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Abstract: The paper presents the design optimization of the ASPIRE spherical parallel robot for
shoulder rehabilitation following clinical evaluation and clinicians’ feedback. After the development
of the robotic structure and the implementation of the control system, ASPIRE was prepared for
clinical evaluation. A set of clinical trials was performed on 24 patients with different neurological
disorders to obtain the patient and clinician acceptance of the rehabilitation system. During the
clinical trials, the behavior of the robotic system was closely monitored and analyzed in order to
improve its reliability and overall efficiency. Along with its reliability and efficiency, special attention
was given to the safety characteristics during the rehabilitation task.

Keywords: robotic assisted rehabilitation; neuro-muscular disorders; stroke clinical trial; design;
optimization

1. Introduction

One of the most common neurological diseases of our century is stroke [1]. Glob-
ally, death caused by stroke has an incidence of 11.8%, coming in second after ischemic
heart disease with an incidence of 14.8% [2]. Statistics provided by the European Soci-
ety of Cardiology in 2019 show an average stroke prevalence in Europe of 1276 strokes/
100,000 inhabitants, with the lowest prevalence in Italy (570 strokes/100,000 inhabitants)
and highest in Latvia (1869 strokes/100,000 inhabitants), regardless of gender [3].

There are a series of consequences that can occur after a stroke. Most common are
post-stroke depression (PSD), vascular cognitive impairment (VCI), and post-stroke fatigue
(PSF) [4]. Stroke is deadly for about 20% of cases, leading to 80% of cases where survivors
might need post-stroke special care that implies the involvement of specialized personnel,
since most of survivors suffer a loss of mobility, impaired speech, or cognitive problems [5].
With more than 80 million stroke survivors worldwide, providing special care able to
aid all these survivors is foreseen to be one of the main challenges of the 21st century.
The forecast provides data according to which, in 2030, 4% of adults will suffer a stroke,
and the annual medical cost of stroke will increase from 71.55 billion USD in 2012 to
183.13 billion USD in 2030, only in the USA [6]. Most of stroke survivors suffer a different
type of limb impairment that requires a certain type of physical rehabilitation that can
sometimes take up to two years, depending on the physical condition of the stroke survivor
and the impairment severity.

All the above data predicts a future crisis around 2030 when the medical system will
be unable to provide the specific care for each stroke survivor because of the continuous
increase in the number of stroke patients correlated with the aging of population. It is
foreseen that the population aged over 65 will achieve 30% of the world population in
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2060 [7]. To prevent this collapse, a change in the paradigm is needed, meaning that patient
management must be performed in other ways that would allow physical therapists to
work with more patients at the same time while providing personalized efficient treatment
programs that will improve their outcomes in a lower time span.

Since 1990, robotic-assisted medical rehabilitation has become a valuable solution in
overcoming the qualified personnel shortage from the medical system [8]. The physical
rehabilitation of stroke survivors left with limb impairments is performed by a clinician
using repetitive motions of the disabled limb in order to rebuild the neuronal paths lost
during the stroke. These repetitive motions can be easily performed with the help of a
robotic system under the supervision of a kinetotherapist. Furthermore, a robotic system
can integrate additional stimuli that contribute to a faster recovery: visual and audio
interactive tools, personalization, a real-time sensor system, etc.

The advancements in kinematics and control [9–19] have led towards safer robot
behaviors, enabling the development of multiple robotic solutions for the rehabilitation of
the upper limbs [20–26], some of them being developed until the stage of clinical trials.

In 2009, Kai et al. [27] performed a clinical study using the MIT-Manus robotic re-
habilitation system. During the experiment, the brain signals were acquired using a BCI
(Brain–Computer Interface) system, and the affected limb of the patient was strapped to
the robotic system. Eighteen patients were selected for the clinical evaluation of the robotic
system that were able to commit for 12 sessions of rehabilitation. The results of the study
revealed greater motor improvements in the robotic-assisted rehabilitation than the classic
rehabilitation, but the results were considered inconclusive due to large variations in the
motor improvements and the limited number of patients recruited for the study.

