A Bibliometric Analysis on Dengue Outbreaks in Tropical and Sub-Tropical Climates Worldwide Since 1950
Abstract
:1. Introduction
1.1. Dengue Worldwide in Sub-/Tropical Climates
1.2. Using Publication Sources Reporting DO Areas
1.3. The Definition of Sub-Tropical and Topical Climates
1.4. The Concerns and Research Questions in This Study
1.5. Objectives
2. Materials and Methods
2.1. Data Source
2.2. Task 1: The Most Prominent and Productive Countries/Areas Shown on Choropleth Maps
2.3. Task 2: The DO Contents in Affiliated Countries beyond the STTA
2.4. Task 3: The Countries with the Most Contributions to the DO
2.5. Task 4: The Most Cited Articles and Feature in Research Types
2.6. Comparison of Features between CNA and Non-CNA Samples
2.7. Statistical Tools and Data Analysis
3. Results
3.1. The Two CNA and Non-CNAsamples Used in This Study
3.2. Task 1: The Most Prominent and Productive Countries/Areas Shown on Choropleth Maps
3.3. Task 2: The DO Contents in Affiliated Countries beyond the STTA
3.4. Task 3: The Countries with the Most Contributions to the DO
3.5. Task 4: The Most Cited Articles and Feature in Research Types
3.6. Task 5: Comparison of Features between CNA and Non-CNA Samples
3.7. Online Dashboards Shown on Google Maps
4. Discussion
4.1. Principle Findings
4.2. What This Study Contributes to Current Knowledge
4.3. What Is the Strength of This Study
4.4. Limitations and Suggestions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Appendix A.2
Appendix A.3
References
- Lai, W.P.; Chien, T.W.; Lin, H.J.; Su, S.B.; Chang, C.H. A screening tool for dengue fever in children. Pediatr. Infect. Dis. J. 2013, 32, 320–324. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dengue and Severe Dengue. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 11 March 2021).
- Sylla, M.; Bosio, C.; Urdaneta-Marquez, L.; Ndiaye, M.; Black, W.C., IV. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal. PLoS Negl. Trop. Dis. 2009, 3, e408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico-Hesse, R.; Harrison, L.M.; Nisalak, A.; Vaughn, D.W.; Kalayanarooj, S.; Green, S.; Rothman, A.L.; Ennis, F.A. Molecular evolution of dengue type 2 virus in Thailand. Am. J. Trop. Med. Hyg. 1998, 58, 96–101. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 2012, 6, e1760. [Google Scholar] [CrossRef] [PubMed]
- WHO. Dengue and Severe Dengue. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 11 March 2021).
- Shepard, D.S.; Halasa, Y.A.; Tyagi, B.K.; Adhish, S.V.; Nandan, D.; Karthiga, K.S.; Chellaswamy, V.; Gaba, M.; Arora, N.K.; INCLEN Study Group. Economic and disease burden of dengue illness in India. Am. J. Trop. Med. Hyg. 2014, 91, 1235–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuya, H. Estimating Vector-borne Viral Infections in the Urban Setting of the 2020 Tokyo Olympics, Japan, Using Mathematical Modeling. Tokai J. Exp. Clin. Med. 2017, 42, 160–164. [Google Scholar] [PubMed]
- Yanagisawa, N.; Wada, K.; Spengler, J.D.; Sanchez-Pina, R. Health preparedness plan for dengue detection during the 2020 summer Olympic and Paralympic games in Tokyo. PLoS Negl. Trop. Dis. 2018, 12, e0006755. [Google Scholar] [CrossRef] [PubMed]
- Villanes, A.; Griffiths, E.; Rappa, M.; Healey, C.G. Dengue Fever Surveillance in India Using Text Mining in Public Media. Am. J. Trop. Med. Hyg. 2018, 98, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Jones-Diette, J.S.; Dean, R.S.; Cobb, M.; Brennan, M.L. Validation of text-mining and content analysis techniques using data collected from veterinary practice management software systems in the UK. Prev. Vet. Med. 2019, 167, 61–67. [Google Scholar] [CrossRef]
- Chaix, E.; Deléger, L. Bossy Text mining tools for extracting information about microbial biodiversity in food. Food Microbiol. 2019, 81, 63–75. [Google Scholar] [CrossRef]
- Tu, T.; Xu, K.; Xu, L.; Gao, Y.; Zhou, Y.; He, Y.; Liu, Y.; Liu, Q.; Ji, H.; Tang, W. Association between meteorological factors and the prevalence dynamics of Japanese encephalitis. PLoS ONE 2021, 16, e0247980. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, H. What Is a Tropical & Subtropical Area? 2019. Available online: https://www.quora.com/What-is-a-tropical-subtropical-area (accessed on 11 March 2021).
