Addition of Grape Skin and Stems Extracts in Wines during the Storage to Reduce the Sulfur Dioxide: Impact on Red Wine Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Extracts Obtained by Ultrasound
2.2. Total Phenolic Content and Functional Properties of Extracts
2.2.1. Total Phenolic Content (TPC)
2.2.2. Antioxidant Activity by Free Radical-Scavenging Ability Using a Stable DPPH Radical and ABTS Radical Cation
2.2.3. Antimicrobial Activity
2.3. Treatment of Wines with By-Product Extracts and Storage
2.4. Microbiological Counts
2.5. Physicochemical Analysis
2.6. Antioxidant Activity
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrer-Gallego, R.; Puxeu, M.; Nart, E.; Martín, L.; Andorrà, I. Evaluation of Tempranillo and Albariño SO2-free wines produced by different chemical alternatives and winemaking procedures. Food Res. Int. 2017, 102, 647–657. [Google Scholar] [CrossRef]
- Oliveira, C.; Ferreira, A.C.; De Freitas, V.; Silva, A. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.Á.; Monagas, M.; Bartolomé, B.; Moreno-Arribas, M.V. Wine features related to safety and consumer health: An integrated perspective. Crit. Rev. Food Sci. Nutr. 2012, 52, 31–54. [Google Scholar] [CrossRef] [Green Version]
- Albertín, W.; Miot-Sertier, C.; Bely, M.; Marullo, P.; Coulon, J.; Moine, V.; Colonna-Ceccaldi, B.; Masneuf-Pomarede, I. Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must. Int. J. Food Microbiol. 2014, 178, 87–97. [Google Scholar] [CrossRef]
- Raposo, R.; Ruiz-Moreno, M.J.; Garde-Cerdán, T.; Puertas, B.; Moreno-Rojas, J.M.; Zafrilla, P.; Gonzalo-Diago, A.; Guerrero, R.F.; Cantos-Villar, E. Replacement of sulphur dioxide by hydroxytyrosol in white wine: Influence on both quality parameters and sensory. LWT Food Sci. Technol. 2016, 65, 214–221. [Google Scholar] [CrossRef]
- Vally, H.; Misso, N.L.; Madan, V. Efectos clínicos de los aditivos de sulfito. Alergia clínica y experimental 2009, 39, 1643–1651. [Google Scholar] [CrossRef]
- Qin, G.; Meng, Z. Effects of sulphur dioxide derivatives on expression of oncogenes and tumor suppressor genes in human bronchial epithelial cells. Food Chem. Toxicol. 2009, 47, 734–744. [Google Scholar] [CrossRef]
- Delsart, C.; Grimi, N.; Boussetta, N.; Miot Sertier, C.; Chidossi, R.; Vorobiev, E.; Mietton Peuchot, M. Inpact of pulsed electric and high volatge electrical discharges on red wine microbial stabilization and quality characteristics. Appl. Microbiol. 2016, 20, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Christofi, S.; Malliaris, D.; Katsaros, G.; Panagou, E.; Kallithraka, S. Limit SO2 content of wines by applying high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2020, 102342. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Cantos-Villar, E. Demostrar la eficiencia de los reemplazos de dióxido de azufre en el vino: Una revisión de parámetros. Tendencias en Ciencia y Tecnología de Alimentos 2015, 42, 27–43. [Google Scholar]