In 2015, Fong et al. [28] performed a clinical evaluation of the ArmeoPower robotic
system using 10 healthy subjects aged between 22 and 34 years old. The rehabilitation
procedure was divided into five sessions (Free Reaching, 3x Robot Reaching, Free Reaching),
where each subject completed a reaching task 120 times using their dominant hand. The
study revealed an evolution of the classical movement metrics; however, for closer to reality
results, a larger number of subjects should be used with different neurological diseases.

In 2021, DeBoon et al. [29] proposed a nine DOFs (Degrees of Freedom) robotic system
for the rehabilitation of the upper limb. The redundant robotic system consists of nine
revolute active joints, and it is the first nine DOF robot for upper limb rehabilitation. The
advantage of the robotic system is the capability to provide complex rehabilitation trajecto-
ries, but controlling a robotic system with many moving parts requires a solid dynamic
control throughout the entire rehabilitation procedure to ensure the safety characteristics
of the procedure. In Table 1, a series of robotic devices for upper limb rehabilitation are
described in terms of the targeted area, DOFs, therapy type, architecture characteristics,
and development stage.

Table 1. Robotic devices for upper limb rehabilitation. DOF: Degree of Freedom.

Name Targeted Area DOF Therapy Type Characteristics Stage of Development

MIT-MANUS
[30] Elbow, Wrist 5 Physical therapy End-effector-based Commercial

ARMin
[31]

Shoulder, Elbow,
Forearm, Wrist 7 Physical therapy Exoskeleton-based Commercial

REHAROB
[32] Shoulder & Elbow 12 Physical therapy 2 modified industrial robots Clinical trials with low

number of participants
SUEFUL-7

[33] Shoulder & Elbow 3 Power assistance Wheelchair mounted system Healthy subjects test

ARMOR
[34]

Shoulder, Elbow,
Forearm, Wrist,

Fingers
8 Physical therapy Exoskeleton-based Clinical trials with low

number of participants

L-EXOS
[35] Shoulder, elbow 4 Physical therapy Exoskeleton-based Feasibility clinical study
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Table 1. Cont.

Name Targeted Area DOF Therapy Type Characteristics Stage of Development

ArmeoSpring
[36]

Shoulder, Elbow,
Forearm, Wrist,

Fingers
7 Physical therapy Exoskeleton-based Commercial

ReoGo
[37]

Shoulder, Elbow,
Wrist 3 Physical therapy End-Effector based Commercial

Sophia-4
[38]

Shoulder, Elbow,
Wrist 2 Physical therapy End-effector based,

cable-driven Prototype

Pneu-WREX
[39]

Shoulder, Elbow,
Fingers 4 + 1 Physical therapy Wheelchair mounted,

gravity balancing orthosis Feasibility clinical study

A wide number of upper limb rehabilitation robotic solutions consist of exoskele-
tons [40,41]. These solutions have the advantage of allowing complex motions due to joint
constraints and facilitate a faster and natural neuro-recovery due to the functional range
of motion. The disadvantages of these robotic solutions are the price of the system—each
exoskeleton must be uniquely designed to adapt patient anthropomorphic characteristics—
and the fact that the entire weight of the robotic system is carried by the patient; at the
same time, the solution is accessible only to patients that have regained some of the motoric
capabilities of the impaired limb.

Among the robotic solutions for the rehabilitation of the upper limb, some platforms
were designed and tested regarding the environment of the rehabilitation task, and using
virtual reality, the rehabilitation procedure was placed in an environment more stimulating
for the patient.

Saposkik et al. [42] conducted in 2010 a pilot study regarding virtual reality (VR) in
stroke rehabilitation. The study included two parallel groups of stroke patients, and it
had a time span of two months. During the study the feasibility, safety, and efficacy of the
rehabilitation using virtual reality was compared against the recreational therapy (playing
cards, bingo, etc.). The average age of the patients involved in the study was 61.3, and the
average time spent in the recreational rehabilitation was 388 min, while the time spent in
the virtual reality rehabilitation was 364 min. The study revealed no significant differences
between the virtual-environment rehabilitation and the conventional rehabilitation. The
study highlighted the potential of virtual reality gaming used as means to provide stroke
rehabilitation, but it remains an unproved treatment, and more studies are required to
prove the efficacy of the treatment.