- Cromley, R.G.; Cromley, E.K. Choropleth map legend design for visualizing community health disparities. Int. J. Health Geogr. 2009, 8, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, T.W.; Wang, H.Y.; Hsu, C.F.; Kuo, S.C. Choropleth map legend design for visualizing the most influential areas in article citation disparities: A bibliometric study. Medicine 2019, 98, e17527. [Google Scholar] [CrossRef] [PubMed]
- Cromley, R.G.; Ye, Y. Ogive-based legends for choropleth mapping. Cartogr. Geogr. Inf. Sci. 2006, 33, 257–268. [Google Scholar] [CrossRef]
- Sternstein, L. A population geographer’s population pyramid. Warasan Pr. Lae Sangkhom 1989, 2, 91–99. [Google Scholar]
- Chien, T.W.; Wang, H.Y.; Lai, F.J. Applying an Author-Weighted Scheme to Identify the Most Influential Countries in Research Achievements on Skin Cancer: Observational Study. JMIR Dermatol. 2019, 2, e11015. Available online: http://derma.jmir.org/2019/1/e11015/ (accessed on 11 March 2021). [CrossRef]
- Kan, W.C.; Chou, W.; Chien, T.W.; Yeh, Y.T.; Chou, P.H. The Most-Cited Authors Who Published Papers in JMIR mHealth and uHealth Using the Authorship-Weighted Scheme: Bibliometric Analysis. JMIR mHealth uHealth 2020, 8, e11567. [Google Scholar] [CrossRef]
- Fenner, T.; Harris, M.; Levene, M.; Bar-Ilan, J. A novel bibliometric index with a simple geometric interpretation. PLoS ONE 2018, 13, e0200098. [Google Scholar] [CrossRef]
- Batagelj, V.; Mrvar, A. Pajek-Analysis, and Visualization of Large Networks. In Graph Drawing Software; Jünger, M., Mutzel, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 77–103. [Google Scholar]
- Lee, C.J.; Chou, W.; Chien, T.W.; Yeh, Y.T.; Jen, T.H. Using the separation index for identifying the dominant role in an organization: A case of publications in organization innovation. Int. J. Organ. Innov. 2020, 12, 135–145. [Google Scholar]
- Chang, C.S.; Yeh, Y.T.; Chien, T.W.; Lin, J.C.J.; Cheng, B.W.; Lai, F.J. Using the separation index to identify the most dominant role: A case of application on COVID-19 outbreak. Int. J. Organ. Innov. 2020, 12, 10–20. [Google Scholar]
- Chien, T.W. Cronbach’s Alpha with the Dimension Coefficient to Jointly Assess a Scale’s Quality. Rasch Meas. Trans. 2012, 26, 1379. [Google Scholar]
- Wang, L.Y.; Chien, T.W.; Chou, W. Using the IPcase Index with Inflection Points and the Corresponding Case Numbers to Identify the Impact Hit by COVID-19 in China: An Observation Study. Int. J. Environ. Res. Public Health 2021, 18, 1994. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Chien, T.W.; Yeh, Y.T.; Chou, W.; Wang, H.Y. An online time-to-event dashboard comparing the effective control of COVID-19 among continents using the inflection point on an ogive curve. Medicine 2021, 100, e24749. [Google Scholar] [CrossRef]
- Kvålseth, T.O. Relationship between concentration ratio and Herfindahl-Hirschman index: A re-examination based on majorization theory. Heliyon 2018, 4, e00846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.H.; Chien, T.W. The use of forest plot to identify article similarity and differences in characteristics between journals using medical subject headings terms: A protocol for bibliometric study. Medicine 2021, 100, e24610. [Google Scholar] [CrossRef] [PubMed]
- Persson, O. Analyzing Bibliographic Data to Visualize Representations. 2021. Available online: https://homepage.univie.ac.at/juan.gorraiz/bibexcel/index.html%3ffbclid=IwAR0FCL3Tjjmx2XyUI_ZKxfv12DYTGhGsStmU-MKzOECxQ2kJEglfouO_2aQ?fbclid=IwAR2SMJF-pnZ7dRDXzy8VgqPW0fzMZ0CIyGDNmtVPtsnDVOABx7WqfHTgyNE (accessed on 11 March 2021).