- Nieto-Rojo, R.; Luquin, A.; Ancín-Azpilicueta, C. Mejora de la calidad aromática del vino utilizando mezclas de lisozima y dicarbonato de dimetilo, con baja concentración de SO2. Aditivos Aliment. Contam. Parte A 2015, 32, 1965–1975. [Google Scholar]
- Castro-Marín, A.; Buglia, A.G.; Riponi, C.; Chinnici, F. Volatile and fixed composition of sulphite-free white wines obtained after fermentation in the presence of chitosan. LWT Food Sci. Technol. 2018, 93, 174–180. [Google Scholar] [CrossRef]
- Capece, A.; Pietrafesa, R.; Siesto, G.; Romano, P. Biotechnological approach based on selected Saccharomyces cerevisiae starters for reducing the use of sulfur dioxide in wine. Microorganisms 2020, 8, 738. [Google Scholar] [CrossRef]
- Raposo, R.; Ruiz-Moreno, M.J.; Garde-Cerdán, T.; Puertas, B.; Moreno-Rojas, J.M.; Gonzalo-Diago, A.; Guerrero, R.F.; Ortiz, V.; Cantos-Villar, E. Effect of hydroxytyrosol on quality of sulfur dioxide-free red wine. Food Chem. 2016, 192, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Katalinić, V.; Možina, S.S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P.; et al. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Fracassetti, D.; Gabrielli, M.; Costa, C.; Tomás-Barberán, F.A.; Tirelli, A. Characterization and suitability of polyphenols-based formulas to replace sulphur dioxide for storage of sparkling white wine. Food Control 2016, 60, 606–614. [Google Scholar] [CrossRef]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Marchante, L.; Loarce, L.; Izquierdo-Cañas, P.M.; Alañón, M.E.; García-Romero, E.; Pérez-Coello, M.S.; Díaz-Maroto, M.C. Natural extracts from grape seed and stem by-products in combination with colloidal silver as alternative preservatives to SO2 for white wines: Effects on chemical composition and sensorial properties. Food Res. Int. 2019, 125, 108594. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Fernández-Marín, M.I.; Richard, T.; Fernández-Morales, A.; Carbú, M.; Cebrian-Tarancón, C.; Torija, M.J.; Puertas, B.; Cantos-Villar, E. Development and characterization of a pure stilbene extract from grapevine shoots for use as a preservative in wine. Food Control 2020, 121, 107684. [Google Scholar] [CrossRef]
- Papadopoulou, C.; Soulti, K.; Roussis, I.G. Potential antimicrobial activity of red and white wine phenolic extracts against strains of Staphylococcus aureus, Escherichia coli and Candida albicans. Food Technol. Biotechnol. 2005, 43, 41–46. [Google Scholar]
- Vaquero, M.R.; Alberto, M.R.; de Nadra, M.M. Antibacterial effect of phenolic compounds from different wines. Food Control 2007, 18, 93–101. [Google Scholar] [CrossRef]
- Esparza, I.; Martínez-Inda, B.; Cimminelli, M.J.; Jimeno-Mendoza, M.C.; Moler, J.A.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C. Reducing SO2 doses in red wines by using grape stem extracts as antioxidants. Biomolecules 2020, 10, 1369. [Google Scholar] [CrossRef] [PubMed]
