Proposal of a New Orange Selection Process Using Sensory Panels and AHP
Abstract
:1. Introduction
2. Theoretical Framework
3. Materials and Methods
3.1. Sensory Panels
3.2. Organoleptic Session Assessment Sheet
3.3. Analytic Hierarchy Process
3.4. Methodology Proposed
4. Case Study and Results—Evaluation of Seasonal Oranges
4.1. Selection of the Variables for the Tasting Session
- tactile phase (touch): firmness, skin roughness, and defects in touch;
- visual phase (aspect): visual defects, skin color, pulp color, easy peeling, presence of seeds and slices compaction;
- olfactory phase (smell): herbaceous and fruity;
- gustatory phase (flavor): sweetness, acidity, bitter, astringent, residue in mouth, and juiciness.
4.2. Modelization of the Orange Quality Evaluation Criteria for the AHP Process
4.3. Prioritization of Orange Quality Criteria by Experts
- firmness is very strongly more important than its skin roughness;
- firmness is moderately more important than defects in touch;
- defects in touch are moderately more important than skin roughness.
4.4. Prioritization of Oranges by a Consumer Tasting Panel
- M1. Orange Navel from supplier 1.
- M2. Orange from supplier 2.
- M3. Orange Navel Late from supplier 3.
- M4. Orange Navel Late from supplier 4.
- M1 is strongly more preferred than M2;
- M1 is very strongly more preferred than M3;
- M1 is strongly more preferred than M4;
- M2 and M4 are equally preferred;
- M4 is strongly more preferred than M3.
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Subcriteria | Pairwise Comparison | Geometric Mean | Geometric Deviation |
---|---|---|---|
C11. Firmness | M1-M2 | 1.31 | 3.96 |
M1-M3 | 0.91 | 4.30 | |
M1-M4 | 0.79 | 3.75 | |
M2-M3 | 1.00 | 3.91 | |
M2-M4 | 0.59 | 3.91 | |
M3-M4 | 0.91 | 4.68 | |
C12. Skin roughness | M1-M2 | 2.03 | 4.05 |
M1-M3 | 1.34 | 4.34 | |
M1-M4 | 1.51 | 3.43 | |
M2-M3 | 0.71 | 3.96 | |
M2-M4 | 0.50 | 3.65 | |
M3-M4 | 1.00 | 4.29 | |
C13. Defects in touch | M1-M2 | 1.98 | 3.69 |
M1-M3 | 1.44 | 3.86 | |
M1-M4 | 1.54 | 3.16 | |
M2-M3 | 1.00 | 4.20 | |
M2-M4 | 0.73 | 3.98 | |
M3-M4 | 1.05 | 3.80 | |
C21. Visual defects | M1-M2 | 2.40 | 2.97 |
M1-M3 | 1.03 | 3.74 | |
M1-M4 | 1.10 | 4.61 | |
M2-M3 | 0.49 | 3.62 | |
M2-M4 | 0.48 | 3.93 | |
M3-M4 | 1.15 | 4.16 | |
C22. Skin color | M1-M2 | 1.26 | 4.67 |
M1-M3 | 1.84 | 3.44 | |
M1-M4 | 2.72 | 2.85 | |
M2-M3 | 1.68 | 3.36 | |
M2-M4 | 1.44 | 4.88 | |
M3-M4 | 1.92 | 3.30 | |
C23. Pulp color | M1-M2 | 1.13 | 4.02 |
M1-M3 | 1.81 | 3.66 | |
M1-M4 | 1.57 | 3.23 | |
M2-M3 | 1.72 | 3.66 | |
M2-M4 | 1.44 | 4.17 | |
M3-M4 | 0.48 | 2.78 | |
C24. Easy peeling | M1-M2 | 0.96 | 3.98 |
M1-M3 | 2.41 | 3.91 | |
M1-M4 | 2.43 | 3.39 | |