- Korhonen, E.M.; Huhtamo, E.; Smura, T.; Kallio-Kokko, H.; Raassina, M.; Vapalahti, O. Zika virus infection in a traveller returning from the Maldives, June 2015. Eurosurveillance 2016, 21, 30107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganushkina, L.A.; Morozov, E.N.; Patraman, I.V.; Vyshemirsky, O.I.; Agumavay, A.A. Assessment of risk for arbovirus infections in Russia. Med. Parazitol. 2017, 1, 9–14. [Google Scholar]
- Jensenius, M.; Gundersen, S.G.; Vene, S.; Bruu, A.L. Dengue fever imported to Norway. Serologically confirmed cases 1991–96. Tidsskr. Nor. Laegeforen. 1997, 117, 4230–4233. [Google Scholar]
- Heddini, A.; Janzon, R.; Linde, A. Increased number of dengue cases in Swedish travellers to Thailand. Eurosurveillance 2009, 14, 19111. [Google Scholar] [CrossRef] [Green Version]
- Lindegren, G.; Vene, S.; Lundkvist, A.; Falk, K.I. Optimized diagnosis of acute dengue fever in Swedish travelers by a combination of reverse transcription-PCR and immunoglobulin M detection. J. Clin. Microbiol. 2005, 43, 2850–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, I.J.; Pedersen, S.S. Dengue fever. Ugeskr. Laeger. 2000, 162, 5089–5091. [Google Scholar]
- Eisen, L.; Moore, C.G. Aedes (Stegomyia) aegypti in the continental United States: A vector at the cool margin of its geographic range. J. Med. Entomol. 2013, 50, 467–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patey, O.; Ollivaud, L.; Breuil, J.; Lafaix, C. Unusual neurologic manifestations occurring during dengue fever infection. Am. J. Trop. Med. Hyg. 1993, 48, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Liu-Helmersson, J.; Quam, M.; Wilder-Smith, A.; Stenlund, H.; Ebi, K.; Massad, E.; Rocklöv, J. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe. EBioMedicine 2016, 7, 267–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezza, G. Dengue and chikungunya: Long-distance spread and outbreaks in naïve areas. Pathog. Glob. Health 2014, 108, 349–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nafeev, A.A.; Savel’eva, N.V.; Sibaeva, É.I. [Laboratory tests in the diagnosis of feral herd infections]. Klin. Lab. Diagn. 2011, 5, 52–53. (In Russian) [Google Scholar]
- Cao-Lormeau, V.M.; Blake, A.; Mons, S.; Lastère, S.; Roche, C.; Vanhomwegen, J.; Dub, T.; Baudouin, L.; Teissier, A.; Larre, P.; et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet 2016, 387, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- Chien, T.W. Figure 2A in This Study. 2021. Available online: http://www.healthup.org.tw/gps/denguedisp1.htm (accessed on 11 March 2021).