Some other studies recorded proof of the efficiency of a virtual environment used
in stroke rehabilitation. Estapa et al. [43] used a Kinect-based exergaming system for the
rehabilitation of patients with neurological disorders (2016), Munoz et al. [44] proposed an
interactive gaming-driven rehabilitation of the upper limbs (2019), and Bai et al. [45] also
proposed a home-based multi-scene system for the rehabilitation of post-stroke patients that
was able to simulate fishing activities, parkour, activities of daily living, and virtual walks.

Given the above solutions for post-stroke rehabilitation, a valuable solution should
include both aspects: a robotic system and virtual environment to provide significant
improvements in the quality of life of stroke survivors. Based on the already proven
paradigm that patients that are focused on the task during rehabilitation recover faster, the
development of additional stimuli like VR and interactive games can have benefits, as long
as they succeed in addressing the needs and interests of the patient.

The focus of this paper is on the design optimization of a spherical parallel robot for
shoulder rehabilitation. The optimization is a two-stage process. The first stage is the
preclinical evaluation, where the design of the robotic structure is improved based on the
clinicians’ feedback before performing clinical trials. The second stage improvements are
based on the clinicians and patients’ feedback based on the clinical trials. In the second
section of the paper, the ASPIRE robotic structure is presented in terms of the initial
experimental model and control system, and the planning of the clinical trials and the
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experimental tests using patients are described. The third section of the paper presents the
results obtained and design optimization of the robotic system, followed by the discussions
and conclusions.

2. Materials and Methods
2.1. The Experimental Model of ASPIRE

ASPIRE is a spherical parallel robotic system that targets the adduction, abduction,
flexion, and extension rehabilitation motions of the shoulder joint and the pronation and
supination of the forearm [46]. The following section is subdivided into two parts in order
to separate the features of mechanical structure from the ones of the control system.

2.1.1. Mechanical Structure of ASPIRE

The main design feature of the robotic system consists of two circular guides that
lead to a spherical motion of the characteristic point of the mechanism. Starting from the
concept stage, the patient is embedded in the design of the robotic structure, and the center
of the sphere given by the two circular guides is placed in the center of the patient shoulder,
allowing the entire arm motion with respect to the shoulder rehabilitation motion. The
targeted motions of ASPIRE are flexion/extension of the shoulder with a motion range
of +/− 80 degrees, adduction/abduction of the shoulder with a motion range of +/−
80 degrees, and pronation/supination of the forearm with a range of +/− 80 degrees
(Figure 1 [24]).
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The kinematic scheme of the ASPIRE robot is presented in Figure 2. The reference
system OXYZ is placed at the center of the shoulder articulation. G1 is the vertical circular
guide and G2 is the horizontal circular guide. The characteristic point placed in the refer-
ence system O’X’Y’Z’ moves on a sphere of radius R. The active joint of the mechanism are
q1, q2 and q3. Ψ, θ and ϕ represents the angular displacement of the reference characteristic
point with respect to the reference system OXYZ. The equations of the active joints are
given in Equations (1)–(3).

q1 = atan2(sin ψ, cos ψ) (1)

q2 = atan2(sin θ, cos θ) (2)

q3 = ϕ (3)
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Figure 2. The kinematic scheme of ASPIRE.

The initial experimental model of ASPIRE is presented in Figure 3. Along with the
kinematic elements needed for the rehabilitation motion of the shoulder, other aiding
elements were added. The frame of the robotic structure was made of aluminum profiles,
and the case of the robot was made of Plexiglas. The circular guides were manufactured
from aluminum, and the sliding carriages were 3D-printed and properly greased to ensure
a low friction coefficient. The shoulder rest was also 3D-printed in such a manner to
ensure the support of the shoulder during the flexion and extension motions. The forearm
support was 3D-printed and embedded into an adjustment mechanism to fit different
lengths of the forearm. The palm rest was made of aluminum and embedded into the
pronation/supination mechanism. The connection between the vertical circular guide and
the horizontal one was made using a passive revolute joint between the circular guides.
An actuated height adjustment mechanism was added to allow easy setup of the robot
between patients of different heights.
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Figure 3. Initial experimental model of ASPIRE.