- Wettasinghe, M.; Shahidi, F. Evening primrosemeal: A source of natural antioxidants and scavenger of hydrogen peroxide and oxygen-derived free radicals. J. Agric. Food Chem. 1999, 47, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, D.M.; Canelas, V.C.; Martins do Canto, A.; Teixeira, J.M.G.; Dias, C.B. HPLC-DAD quantification of phenolic compounds contributing to the antioxidant activity of Maclura pomifera, Ficus carica and Ficus elastica extracts. Anal. Lett. 2009, 42, 2986–3003. [Google Scholar] [CrossRef]
- Cano, A.; Acosta, M.; Armao, M.B. A method to measure antioxidant activity in organic media: Application to lipophilic vitamins. Redox Rep. 2000, 5, 365–370. [Google Scholar] [CrossRef] [Green Version]
- ECC. Commission Regulation VO 2676/90 concerning the establishment of common analytical methods in the sector of wine. Off. J. Eur. Community 1990, L272, 1–192. [Google Scholar]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Comp. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Cheng, V.J.; Bekhit, A.E.A.; Mcconnell, M.; Mros, S.; Zhao, J. Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem. 2012, 134, 474–482. [Google Scholar] [CrossRef]
- Yang, J.; Martinson, T.E.; Hai, R. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Paixão, N.; Perestrelo, R.; Marques, J.C.; Câmara, J.S. Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem. 2007, 105, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Rupasinghe, H.P.V.; Clegg, S. Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources. J. Food Comp. Anal. 2007, 20, 133–137. [Google Scholar] [CrossRef]
- Doshi, P.; Adsule, P.; Banerjee, K.; Oulkar, D. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) by-products. J. Food Sci. Technol. 2015, 52, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Moreno, M.J.; Raposo, R.; Cayuela, J.M.; Zafrilla, P.; Piñeiro, Z.; Moreno-Rojas, J.M.; Mulero, J.; Puertas, B.; Giron, F.; Guerrero, R.F.; et al. Valorization of grape stems. Industr. Crop. Prod. 2015, 63, 152–157. [Google Scholar] [CrossRef]
Samples | TPC | DPPH | ABTS | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD 1 | Mean | SD | Mean | SD | ||||
Stem | 2693.28 | ± | 169.84 | 421.75 | ± | 43.98 | 821.76 | ± | 4.24 |
Grape-skin | 1689.42 | ± | 24.39 | 173.81 | ± | 31.25 | 490.29 | ± | 5.61 |
p values 2 | 0.013 | 0.023 | 0.000 |
Bacteria | Yeast | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Samples | Extract (mg/mL) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Stem | 6 | 11 ab1 | 11 ab | 10 b1 | 12 a1 | 8 c1 | 11 ab1 | - | - | 10 b1 | 12 a |
3 | 7 b2 | - | 8 b2 | 8 b2 | 7 b12 | 7 b2 | - | - | 10 a1 | - | |
1.5 | 7 ab2 | - | 7 ab2 | 7 ab23 | 6 b2 | 6 b23 | - | - | 8 a2 | - | |
0.8 | 6 ab2 | - | 6 ab23 | 6 ab3 | 6 ab2 | 5 b3 | - | - | 7 a2 | - | |
0.4 | - | - | 5 a23 | - | 4 a3 | - | - | - | - | - | |
Grape skin | 6 | 10 e1 | 7 f1 | 28 a1 | 12 d1 | 10 e1 | 20 b1 | 10 e1 | - | 18 c1 | 10 e1 |
3 | 8 d2 | 5 e1 | 28 a1 | 7 d2 | 7 d2 | 15 b2 | 7 d2 | - | 10 c2 | 10 c1 | |
1.5 | 6 d2 | - | 28 a1 | 7 d2 | 7 d2 | 15 b2 | 6 d2 | - | 10 c2 | 6 d2 | |
0.8 | - | - | 8 b2 | 6 c2 | 5 c3 | 9 a3 | 6 c2 | - | 10 a2 | 6 c2 | |
