G.; Magari, S.R.; Fang, S.C.; Modest, G.A.; Christiani, D.C. Effects of personal exposure to ambient fine particulate matter on acute change in nocturnal heart rate variability in subjects without overt heart disease. Am. J. Cardiol. 2016, 117, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Wang, P.; Pan, X.; Wang, Y.; Ren, S. Effects of short-term exposure to particulate matters on heart rate variability: A systematic review and meta-analysis based on controlled animal studies. Environ. Pollut. 2020, 256, 113306. [Google Scholar] [CrossRef] [PubMed]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Weichenthal, S.; Kulka, R.; Dubeau, A.; Martin, C.; Wang, D.; Dales, R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ. Health Perspect. 2011, 119, 1373–1378. [Google Scholar] [CrossRef]
- Park, S.K.; O’Neill, M.S.; Vokonas, P.S.; Sparrow, D.; Schwartz, J. Effects of air pollution on heart rate variability: The VA normative aging study. Environ. Health Perspect. 2005, 113, 304–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizza, V.; Stabile, L.; Vistocco, D.; Russi, A.; Pardi, S.; Buonanno, G. Effects of the exposure to ultrafine particles on heart rate in a healthy population. Sci. Total Environ. 2019, 650. [Google Scholar] [CrossRef]
- Schneider, A.; Hampel, R.; Ibald-Mulli, A.; Zareba, W.; Schmidt, G.; Schneider, R.; Rückerl, R.; Couderc, J.P.; Mykins, B.; Oberdörster, G.; et al. Changes in deceleration capacity of heart rate and heart rate variability induced by ambient air pollution in individuals with coronary artery disease. Part. Fibre Toxicol. 2010, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Zareba, W.; Couderc, J.P.; Oberdorster, G.; Chalupa, D.; Cox, C.; Huang, L.S.; Peters, A.; Utell, M.J.; Frampton, M.W. ECG parameters and exposure to carbon ultrafine particles in young healthy subjects. Inhal. Toxicol. 2009, 21, 223–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Aarbaoui, T.; Chaix, B. The short-term association between exposure to noise and heart rate variability in daily locations and mobility contexts. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.; Cascio, W.E.; Ghio, A.J.; Wild, P.; Danuser, B.; Riediker, M. Associations of short-term particle and noise exposures with markers of cardiovascular and respiratory health among highway maintenance workers. Environ. Health Perspect. 2014, 122, 726–732. [Google Scholar] [CrossRef] [Green Version]
- Deyaert, J.; Harms, T.; Weeneas, D.; Gershuny, J.; Glorieux, I. Attaching metabolic expenditures to standard occupational classification systems: Perspectives from time-use research. BMC Public Health 2017, 17, 620. [Google Scholar] [CrossRef]
UFP Parameters (N = 33) | |||
---|---|---|---|
UFPs (part/cm3) | Size (nm) | LDSA (m2/cm3) | Dose LDSA (mm2) |
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) |
61,443.30 | 55.77 | 109.46 | 15.29 |
(351,475.20) | (25.63) | (506.38) | (23.08) |
Noise Parameters (N = 33) | |||
LAeq (dB) | LAeq8hr (dB) | Lc peak (dB) | |
Mean (SD) | Mean (SD) | Mean (SD) | |
79.606 | 74.112 | 129.773 | |
(7.378) | (7.831) | (4.328) |
HRV Measures | Basal | Final | t-Test | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Range | Mean | SD | Range | p | |
SDNN | 58.85 | 17.72 | 90.60–26.20 | 48.15 | 17.09 | 19.70–86.30 | 0.001 |
RMSSD | 59.22 | 59.22 | 18.50–107.5 | 43.22 | 19.36 | 13.90–92.20 | 0.000 |
T-Index | 10.80 | 3.32 | 5.44–18.10 | 10.83 | 3.69 | 3.90–17.32 | 0.957 |
VLF ms2 | 165.1 | 129.4 | 18.00–465.0 | 234.49 | 230.0 | 14.00–852.0 | 0.047 |
LF ms2 | 1420.4 | 1103.7 | 344.0–4903.0 | 1409.88 | 1002.0 | 157.0–4660.0 | 0.955 |
HF ms2 | 846.0 | 809.9 | 40.00–3465.0 | 546.76 | 644.7 | 29.00–3193.0 | 0.049 |
LF/HF | 3.46 | 4.58 | 0.37–24.61 | 4.43 | 3.30 | 0.45–14.35 | 0.265 |
TP ms2 | 2435.73 | 1703.77 | 540.0–6451.0 | 2194.58 | 1584.14 | 218.00–7010.00 | 0.405 |