M2-M3 | 1.76 | 3.67 | |
M2-M4 | 2.00 | 3.64 | |
M3-M4 | 1.13 | 3.92 | |
C25. Presence of seeds | M1-M2 | 1.09 | 2.01 |
M1-M3 | 1.18 | 2.21 | |
M1-M4 | 0.91 | 2.00 | |
M2-M3 | 1.05 | 2.18 | |
M2-M4 | 0.94 | 1.77 | |
M3-M4 | 0.96 | 2.20 | |
C26. Slices compaction | M1-M2 | 1.86 | 3.46 |
M1-M3 | 2.63 | 3.15 | |
M1-M4 | 1.07 | 3.83 | |
M2-M3 | 1.29 | 3.81 | |
M2-M4 | 0.96 | 4.20 | |
M3-M4 | 0.62 | 3.19 | |
C31. Herbaceous | M1-M2 | 1.93 | 3.22 |
M1-M3 | 1.22 | 3.02 | |
M1-M4 | 1.49 | 3.07 | |
M2-M3 | 0.93 | 2.83 | |
M2-M4 | 0.67 | 2.76 | |
M3-M4 | 0.83 | 3.01 | |
C32. Fruity | M1-M2 | 2.49 | 3.86 |
M1-M3 | 2.30 | 2.62 | |
M1-M4 | 1.09 | 4.12 | |
M2-M3 | 1.19 | 3.25 | |
M2-M4 | 0.75 | 3.46 | |
M3-M4 | 0.57 | 3.83 | |
C41. Sweetness | M1-M2 | 1.36 | 3.94 |
M1-M3 | 2.07 | 3.76 | |
M1-M4 | 2.65 | 3.18 | |
M2-M3 | 1.68 | 4.06 | |
M2-M4 | 2.40 | 3.45 | |
M3-M4 | 1.16 | 4.56 | |
C42. Acidity | M1-M2 | 1.11 | 4.02 |
M1-M3 | 2.29 | 2.88 | |
M1-M4 | 1.29 | 4.07 | |
M2-M3 | 1.95 | 3.13 | |
M2-M4 | 1.16 | 4.01 | |
M3-M4 | 0.67 | 4.22 | |
C43. Bitter | M1-M2 | 1.13 | 3.35 |
M1-M3 | 1.69 | 2.60 | |
M1-M4 | 1.75 | 3.13 | |
M2-M3 | 1.24 | 2.54 | |
M2-M4 | 1.32 | 3.39 | |
M3-M4 | 0.94 | 3.51 | |
C44. Astringent | M1-M2 | 1.09 | 2.80 |
M1-M3 | 1.67 | 2.24 | |
M1-M4 | 1.55 | 2.47 | |
M2-M3 | 1.41 | 2.24 | |
M2-M4 | 1.12 | 2.87 | |
M3-M4 | 0.83 | 2.61 | |
C45. Residue in mouth | M1-M2 | 1.43 | 2.91 |
M1-M3 | 2.08 | 2.54 | |
M1-M4 | 1.54 | 3.17 | |
M2-M3 | 1.01 | 3.27 | |
M2-M4 | 0.94 | 3.28 | |
M3-M4 | 1.09 | 3.33 | |
C46. Juiciness | M1-M2 | 1.11 | 4.50 |
M1-M3 | 1.28 | 4.45 | |
M1-M4 | 1.14 | 3.74 | |
M2-M3 | 1.88 | 3.95 | |
M2-M4 | 1.11 | 3.95 | |
M3-M4 | 0.75 | 4.46 |
References
- Steinmetz, K.A.; Potter, J.D. Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control. 1991, 2, 325–357. [Google Scholar] [CrossRef]
- van’t Veer, P.; Jansen, M.C.; Klerk, M.; Kok, F.J. Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr. 2000, 3, 103–107. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. The Global Strategy on Diet, Physical Activity and Health (DPAS). Available online: https://www.who.int/nmh/wha/59/dpas/en/ (accessed on 16 February 2021).
- MAPA. Estrategia Nacional de los Programas Operativos Sostenibles a Desarrollar por las Organizaciones de Productores de Frutas y Hortalizas; MAPA: Madrid, Spain, 2017; Available online: https://www.mapa.gob.es/es/agricultura/temas/regulacion-de-los-mercados/estrategianacional2017_tcm30-380317.pdf (accessed on 16 February 2021).
- European Commission. EUFV-CuTE | Chafea. Cultivating the Taste of Europe (CuTE). Available online: https://ec.europa.eu/chafea/agri/campaigns/eufv-cute (accessed on 16 February 2021).