0.4 | - | - | 8 a2 | - | 5 b3 | 9 a3 | - | - | - | - |
Parameters | Petit Verdot | Tempranillo | C. Sauvignon | C. Franc | Syrah | Malbec |
---|---|---|---|---|---|---|
pH | 3.6 | 3.7 | 3.7 | 3.6 | 3.8 | 3.7 |
Total acidity (g tartaric acid/L) | 5.63 b | 6.80 a | 6.79 a | 6.18 ab | 5.07 bc | 4.58 c |
Volatile acidity (g acetic acid/L) | 0.27 a | 0.12 b | 0.06 c | 0.06 c | 0.15 b | 0.15 b |
Total SO2 (mg/L) | 61.70 a | 18.43 c | 17.31 c | 19.23 c | 47.91 b | 44.55 b |
Free SO2 (mg/L) | 33.84 a | 12.69 b | 7.82 c | 14.49 b | 30.38 a | 29.49 a |
Antioxidant activity (mg Trolox/100 mL) | 244.5 a | 180.5 b | 221.0 a | 208.4 ab | 159.6 | 237.1 a |
Alcohol (%) | 12.42 | 12.46 | 12.83 | 12.5 | 12.41 | 12.83 |
PCA (CFU/mL) | MRS (CFU/mL) | PDA (CFU/mL) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 0 | 15 | 30 | 45 | 60 | 0 | 15 | 30 | 45 | 60 | |
Type of wine | |||||||||||||||
Petit Verdot | 6.29 a | 5.61 ab | 3.79 ab | 1.86 bc | 1.12 c | 5.35 a1 | 4.85 a1 | 2.93 ab | 1.46 b | 0.00 b | 5.08 a | 5.77 ab1 | 2.85 ab | 1.36 ab | 1.07 b |
Tempranillo | 4.62 a | 3.53 ab | 3.12 ab | 2.64 ab | 0.32 b | 4.36 a1 | 3.19 ab12 | 2.04 ab | 1.47 ab | 0.00 b | 4.68 | 2.30 12 | 2.63 | 1.83 | 1.59 |
Cabernet Sauvignon | 5.47 a | 5.26 a | 3.52 ab | 2.18 ab | 0.60 b | 5.46 a1 | 1.90 b12 | 1.14 b | 1.02 b | 0.00 b | 5.48 a | 3.75 ab12 | 3.26 ab | 1.78 ab | 0.58 b |
Cabernet Franc | 3.95 | 1.46 | 1.57 | 1.57 | 1.21 | 0.00 2 | 0.00 2 | 1.37 | 1.43 | 1.40 | 3.59 | 1.16 2 | 1.12 | 1.85 | 1.13 |
Syrah | 5.21 | 4.52 | 1.57 | 1.33 | 1.26 | 0.00 2 | 0.00 2 | 0.00 | 0.04 | 0.00 | 3.85 | 1.23 2 | 1.20 | 0.96 | 0.63 |
Malbec | 4.30 | 2.72 | 1.03 | 0.92 | 0.00 | 3.95 a1 | 0.00 b2 | 0.00b | 0.00 b | 0.00 b | 4.00 a | 1.25 ab2 | 1.03 ab | 1.17 ab | 0.00 b |
Batches | |||||||||||||||
C | 5.35 | 4.49 | 4.22 | 3.27 | 1.23 | 4.92 | 1.33 | 1.69 | 1.50 | 0.00 | 4.50 | 4.50 | 3.46 | 1.95 | 1.23 |
CS | 5.35 a | 5.35 a | 3.91 ab | 1.73 ab | 0.00 b | 4.92 a | 4.92 a | 2.66 ab | 1.27 ab | 0.00b | 4.50 | 4.57 | 3.89 | 1.77 | 1.24 |
R | 5.35 a | 4.5 ab | 2.13 ab | 1.83 ab | 0.81b | 4.92 | 2.51 | 2.07 | 1.46 | 0.00 | 4.50 | 2.63 | 2.27 | 2.01 | 1.77 |
RS | 5.35 | 5.47 | 4.66 | 3.25 | 2.48 | 4.92 a | 3.63 ab | 2.49 ab | 1.88 ab | 0.00 b | 4.50 | 4.57 | 3.70 | 2.84 | 2.32 |
H | 5.35 a | 3.00 ab | 1.39 ab | 0.77 ab | 0.00 b | 4.92 a | 1.15 ab | 0.45 b | 0.48 b | 0.00 b | 4.50 a | 1.50 ab | 0.44 b | 0.45 b | 0.84 b |
HS | 5.35 a | 3.13 ab | 0.99 b | 0.49 b | 0.00 b | 4.92 a | 1.35 ab | 0.00 b | 0.33 b | 0.00 b | 4.50 a | 1.57 ab | 1.23 ab | 0.49 b | 0.00 b |
Total Acidity (g Tartaric Acid/L) | Volatile Acidity (g Acetic Acid/L) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 0 | 15 | 30 | 45 | 60 | |
Type of wine | ||||||||||
Petit Verdot | 7.18 1 | 7.85 1 | 7.65 1 | 7.54 1 | 6.77 1 | 0.16 | 0.22 | 0.17 | 0.26 | 0.43 |
Tempranillo | 7.07 12 | 7.64 1 | 6.96 12 | 7.35 12 | 6.47 12 | 0.13 | 0.22 | 0.22 | 0.28 | 0.44 |
Cabernet Sauvignon | 6.01 12 | 6.04 12 | 5.63 23 | 6.35 3 | 5.60 12 | 0.10 | 0.20 | 0.21 | 0.39 | 0.36 |