Age | BMI | UFP Concentration | UFP Size | LDSA | Total LDSA | LAeq8hr | Lc Peak | SDNN | RMSSD | T-Index | VLF Power | LF Power | HF Power | TP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | 1 | 0.254 | −0.040 | −0.099 | −0.027 | 0.014 | 0.014 | 0.048 | −0.313 | −0.173 | −0.348 * | −0.347 * | −0.338 | −0.298 | −0.359 * |
BMI | 1 | −0.225 | −0.019 | −0.252 | −0.251 | −0.493 ** | −0.295 | −0.288 | −0.241 | −0.388 * | −0.136 | −0.174 | −0.321 | −0.230 | |
UFP Concentration | 1 | −0.013 | 0.516 ** | 0.948 ** | 0.367 * | 0.249 | 0.048 | 0.048 | 0.066 | −0.004 | 0.011 | 0.049 | 0.002 | ||
UFP Size | 1 | 0.043 | −0.127 | 0.240 | 0.137 | −0.037 | −0.135 | −0.006 | −0.027 | 0.013 | −0.159 | 0.000 | |||
LDSA | 1 | 0.486 ** | 0.425 * | 0.203 | 0.180 | 0.173 | 0.209 | 0.180 | 0.077 | 0.100 | 0.100 | ||||
Total LDSA | 1 | 0.410 * | 0.396 * | 0.112 | 0.117 | 0.110 | 0.011 | −0.003 | 0.120 | 0.032 | |||||
LAeq8hr | 1 | 0.561 ** | 0.307 | 0.230 | 0.382 * | 0.236 | 0.208 | 0.242 | 0.265 | ||||||
Lc Peak | 1 | 0.325 | 0.293 | 0.403 * | 0.332 | 0.323 | 0.308 | 0.366 * | |||||||
SDNN | 1 | 0.902 ** | 0.903 ** | 0.634 ** | 0.767 ** | 0.922 ** | 0.892 ** | ||||||||
RMSSD | 1 | 0.730 ** | 0.443 ** | 0.505 ** | 0.911 ** | 0.695 ** | |||||||||
T-Index | 1 | 0.664 ** | 0.836 ** | 0.817 ** | 0.903 ** | ||||||||||
VLF Power | 1 | 0.723 ** | 0.529 ** | 0.759 ** | |||||||||||
LF Power | 1 | 0.681 ** | 0.957 ** | ||||||||||||
HF Power | 1 | 0.843 ** | |||||||||||||
TP | 1 |
HRV Total Power | HRV T Index | |||
---|---|---|---|---|
Predictors | β (se) | p | β (se) | p |
Constant | −17795.8 (8627.2) | 0.053 | −34.652 (21.50) | 0.122 |
UFP Concentration | 0.229 (0.130) | 0.092 | 0.003 (0.001) | 0.418 |
Size | −12.21 (18.16) | 0.508 | -0.37 (0.045) | 0.420 |
Total LDSA | −0.038 (0.014) | 0.016 | −7.8 × 10−5 (0.00003) | 0.042 |
LAeq8hr | 33.17 (39.56) | 0.411 | 0.139 (0.099) | 0.172 |
Lc Peak | 153.03 (64.49) | 0.027 | 0.362 (0.161) | 0.035 |
Age | −92.95 (38.13) | 0.024 | −0.187 (0.095) | 0.062 |
BMI | 64.73 (92.96) | 0.494 | −0.40 (0.232) | 0.864 |
Hypertension | −439.43 (611.93) | 0.481 | −1673 (1.525) | 0.285 |
Smoking | −1305.9 (836.51) | 0.133 | −2158 (2.085) | 0.312 |
R2 | 0.473 | 0.512 | ||
With Interaction Term 1 (Total LDSA × Lc Peak) | ||||
Total LDSA × Lc Peak | −0.002 (0.007) | 0.739 | −2.09 × 10−5 (1.7 × 10−5) | 0.242 |
Total LDSA | 0.283 (0.953) | 0.769 | 0.003 (0.002) | 0.255 |
Lc Peak | 167.66 (78.89) | 0.046 | 0.488 (0.190) | 0.019 |
Age | −94.87 (39.37) | 0.026 | 0.204 (0.095) | 0.044 |
R2 | 0.476 | 0.545 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecca, L.I.; Marcias, G.; Uras, M.; Meloni, F.; Mucci, N.; Larese Filon, F.; Massacci, G.; Buonanno, G.; Cocco, P.; Campagna, M. Response of the Cardiac Autonomic Control to Exposure to Nanoparticles and Noise: A Cross-Sectional Study of Airport Ground Staff. Int. J. Environ. Res. Public Health 2021, 18, 2507. https://doi.org/10.3390/ijerph18052507
Lecca LI, Marcias G, Uras M, Meloni F, Mucci N, Larese Filon F, Massacci G, Buonanno G, Cocco P, Campagna M. Response of the Cardiac Autonomic Control to Exposure to Nanoparticles and Noise: A Cross-Sectional Study of Airport Ground Staff. International Journal of Environmental Research and Public Health. 2021; 18(5):2507. https://doi.org/10.3390/ijerph18052507
Chicago/Turabian StyleLecca, Luigi Isaia, Gabriele Marcias, Michele Uras, Federico Meloni, Nicola Mucci, Francesca Larese Filon, Giorgio Massacci, Giorgio Buonanno, Pierluigi Cocco, and Marcello Campagna. 2021. "Response of the Cardiac Autonomic Control to Exposure to Nanoparticles and Noise: A Cross-Sectional Study of Airport Ground Staff" International Journal of Environmental Research and Public Health 18, no. 5: 2507. https://doi.org/10.3390/ijerph18052507
APA StyleLecca, L. I., Marcias, G., Uras, M., Meloni, F., Mucci, N., Larese Filon, F., Massacci, G., Buonanno, G., Cocco, P., & Campagna, M. (2021). Response of the Cardiac Autonomic Control to Exposure to Nanoparticles and Noise: A Cross-Sectional Study of Airport Ground Staff. International Journal of Environmental Research and Public Health, 18(5), 2507. https://doi.org/10.3390/ijerph18052507