- FAO. Fruit and Vegetables—Your Dietary Essentials. The International Year of Fruits and Vegetables 2021. Background Paper; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Capacci, S.; Mazzocchi, M. Five-a-day, a price to pay: An evaluation of the UK program impact accounting for market forces. J. Health Econ. 2011, 30, 87–98. [Google Scholar] [CrossRef]
- Erinosho, T.O.; Moser, R.P.; Oh, A.Y.; Nebeling, L.C.; Yaroch, A.L. Awareness of the Fruits and Veggies-More Matters campaign, knowledge of the fruit and vegetable recommendation, and fruit and vegetable intake of adults in the 2007 Food Attitudes and Behaviors (FAB) Survey. Appetite 2012, 59, 155–160. [Google Scholar] [CrossRef]
- Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-Report of fruit and vegetable intake that meets the 5 a day recommendation is associated with reduced levels of oxidative stress biomarkers and increased levels of antioxidant defense in premenopausal women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [Green Version]
- MAPA. Informe del Consumo de Alimentación en España 2019; MAPA: Madrid, Spain, 2020; Available online: https://www.mapa.gob.es/ca/alimentacion/temas/consumo-tendencias/informe2019_vf_tcm34-540250.pdf (accessed on 16 February 2021).
- MAPA. Más Alimento, Menos Desperdicio; MAPA: Madrid, Spain, 2020; Available online: http://publicacionesoficiales.boe.es/ (accessed on 16 February 2021).
- Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Int. J. Environ. Res. Public Health 2020, 17, 6285. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; de Hooge, I.; Amani, P.; Bech-Larsen, T.; Oostindjer, M. Consumer-Related food waste: Causes and potential for action. Sustainability 2015, 7, 6457–6477. [Google Scholar] [CrossRef] [Green Version]
- Raak, N.; Symmank, C.; Zahn, S.; Aschemann-Witzel, J.; Rohm, H. Processing- and product-related causes for food waste and implications for the food supply chain. Waste Manag. 2017, 61, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; Giménez, A.; Ares, G. Consumer in-store choice of suboptimal food to avoid food waste: The role of food category, communication and perception of quality dimensions. Food Qual. Prefer. 2018, 68, 29–39. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; MacNaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Phil. Trans. R. Soc. B 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [Green Version]
- Berdegué, J.A.; Balsevich, F.; Flores, L.; Reardon, T. Central American supermarkets’ private standards of quality and safety in procurement of fresh fruits and vegetables. Food Policy 2005, 30, 254–269. [Google Scholar] [CrossRef]
- Banaeian, N.; Mobli, H.; Nielsen, I.E.; Omid, M. Criteria definition and approaches in green supplier selection—A case study for raw material and packaging of food industry. Prod. Manuf. Res. 2015, 3, 149–168. [Google Scholar] [CrossRef]
- Lin, P.C.; Wu, L.S. How supermarket chains in Taiwan select suppliers of fresh fruit and vegetables via direct purchasing. Serv. Ind. J. 2011, 31, 1237–1255. [Google Scholar] [CrossRef]
- Liu, A.; Xiao, Y.; Ji, X.; Wang, K.; Tsai, S.-B.; Lu, H.; Cheng, J.; Lai, X.; Wang, J. A novel two-stage integrated model for supplier selection of green fresh product. Sustainability 2018, 10, 2371. [Google Scholar] [CrossRef] [Green Version]
- Rodas-González, A.; Huerta-Leidenz, N.; Jerez-Timaure, N.; Miller, M.F. Establishing tenderness thresholds of Venezuelan beef steaks using consumer and trained sensory panels. Meat Sci. 2009, 83, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World; RWS Publications: Pittsburgh, PA, USA, 1995. [Google Scholar]
- Saaty, T.L. Decision making—the Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Ortiz-Barrios, M.; Miranda-De la Hoz, C.; López-Meza, P.; Petrillo, A.; De Felice, F. A case of food supply chain management with AHP, DEMATEL, and TOPSIS. J. Multi-Criteria Dec. Anal. 2020, 27, 104–128. [Google Scholar] [CrossRef]