For easy acceptance from the patient, the actuating mechanisms were embedded in
the Plexiglas case, and only the moving elements that come into direct contact with the
patient for performing the rehabilitation motion were visible. For easy maneuverability,
the entire robotic structure was equipped with locking wheels.



Int. J. Environ. Res. Public Health 2021, 18, 3281 6 of 19

2.1.2. The Control System of ASPIRE

The control architecture of ASPIRE is presented in Figure 4.

Int. J. Environ. Res. Public Health 2021, 18, x 6 of 20 
 

 

 
Figure 3. Initial experimental model of ASPIRE. 

For easy acceptance from the patient, the actuating mechanisms were embedded in 
the Plexiglas case, and only the moving elements that come into direct contact with the 
patient for performing the rehabilitation motion were visible. For easy maneuverability, 
the entire robotic structure was equipped with locking wheels. 

2.1.2. The Control System of ASPIRE 
The control architecture of ASPIRE is presented in Figure 4. 

 
Figure 4. Control architecture of ASPIRE. PLC: Programable Logical Computer and VNC: Virtual 
Network Computing. 

The entire rehabilitation procedure is controlled through a graphical user interface 
(Figure 5) that communicates with the Programable Logical Computer (PLC) of the 
robotic system through Virtual Network Computing (VNC). The PLC controls the two 
drivers of the system that ensure the functioning of four servomotors and receives data 
from four proximity inductive sensors. 

Figure 4. Control architecture of ASPIRE. PLC: Programable Logical Computer and VNC: Virtual
Network Computing.

The entire rehabilitation procedure is controlled through a graphical user interface
(Figure 5) that communicates with the Programable Logical Computer (PLC) of the robotic
system through Virtual Network Computing (VNC). The PLC controls the two drivers of
the system that ensure the functioning of four servomotors and receives data from four
proximity inductive sensors.
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The control strategy of the robotic system is presented in Figure 6. The setup of the
robotic system is made using the user interface, where the first step is to power up the
motors and the initialization of the motion axes. After the robotic system is initialized, the
patient setup is performed, and the height of the rehabilitation device is adjusted to the
height of the patient. The user interface allows the selection of the rehabilitation motion,
and the motion parameters are given by the kinetotherapist and input into the interface in
terms of the amplitude, speed, and number of repetitions.
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Figure 6. Control strategy of ASPIRE.

The rehabilitation motion parameters are parsed into the PLC of the robotic system,
which identifies the rehabilitation motion and sends the motion parameters to the drivers
that control each motor of the robotic structure. The hardware architecture (Figure 4)
presents a number of 4 servomotors, while the control strategy figure (Figure 6) shows
only 3 motors due to the fact that the fourth motor does not intervene in the rehabilitation
procedure; it is used to adapt the height of the robotic structure to the height of the patient.

2.2. Clinical Trials

Performing the clinical trials was one of the final steps of the robotic system validation.
Before performing tests with patients, the robotic system underwent a lab testing phase to
check the safety of the user during the rehabilitation procedure. Additionally, before any
tests were performed, a medical rehabilitation protocol was developed and successfully
used during the lab tests and clinical trials.

2.2.1. Lab Validation and Rehabilitation Protocol

Before the clinical trials, a series of in-lab tests were performed with healthy subjects
to validate the functionality of the robotic system. During the functionality tests, the
3D-printed circular guides proved to be inefficient, introducing some unwanted vibrations
into the mechanical system, so the guides were redesigned to embed rolling bearings to
reduce the friction coefficient (Figure 7a). During the functionality test, the motor for the
pronation/supination of the forearm proved to be unable to carry the mass of the limb, so
a special planetary gear [47–50] with a reductio ratio of 1:11 (Figure 7b) was designed and
manufactured using a 3D printer.
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A specific robotic rehabilitation protocol was required to perform the clinical trials [51],
which was defined and then experimentally validated by medical experts. The protocol is
graphically represented in Figure 8 and detailed below.
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A. When admitted to the hospital, the patient should go through an initial assessment
performed by a physical therapist and receive an initial score indicating his impair-
ment levels for the upper limb before rehabilitation treatment. The data is recorded
by the therapist for future analysis and for the setup of the starting motion param-
eters for the robot (evolution/involution record). A rehab program is defined for
7–14 days with one or two daily sessions.