Cabernet Franc | 5.06 12 | 5.56 2 | 5.13 23 | 5.64 3 | 4.84 12 | 0.20 | 0.30 | 0.24 | 0.45 | 0.42 |
Syrah | 4.77 2 | 5.14 2 | 4.89 3 | 6.51 23 | 4.56 2 | 0.16 | 0.22 | 0.18 | 0.38 | 0.29 |
Malbec | 6.04 12 | 5.51 2 | 5.87 123 | 5.16 3 | 4.87 12 | 0.37 | 0.26 | 0.45 | 0.42 | 0.47 |
Batches | ||||||||||
C | 5.84 | 5.90 | 5.92 | 6.20 | 5.20 | 0.14 b | 0.19 ab | 0.17 ab12 | 0.32 ab123 | 0.39 a12 |
CS | 6.43 | 6.74 | 6.07 | 6.80 | 5.67 | 0.11 b | 0.14 b | 0.15 b12 | 0.26 b23 | 0.55 a1 |
R | 6.43 | 7.05 | 6.72 | 7.80 | 6.11 | 0.23 b | 0.35 b | 0.39 b1 | 0.51 a1 | 0.56 a1 |
RS | 7.57 | 7.86 | 7.61 | 7.13 | 7.35 | 0.19 b | 0.30 ab | 0.27 ab12 | 0.46 a12 | 0.40 ab12 |
H | 5.71 | 5.99 | 5.61 | 6.31 | 5.19 | 0.18 | 0.19 | 0.19 12 | 0.25 23 | 0.25 2 |
HS | 6.44 | 6.80 | 6.21 | 7.26 | 5.95 | 0.12 | 0.15 | 0.132 | 0.21 3 | 0.28 2 |
Total SO2 (mg/L) | Free SO2 (mg/L) | Antioxidant Activity (mg Trolox/100 mL) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 0 | 15 | 30 | 45 | 60 | 0 | 15 | 30 | 45 | 60 | |
Type of wine | |||||||||||||||
Petit Verdot | 23.3 a3 | 15.2 bc3 | 18.6 ab | 15.5 bc | 11.9 c | 30.0 | 11.23 | 10.51 | 11.29 | 10.38 | 261.5 a3 | 188.4 ab | 180.9 b2 | 187.5 ab2 | 199.2 ab3 |
Tempranillo | 21.3 a3 | 16.2 ab3 | 19.9 ab | 17.5 ab | 14.0 b | 30.0 a | 12.3 b3 | 11.9 b | 12.2 b | 10.8 b | 287.1 a2 | 212.5 b | 195.4 b2 | 219.4 ab2 | 227.2 ab3 |
Cabernet Sauvignon | 23.5 a3 | 17.5 ab3 | 20.3 ab | 19.4 ab | 16.8 b | 30.0 a | 12.2 b3 | 12.34 | 12.5 b | 10.62 | 296.4 a1 | 220.9 bc | 192.4 c2 | 214.6 cb2 | 275.3 ab2 |
Cabernet Franc | 45.3 a2 | 25.9 ab2 | 21.8 bc | 20.3 bc | 15.6 c | 30.4 a | 13.5 b3 | 10.9 bc | 10.2 c | 9.61 c | 261.9 a3 | 223.3 ab | 251.3 ab1 | 183.9 b2 | 226.5 ab2 |
Syrah | 44.9 a2 | 25.9 b2 | 20.1 c | 19.9 c | 15.3 c | 30.0 a | 14.8 b2 | 12.7 bc | 10.3 cd | 9.78 d | 237.1 5 | 168.16 | 232.5 2 | 184.12 | 191.2 3 |
Malbec | 57.6 a1 | 43.2 b1 | 20.6 c | 19.1 c | 17.9 c | 30.0 a | 23.6 b1 | 13.0 bc | 11.6 cd | 9.56 d | 245.4 ab4 | 206.7 c | 239.6 b2 | 301.5 ab1 | 311.4 a1 |
Batches | |||||||||||||||
C | 34.8 2 | 25.1 | 19.9 | 18.2 | 15.1 | 30.0 | 15.0 | 11.6 | 10.8 | 9.8 | 246.9 a | 190.4 b | 198.3b | 214.7 a | 231.7 a |
CS | 23.8 3 | 15.5 | 17.5 | 16.5 | 13.6 | 30.0 | 12.0 | 11.7 | 11.6 | 10.6 | 279.9 | 194.4 | 202.9 | 204.4 | 226.7 |
R | 36.3 1 | 26.2 | 22.5 | 19.7 | 16.9 | 30.0 | 14.9 | 12.6 | 12.1 | 10.2 | 278.4 | 216.0 | 216.3 | 217.3 | 242.9 |
RS | 26.7 3 | 18.6 | 22.5 | 18.5 | 15.1 | 30.0 | 13.5 | 11.6 | 12.2 | 11.6 | 309.8 | 224.2 | 217.5 | 204.7 | 245.9 |
H | 34.7 a2 | 20.3 ab | 18.5 ab | 17.9 ab | 13.8 b | 30.0 | 13.2 | 11.5 | 11.0 | 10.0 | 258.1 a | 199.2 b | 220.8 a | 215.2 a | 228.8 a |
HS | 21.9 3 | 15.4 | 18.48 | 17.4 | 13.8 | 30.0 | 11.4 | 11.6 | 12.4 | 10.0 | 277.8 a | 211.7 a | 169.6 b | 209.1 a | 252.8 a |
Batches | Total Acidity | Volatile Acidity | Total SO2 | Free SO2 | Antioxidant Activity | Alcohol |
---|---|---|---|---|---|---|
Petit Verdot | ||||||
C | 4.76 a | 0.45 a | 18.56 | 8.56 a | 321.67 | 13.00 |