- Chien, T.W. Figure 2B in This Study. 2021. Available online: http://www.healthup.org.tw/gps/denguedisp2.htm (accessed on 11 March 2021).
- Chien, T.W. Figure 4 in This Study. 2021. Available online: http://www.healthup.org.tw/gps/denguedisp3.htm (accessed on 11 March 2021).
- Chien, T.W. Figure 5 in This Study. 2021. Available online: http://www.healthup.org.tw/gps/dengue20210310 (accessed on 11 March 2021).
- Chien, T.W. Figure 6 in This Study. 2021. Available online: http://www.healthup.org.tw/gps/dengueforest (accessed on 11 March 2021).
- Horstick, O.; Tozan, Y.; Wilder-Smith, A. Reviewing dengue: Still a neglected tropical disease? PLoS Negl. Trop. Dis. 2015, 9, e0003632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, H.; Tsuji, R.; Sugamata, M.; Yamamoto, N.; Yamamoto, N.; Kanauchi, O. Administration of plasmacytoid dendritic ell-stimulative lactic acid bacteria is effective against dengue virus infection in mice. Int. J. Mol. Med. 2019, 43, 426–434. [Google Scholar] [PubMed] [Green Version]
- Weerakkody, R.M.; Palangasinghe, D.R.; Wijewickrama, E.S. Dengue fever in a kidney transplant recipient with complicated clinical course: A case report. J. Med. Case Rep. 2018, 12, 260. [Google Scholar] [CrossRef]
- Low, J.G.; Gatsinga, R.; Vasudevan, S.G.; Sampath, A. Dengue Antiviral Development: A Continuing Journey. Adv. Exp. Med. Biol. 2018, 1062, 319–332. [Google Scholar] [PubMed]
- Vaughn, D.W.; Green, S.; Kalayanarooj, S.; Innis, B.L.; Nimmannitya, S.; Suntayakorn, S.; Endy, T.P.; Raengsakulrach, B.; Rothman, A.L.; Ennis, F.A.; et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis. 2000, 181, 2–9. [Google Scholar] [CrossRef]
- Robert, M.A.; Christofferson, R.C.; Weber, P.D.; Wearing, H.J. Temperature impacts on dengue emergence in the United States: Investigating the role of seasonality and climate change. Epidemics 2019, 28, 100344. [Google Scholar] [CrossRef]
- Khan, J.; Khan, I.; Ghaffar, A.; Khalid, B. Epidemiological trends and risk factors associated with dengue disease in Pakistan (1980–2014): A systematic literature search and analysis. BMC Public Health 2018, 18, 745. [Google Scholar] [CrossRef]
- Barcellos, C.; Lowe, R. Expansion of the dengue transmission area in Brazil: The role of climate and cities. Trop. Med. Int. Health 2014, 19, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Colón-González, F.J.; Lake, I.R.; Bentham, G. Climate variability and dengue fever in warm and humid Mexico. Am. J. Trop. Med. Hyg. 2011, 84, 757–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beebe, N.W.; Cooper, R.D.; Mottram, P.; Sweeney, A.W. Australia’s dengue risk driven by human adaptation to climate change. PLoS Negl. Trop. Dis. 2009, 3, e429. [Google Scholar] [CrossRef] [PubMed]
- Jury, M.R. Climate influence on dengue epidemics in Puerto Rico. Int. J. Environ. Health Res. 2008, 18, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, S.; Wang, X. Vectors expressing chimeric Japanese encephalitis dengue 2 viruses. Acta Virol. 2014, 58, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Yang, H.; Yang, J.; Lin, H.; Wang, W.; Liu, L.; Zhao, Y.; Liu, L.; Zeng, X.; Yu, Y.; et al. Construction and preliminary investigation of a novel dengue serotype 4 chimeric virus using Japanese encephalitis vaccine strain SA14-14-2 as the backbone. Virus Res. 2014, 191, 10–20. [Google Scholar] [CrossRef]