B. Before starting the rehabilitation, the involved patient must sign an informed consent
and be conscious and stable hemodynamically, present no fever symptoms, and the
brain lesion confirmed via CT (Computer Tomograph) or MRI (Magnetic Resonance
Imaging) to exclude other diseases than the neurologic one.
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C. The data recorded in a previous stage are used to compute the robot motion ampli-
tudes for the first rehabilitation session. For the next sessions, a daily increase of the
amplitudes is applied in the range of 5–10%, aiming to reach the targeted amplitude
around day 5.

D. The patient will be caried to the robotic rehabilitation room by a stretcher-bearer
using a wheelchair or walking, depending on the health state of the patient.

E. The patient is strapped into the robotic device (the height of the robotic device is
adjusted, and the forearm adjustment mechanism is adapted to the patient).

F. The robotic rehabilitation procedure is performed based on the therapist’s recommen-
dations using a predefined exercise of 3 × 10 repetitions for each rehabilitation motion.

G. After the predefined exercises are performed, the robotic device is detached from
the patient.

H. The patient undergoes a physical evaluation performed by the physical therapist to
check the integrity of muscles and of the ligaments.

I. Repeat steps d–h for every rehabilitation session (4–5 patients × 2 sessions/day ×
7 days).

J. At the end of the entire program, the patient is re-evaluated to determine the
achieved progress.

The rehabilitation motions are performed entirely by the robotic system after the
patient’s impaired limb is strapped into the attaching devices. The motion amplitudes are
introduced into the user interface by an operator. The amplitudes were previously defined
by a kinetotherapist based on the patient spasticity and overall health. Additionally, the
interface allows speed and repetition control, parameters also given by the kinetotherapist.

2.2.2. Patient Characteristics and Clinical Trials

After the development of the experimental model, the functional validation test, and
the definition of the robotic rehabilitation protocol, the ethical approval for performing
clinical trials was obtained in August 2019, in accordance with the Helsinki principles
regarding biomedical research, and the robotic system was installed in a room at the
Municipal County Hospital Cluj-Napoca within the Neurology Department.

A number of 24 patients were admitted to the clinical study, half of them with bilateral
upper limb impairment (12) and the other half with right- (6) or left (6)-side hemiparesis.
The physical state of the robotic system at the time of clinical study allowed only right limb
rehabilitation, and the group of 24 was divided in two groups: 18 patients (12 suffering
bilateral disorder and 6 suffering right hemiparesis) that performed the rehabilitation with
the robotic system and 18 patients (same 12 with bilateral disorder and 6 with left arm
hemiparesis) that performed classical rehabilitation performed by a kinetotherapist. Every
patient from the clinical study was admitted into the hospital, evaluated before the therapy,
and programmed for two rehabilitation sessions per day for a time span of 7 consecutive
days. At the end of the 7 days, the patients were reevaluated to establish the results of the
rehabilitation procedure.

Figure 9 illustrates some of the general patient characteristics at their admittance
within the clinical study. After the first evaluation of the robotic system by the clinicians,
they decided that, even though the robotic system was able of performing complex reha-
bilitation motions, the clinical study should stick to simple motions to comply with the
classical rehabilitation procedure performed by the kinetotherapist, ensuring a proper com-
parison of the rehabilitation results between the two approaches. During the study, each
patient performed two sessions per day, each session consisting of 3 sets of 10 repetitions.
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The tests were performed in hospital between October and November 2019 over a
time span of 8 weeks. During the tests, each patient performed shoulder rehabilitation
with ASPIRE for 35 min/day. Two therapy sessions were scheduled every day for each
patient, one session in the morning and the other one in the afternoon (each session lasted
about 17 min, excluding setup times).

Snapshots from the videos recorded during the rehabilitation can be seen in Figure 10a,b.

Int. J. Environ. Res. Public Health 2021, 18, x 10 of 20 
 

 

Figure 9 illustrates some of the general patient characteristics at their admittance 
within the clinical study. After the first evaluation of the robotic system by the clinicians, 
they decided that, even though the robotic system was able of performing complex reha-
bilitation motions, the clinical study should stick to simple motions to comply with the 
classical rehabilitation procedure performed by the kinetotherapist, ensuring a proper 
comparison of the rehabilitation results between the two approaches. During the study, 
each patient performed two sessions per day, each session consisting of 3 sets of 10 repe-
titions. 