R | 5.32 b | 0.60 b | 19.43 | 10.34 b | 291.89 | 12.50 |
H | 4.54 a | 0.36 a | 15.79 | 9.78 ab | 320.567 | 13.00 |
Tempranillo | ||||||
C | 6.25 a | 0.33 a | 11.22 | 8.21 a | 191.26 | 13.00 |
CS | 5.95 a | 0.60 b | 11.06 | 10.00 b | 179.93 | 13.00 |
R | 7.73 b | 0.63 b | 14.10 | 12.56 b | 218.40 | 13.00 |
RS | 7.94 b | 0.45 a | 12.82 | 11.89 b | 213.66 | 12.50 |
H | 6.53 a | 0.21 a | 10.58 | 10.90 b | 168.86 | 13.00 |
HS | 6.25 a | 0.36 a | 11.70 | 8.72 a | 223.14 | 13.00 |
C. Sauvignon | ||||||
C | 6.22 a | 0.54 b | 13.46 | 10.64 | 242.38 | 12.50 |
CS | 5.94 a | 0.6 b | 13.14 | 11.67 | 231.58 | 12.50 |
R | 6.74 ab | 0.63 b | 15.38 | 9.87 | 224.99 | 12.50 |
RS | 7.31 b | 0.36 a | 14.10 | 11.67 | 243.70 | 12.50 |
H | 6.28 a | 0.18 a | 13.94 | 9.74 | 239.22 | 12.30 |
HS | 6.34 a | 0.30 a | 14.42 | 11.41 | 181.51 | 12.50 |
C. Franc | ||||||
C | 5.04 a | 0.42 ab | 16.35 | 11.15 | 239.75 a | 13.00 |
CS | 5.13 a | 0.45 ab | 16.67 | 10.13 | 268.47 bc | 13.00 |
R | 6.24 b | 0.51b | 18.75 | 11.15 | 260.30 bc | 12.5.0 |
RS | 6.79 b | 0.39 a | 18.43 | 11.41 | 280.59 bc | 13.00 |
H | 5.12 a | 0.21 a | 15.22 | 9.87 | 248.71 bc | 13.00 |
HS | 5.27 a | 0.18 a | 15.38 | 10.00 | 353.85 c | 12.50 |
Syrah | ||||||
C | 4.59 a | 0.39 a | 14.9 a | 11.28 a | 206.28 | 12.50 |
R | 5.43 b | 0.60 b | 18.11 b | 9.10 ab | 259.25 | 12.50 |
H | 4.51 a | 0.27 a | 13.78 a | 8.46 b | 213.92 | 12.50 |
Malbec | ||||||
C | 4.31 a | 0.21 | 16.35 | 8.97 a | 188.89 | 12.50 |
R | 5.22 b | 0.39 | 16.02 | 8.59 a | 202.85 | 12.50 |
H | 4.14 a | 0.27 | 13.78 | 11.79 b | 181.77 | 12.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casquete, R.; Benito, M.J.; Pérez-Nevado, F.; Martínez, A.; Martín, A.; de Guía Córdoba, M. Addition of Grape Skin and Stems Extracts in Wines during the Storage to Reduce the Sulfur Dioxide: Impact on Red Wine Quality. Int. J. Environ. Res. Public Health 2021, 18, 2783. https://doi.org/10.3390/ijerph18052783
Casquete R, Benito MJ, Pérez-Nevado F, Martínez A, Martín A, de Guía Córdoba M. Addition of Grape Skin and Stems Extracts in Wines during the Storage to Reduce the Sulfur Dioxide: Impact on Red Wine Quality. International Journal of Environmental Research and Public Health. 2021; 18(5):2783. https://doi.org/10.3390/ijerph18052783
Chicago/Turabian StyleCasquete, Rocío, María José Benito, Francisco Pérez-Nevado, Ana Martínez, Alberto Martín, and María de Guía Córdoba. 2021. "Addition of Grape Skin and Stems Extracts in Wines during the Storage to Reduce the Sulfur Dioxide: Impact on Red Wine Quality" International Journal of Environmental Research and Public Health 18, no. 5: 2783. https://doi.org/10.3390/ijerph18052783
APA StyleCasquete, R., Benito, M. J., Pérez-Nevado, F., Martínez, A., Martín, A., & de Guía Córdoba, M. (2021). Addition of Grape Skin and Stems Extracts in Wines during the Storage to Reduce the Sulfur Dioxide: Impact on Red Wine Quality. International Journal of Environmental Research and Public Health, 18(5), 2783. https://doi.org/10.3390/ijerph18052783