- Fox, A.; Whitehead, S.; Anders, K.L.; Hoa, L.N.M.; Mai, L.Q.; Thai, P.Q.; Yen, N.T.; Duong, T.N.; Thoang, D.D.; Farrar, J.; et al. Investigation of dengue and Japanese encephalitis virus transmission in Hanam, Viet Nam. Am. J. Trop. Med. Hyg. 2014, 90, 892–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grein, T.W.; Kamara, K.B.; Rodier, G.; Plant, A.J.; Bovier, P.; Ryan, M.J.; Ohyama, T.; Heymann, D.L. Rumors of disease in the global village: Outbreak verification. Emerg. Infect. Dis. 2000, 6, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Heymann, D.L.; Rodier, G.R. Hot spots in a wired world: WHO surveillance of emerging and re-emerging infectious diseases. Lancet Infect. Dis. 2001, 1, 345–353. [Google Scholar] [CrossRef]
- M’Ikanatha, N.M.; Rohn, D.D.; Robertson, C.; Tan, C.G.; Holmes, J.H.; Kunselman, A.R.; Polachek, C.; Lautenbach, E. Use of the internet to enhance infectious disease surveillance and outbreak investigation. Biosecur. Bioterror. 2006, 4, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.E.; Gastner, M.T. Diffusion-based method for producing density-equalizing maps. Proc. Natl. Acad. Sci. USA 2004, 101, 7499–7504. [Google Scholar]
- Chen, W.J. Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis. Biomed. J. 2018, 41, 283–289. [Google Scholar] [CrossRef]
- Lai, W.T.; Chen, C.H.; Hung, H.; Chen, R.B.; Shete, S.; Wu, C.C. Recognizing spatial and temporal clustering patterns of dengue outbreaks in Taiwan. BMC Infect. Dis. 2018, 18, 256. [Google Scholar] [CrossRef]
- Soetens, L.; Hahné, S.; Wallinga, J. Dot map cartograms for detection of infectious disease outbreaks: An application to Q fever, the Netherlands and pertussis, Germany. Eurosurveillance 2017, 22, 30562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Health Observatory Map Gallery. Available online: https://www.who.int/gho/map_gallery/en/ (accessed on 1 April 2019).
- Chien, T.W.; Chow, J.C.; Chang, Y.; Chou, W. Applying Gini coefficient to evaluate the author research domains associated with the ordering of author names: A bibliometric study. Medicine 2018, 97, e12418. [Google Scholar] [CrossRef] [PubMed]
- Chien, T.W.; Chang, Y.; Wang, H.Y. Understanding the productive author who published papers in medicine using National Health Insurance Database: A systematic review and meta-analysis. Medicine 2018, 97, e9967. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, W.T.; Chien, T.W.; Kuo, S.C.; Lin, H.J. Whether productive authors using the national health insurance database also achieve higher individual research metrics: A bibliometric study. Medicine 2020, 99, e18631. [Google Scholar] [CrossRef] [PubMed]
- Chien, T.W. Meta-Analysis in Pubmed. Available online: https://pubmed.ncbi.nlm.nih.gov/?term=Meta-analysis%5BMeSH+Major+Topic%5D (accessed on 11 March 2021).