 
Figure 9. General patient data [52]. 

The tests were performed in hospital between October and November 2019 over a 
time span of 8 weeks. During the tests, each patient performed shoulder rehabilitation 
with ASPIRE for 35 min/day. Two therapy sessions were scheduled every day for each 
patient, one session in the morning and the other one in the afternoon (each session lasted 
about 17 min, excluding setup times). 

Snapshots from the videos recorded during the rehabilitation can be seen in Figure 
10a,b. 

 
 

(a) (b) 

Figure 10. Snapshots from the experimental tests using ASPIRE: (a) flexion–extension motion and
(b) adduction–abduction motion.

Starting from the initial evaluation by the clinician of each admitted patient, the initial
motion amplitudes were imposed with respect to the neurological disorder and specific
comorbidities of each patient. The amplitudes were increased 5–10% per day, reaching the
maximum amplitude on day 5 [53].
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2.3. Questionnaire-Based System Optimization

At the end of the rehabilitation program, each of the patients that performed reha-
bilitation with the robotic system were asked to complete a questionnaire regarding their
experiences with the robotic system. The questions were divided based on the rehabilitation
motions performed. The analyzed characteristics and their recorded values for the height
adjustment module are given in Table 2, for the adduction/abduction module, are given in
Table 3, and for the flexion/extension module, are given in Table 4. There are no recorded
data for the pronation/supination module, since this module was not used during the
rehabilitation procedure, because the classical rehabilitation protocol did not include this
motion during the therapy. Each patient was asked to mark each of the characteristics with
a number between 1 and 10 using the satisfaction scale given in Figure 11.

Table 2. Height adjustment module.

Characteristic
/Patient

Operational
Speed

Setup
Speed Vibrations Comfort Noise Aesthetics

1 NA 2 8 NA 7 8
2 NA 3 9 NA 6 7
3 NA 2 8 NA 5 8
4 NA 4 9 NA 9 8
5 NA 1 8 NA 8 8
6 NA 5 9 NA 5 7
7 NA 4 8 NA 5 6
8 NA 3 8 NA 6 8
9 NA 6 8 NA 6 8

10 NA 7 8 NA 6 8
11 NA 1 8 NA 7 8
12 NA 4 9 NA 8 7
13 NA 2 9 NA 6 7
14 NA 3 8 NA 8 7
15 NA 3 7 NA 5 6
16 NA 3 8 NA 5 5
17 NA 2 9 NA 8 9
18 NA 1 8 NA 7 7

Table 3. Adduction/abduction module.

Characteristic
/Patient

Operational
Speed

Setup
Speed Vibrations Comfort Noise Aesthetics

1 6 8 2 4 7 5
2 7 8 1 4 7 6
3 7 8 1 4 8 7
4 7 8 2 3 7 7
5 7 7 2 6 9 6
6 8 5 2 6 6 6
7 8 7 3 5 6 6
8 8 9 4 4 6 5
9 8 8 2 4 8 6

10 8 8 2 5 6 6
11 6 8 2 3 7 7
12 9 8 3 6 8 6
13 8 8 2 5 6 8
14 8 9 2 5 8 8
15 8 9 2 4 6 6
16 6 7 3 3 8 6
17 6 7 3 3 8 6
18 7 7 3 3 7 7
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Table 4. Flexion/extension module.

Characteristic
/Patient

Operational
Speed

Setup
Speed Vibrations Comfort Noise Aesthetics

1 6 8 2 4 8 8
2 6 3 3 5 8 9
3 8 6 3 5 8 9
4 8 9 4 6 9 9
5 8 7 4 2 9 8
6 7 7 3 4 8 6
7 5 6 2 4 8 6
8 6 6 2 3 7 8
9 6 5 1 4 6 8

10 6 6 2 3 8 8
11 8 8 2 4 4 7
12 8 4 3 5 5 7
13 9 7 2 5 8 6
14 9 7 3 6 8 6
15 8 6 3 4 6 6
16 8 6 3 6 5 8
17 8 6 4 5 8 8
18 6 6 3 6 8 8
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The score obtained by each characteristic is highlighted in Figure 12. The score for
each characteristic was obtained by averaging the values given by each patient. The color
code used in Figure 12 is the same from Figure 11. The characteristics highlighted in red
definitely need to be improved, and the solutions for their improvements are shown in the
Results section.
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Using the same scale, a questionnaire was provided for the clinicians in order to
evaluate the robotic system. The clinicians had different aspects to consider regarding the
User Interface, the Operating Speed, the Safety, and the Amplitudes. The questionnaire was
sent to 10 clinicians that also saw the robotic system while operating. The marks given by
each clinician are shown in Table 5. There are some aspects that also need to be improved
according to the feedback provided by the clinicians. The lowest-scoring characteristic was
the user interface. This aspect is in the development stage, along with the reconfiguration
of the control system. The aspects regarding the mechanical structure are discussed below;
the aspects regarding the user interface and the control system are yet to be addressed
before the next set of clinical trials.
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Table 5. Marks given by the clinicians.

Characteristic
/Clinician User Interface Operating

Speed Safety Amplitudes

1 9 7 8 8
2 8 7 9 6
3 5 8 9 8
4 6 8 7 9
5 5 7 8 7
6 3 6 5 5
7 4 5 7 6
8 8 8 7 6
9 5 9 6 8
10 5 8 5 6

SCORE 5.8 7.3 7.1 6.9

3. Results

During the experimental tests, a series of characteristics was observed by the clinicians
and by the operators and recorded to be improved. Some of the characteristics recorded
were similar with the ones identified by the questionnaires. The main issue and the solution
to solve every one of them is given below.

Observation 1: Times in adjusting the height mechanism were taking too long, extend-
ing the total time of the rehabilitation process.

Solution: To reduce the setup time, the height adjustment mechanism was not used
during the rehabilitation; instead, a liftable chair was used. After the experimental trials,
the robotic system underwent the second-stage optimization process, and the screw–nut
mechanism was replaced with a ball screw mechanism, and in order to ensure the locking
of the mechanism, a worm gear box was designed (Figure 13).
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Observation 2: Due to the circular guides displacement, sometimes, the flexion–
extension mechanism was jammed or slowed down by the patient.

Solution: The slides were properly greased at the beginning of the rehabilitation
procedure, and a two-DOFs mechanism was used to overcome the angular displacement
between the circular guides (Figure 14).

Observation 3: The shoulder anchor was problematic during the rehabilitation process.
Solution: The shoulder anchor was redesigned to eliminate any edges of the compo-

nent and allow easy attachment of the shoulder. Additionally, a synthetic foam was used
to cover the part where the patient was in direct contact.

Observation 4: The forearm anchor mechanism was uncomfortable for the patient.
Solution: The entire part was covered with synthetic foam, and to avoid the times

needed to sterilize the component, the entire part was covered with single-use medical
cotton for every patient.
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Observation 5: During the use of the system, the motor of the adduction–abduction
mechanism heated up.

Solution: The heating of the motor was determined to be caused by the momentum
created by the weight of the mechanism transmitted through the reduction box; to overcome
this situation, the same worm gear box (Figure 13) was adapted to fit this mechanism.

Observation 6: The edges of the circular guides were exposed and could hurt the
patient or the operator.

Solution: The slides were covered with a soft material (synthetic foam).
The robotic system optimized after the clinicians’ feedback and clinical trials can be

viewed in Figure 15.
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4. Discussion

The clinical study performed on 24 patients with different neurological disorders with
upper limb impairment aimed to evaluate the performance of the robotic system compared
to the human therapists. The patients were split into three groups:

1. The fully robotic-assisted rehabilitation group, consisting of six patients with right
limb impairment.

2. The mixed rehabilitation group, consisting of 12 patients with bilateral impairment,
having their right upper limb treated with the robot and the left side with the help of
a kinetotherapist.

3. The classical rehabilitation group, consisting of six patients with left limb impairment,
treated by a kinetotherapist.

The patient evaluations were performed at admittance to the hospital and after the
rehabilitation therapy. Besides the determination of the therapeutic efficiency of the exer-
cises, the initial data was used as the input motion amplitudes parameters for the robotic
system as individual values for each patient.