- Zyoud, S.H. Dengue research: A bibliometric analysis of worldwide and Arab publications during 1872–2015. Virol. J. 2016, 13, 78. [Google Scholar] [CrossRef] [Green Version]
- Satish, S.; Vasna, J. Scientific research publications in dengue: A global and Indian bibliometric analysis from 1997 to 2018. J. Vector Borne Dis. 2019, 56, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.K. Dengue Fever: A Bibliometric Analysis of India’s Contributions to the Research Literature of This Dangerous Tropical Disease. Sci. Technol. Libr. 2014, 33, 289–301. [Google Scholar] [CrossRef]
- Maula, A.W.; Fuad, A.; Utarini, A. Ten-years trend of dengue research in Indonesia and South-east Asian countries: A bibliometric analysis. Glob. Health Action 2018, 11, 1504398. [Google Scholar] [CrossRef] [PubMed]
- Astuti, E.P.; Dhewantara, P.W.; Prasetyowati, H.; Ipa, M.; Herawati, C.; Hendrayana, K. Paediatric dengue infection in Cirebon, Indonesia: A temporal and spatial analysis of notified dengue incidence to inform surveillance. Parasites Vectors 2019, 12, 186. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [Green Version]
- Egghe, L.; Rousseau, R.; Van Hooydonk, G. Methods for accrediting publications to authors or countries: Consequences for evaluation studies. J. Am. Soc. Inf. Sci. 2000, 51, 145–157. [Google Scholar] [CrossRef]
- Pan, R.K.; Fortunato, S. Author Impact Factor: Tracking the dynamics of individual scientific impact. Sci. Rep. 2014, 4, 4880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sher, C.Y.; Wong, H.T.; Lin, Y.C. The Impact of Dengue on Economic Growth: The Case of Southern Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Country | Ref. | Patients From | MeSH Terms | |
---|---|---|---|---|---|
1 | Finland | [32] | 2016 | Maldives | Dengue Virus; Travel |
2 | Russia | [33] | 2017 | Russia | Russia/epidemiology; |
Dengue */epidemiology | |||||
3 | Norway | [34] | 1997 | Norway | Dengue/epidemiology; |
Norway/epidemiology | |||||
4 | Sweden | [35] | 2009 | Thailand | Dengue/epidemiology; |
Sweden/epidemiology | |||||
5 | Sweden | [36] | 2005 | Travelers | Dengue/diagnosis; |
Sweden | |||||
6 | Denmark | [37] | 2000 | Travelers | Dengue */diagnosis; |
Travel | |||||
7 | Canada | [38] | 2013 | United States | Dengue |
8 | France | [39] | 1993 | Thailand | Dengue/diagnosis; |
Thailand | |||||
9 | Portugal | [40] | 2016 | Europe | Dengue/epidemiology |
10 | Italy | [41] | 2014 | India | Dengue/epidemiology; |
Disease Outbreaks |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.-Y.; Chien, T.-W.; Yang, T.-Y.; Yeh, Y.-T.; Chou, W.; Chow, J.C. A Bibliometric Analysis on Dengue Outbreaks in Tropical and Sub-Tropical Climates Worldwide Since 1950. Int. J. Environ. Res. Public Health 2021, 18, 3197. https://doi.org/10.3390/ijerph18063197
Liu S-Y, Chien T-W, Yang T-Y, Yeh Y-T, Chou W, Chow JC. A Bibliometric Analysis on Dengue Outbreaks in Tropical and Sub-Tropical Climates Worldwide Since 1950. International Journal of Environmental Research and Public Health. 2021; 18(6):3197. https://doi.org/10.3390/ijerph18063197
Chicago/Turabian StyleLiu, Shin-Yueh, Tsair-Wei Chien, Ting-Ya Yang, Yu-Tsen Yeh, Willy Chou, and Julie Chi Chow. 2021. "A Bibliometric Analysis on Dengue Outbreaks in Tropical and Sub-Tropical Climates Worldwide Since 1950" International Journal of Environmental Research and Public Health 18, no. 6: 3197. https://doi.org/10.3390/ijerph18063197
APA StyleLiu, S. -Y., Chien, T. -W., Yang, T. -Y., Yeh, Y. -T., Chou, W., & Chow, J. C. (2021). A Bibliometric Analysis on Dengue Outbreaks in Tropical and Sub-Tropical Climates Worldwide Since 1950. International Journal of Environmental Research and Public Health, 18(6), 3197. https://doi.org/10.3390/ijerph18063197