The patient evaluation consisted of two types of measurements:

(1) Ranges of motion and muscle strength—goniometry and dynamometry.
(2) Multimodal neurophysiological motor system assessment—quantitative electroen-

cephalogram, motor conduction times, and turn/amplitude analysis [54].

Based on the size of the group, for the statistical analysis of the data, the chosen
method was nonparametric testing (the Wilcoxon Matched Pairs Signed Ranks test and
Mann–Whitney U test), with a significance threshold of p < 0.05.

All 24 patients performed the same therapy for seven consecutive days with two
daily sessions. To perform identical exercises, which would enable a proper comparison
of the therapeutic results, in this initial set of tests, only simple motions were performed:
flexion/extension and adduction/abduction. The starting values for the motion amplitudes
were established by the neurologists at the individual level and increased daily 5–10%,
aiming to reach a full range of motion on the fifth day.

Based on their neurologic pathology, the patients were grouped into three groups:
vascular, extrapyramidal, and neuromuscular.

The clinical study, which is described in detail in [53], pointed out several important
conclusions on the medical side:

1. There were no statistically significant differences between the robot-assisted or physi-
cal therapist rehabilitation therapy.

2. The vascular group showed the most significant results, confirming the positive
in-fluence of physical rehabilitation for stroke patients.

3. Confirming the data from other studies, some positive effects were seen for the
extrapyramidal group, validating the results from other clinical studies that stated
that physical exercises show benefits in Parkinson’s disease [54] and should be used
in the long-term management of this pathology.

Figure 16 illustrates the motor conduction times for the three groups measured before
and after rehabilitation therapy (lower is better).

Next, the discussion will focus on the technical aspects of the clinical trials directly
related to the robotic system.

No incidents were reported during the clinical trials, and the robotic system functioned
within the normal functioning parameters for an average of four h/day.

One of the patients (no. 1) suffered a shoulder fracture 40 years ago, and he was unable
to perform the physical rehabilitation with the robot. Another patient (the one suffering
from gouty arthritis) manifested completely different from other patients, succeeding in
performing the rehabilitation motion at the maximum amplitude since day 1.
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Some of the patients (44.44%) used a wheelchair instead of the chair provided by the
robotic system due to their general condition. Using a wheelchair during the clinical trials
proved to be a challenge due to restrained space provided by the room where the robot was
placed. The time spent by each patient performing the rehabilitation procedure was longer
than the one spent performing manual rehabilitation, but the longer time spent performing
the rehabilitation turned to be a positive aspect of the rehabilitation. Contrary to general
opinion that a patient will manifest reluctance when robotic devices substitute medical
personnel, all the patients were rather excited to work with the robotic system and eager to
test the new technology. During the clinical trials, to create a comfortable environment for
the patient, music was played in the background, this aspect proved to be a motor positive
factor for the patients and a reinforcement for performing the rehabilitation exercise.

Based on the results and the feedback from the patients, the clinical trials were a real
success, motivating the research team to continue in improving the rehabilitation system.
At the time of the clinical trials, only simple motions were performed, but the obtained
results created the premise for improving the robotic system in terms of a control system to
embed more safety characteristics for the patients and for the system and developing an
improved and reliable user interface.

Future works will target the extension of the robotic system functionalities via the
control system to enable human–robot interaction modalities and develop a multilevel user
interface that can be easily and safely used by every person, with the next set of clinical
trials being scheduled for the second half of 2021.

5. Conclusions

The robotic system for shoulder rehabilitation ASPIRE was successfully tested in a
hospital environment using patients with real neurologic disorders. The work performed
with real patients revealed a significant difference from the initial tests performed in the
laboratory with healthy subjects and provided a series of critical characteristics required
to be improved in the development of the robotic system. ASPIRE was initially designed
for patients with upper limb impairment post-stroke, but the clinical trials proved its
usefulness for multiple neurologic disorders (stroke, Parkinson’s, and gouty arthritis).
After the successful completion of the clinical trials, the entire robotic structure underwent
a detailed analysis, and a series of improvements were made to improve the functionality
of the robotic system and the quality of the patients spent during the rehabilitation task.
After the design improvements were made, a new series of clinical trials are planned as
soon as the COVID-19 pandemic will allow them.
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