- Yadav, S.; Singh, S.P. An integrated fuzzy-ANP and fuzzy-ISM approach using blockchain for sustainable supply chain. J. Enterp. Inf. Manag. 2021, 34, 54–78. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, M.; Liu, H. Application of entropy-AHP-TOPSIS methods to select food suppliers. In Proceedings of the 2017 International Conference on Humanities Science, Management and Education Technology (HSMET 2017), Taiyuan, China, 25–26 February 2017; Atlantis Press: Paris, France; pp. 191–196. [Google Scholar] [CrossRef] [Green Version]
- Haleem, A.; Khan, S.; Khan, M.I. Traceability implementation in food supply chain: A grey-DEMATEL approach. Inf. Process. Agric. 2019, 6, 335–348. [Google Scholar] [CrossRef]
- Govindan, K.; Kadziński, M.; Sivakumar, R. Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega 2017, 71, 129–145. [Google Scholar] [CrossRef]
- Van Rijswijk, W.; Frewer, L.J. Consumer perceptions of food quality and safety and their relation to traceability. Br. Food J. 2008, 110, 1034–1046. [Google Scholar] [CrossRef]
- Baiardi, D.; Puglisi, R.; Scabrosetti, S. Individual attitudes on food quality and safety: Empirical evidence on EU countries. Food Qual. Prefer. 2016, 49, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Zeithaml, V.A. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Grunert, K.G.; Larsen, H.H.; Madsen, T.K.; Baadsgaard, A. Market. Orientation in Food and Agriculture; Springer Science & Business Media: London, UK; Kluwer Academic Publishers: Boston, MA, USA; Dordrecht, The Netherlands, 1996; ISBN 0-7923-9649-9. [Google Scholar]
- Nelson, P. Information and Consumer Behavior. J. Polit. Econ. 1970, 78, 311–329. [Google Scholar] [CrossRef]
- Petrescu, D.C.; Vermeir, I.; Petrescu-Mag, R.M. Consumer understanding of food quality, healthiness, and environmental impact: A cross-national perspective. Int. J. Environ. Res. Public Health 2020, 17, 169. [Google Scholar] [CrossRef] [Green Version]
- Buitrago-Vera, J.; Escribá-Pérez, C.; Baviera-Puig, A.; Montero-Vicente, L. Consumer segmentation based on food-related lifestyles and analysis of rabbit meat consumption. World Rabbit Sci. 2016, 24, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Puertas, R.; Marti, L.; Garcia-Alvarez-Coque, J.-M. Food supply without risk: multicriteria analysis of institutional conditions of exporters. Int. J. Environ. Res. Public Health 2020, 17, 3432. [Google Scholar] [CrossRef]
- Escribano, S.; Sánchez, F.J.; Lázaro, A. Establishment of a sensory characterization protocol for melon (Cucumis melo L.) and its correlation with physical-chemical attributes: Indications for future genetic improvements. Eur. Food Res. Technol. 2010, 231, 611–621. [Google Scholar] [CrossRef]
- Bettini, M.; Shaw, P.; Lanças, F. Sensory and analytical evaluations of Brazilian orange juices and aromas. Qual. Control. 1998, 7, 283–286. [Google Scholar]
- Baxter, I.A.; Easton, K.; Schneebeli, K.; Whitfield, F.B. High pressure processing of Australian navel orange juices: Sensory analysis and volatile flavor profiling. Innov. Food Sci. Emerg. Technol. 2005, 6, 372–387. [Google Scholar] [CrossRef]
- Chen, S.; Nussinovitch, A. Permeability and roughness determinations of wax-hydrocolloid coatings, and their limitations in determining citrus fruit overall quality. Food Hydrocoll. 2001, 15, 127–137. [Google Scholar] [CrossRef]
- Pointer, M.R.; Attridge, G.G. Some aspects of the visual scaling of large colour differences. Color. Res. Appl. 1997, 22, 298–307. [Google Scholar] [CrossRef]
- Poole, N.D.; Martínez-Carrasco, L.; Vidal, F. Quality perceptions under evolving information conditions: Implications for diet, health and consumer satisfaction. Food Policy 2007, 32, 175–188. [Google Scholar] [CrossRef]
- Lotong, V.; Chambers, D.H.; Dus, C.; IV, E.C.; Civille, G.V. Matching results of two independent highly trained sensory panels using different descriptive analysis methods. J. Sens. Stud. 2002, 17, 429–444. [Google Scholar] [CrossRef]
- Kim, K.-O.; O’Mahony, M. A new approach to category scales of intensity I: Traditional versus rank-rating. J. Sens. Stud. 1998, 13, 241–249. [Google Scholar] [CrossRef]
- Lotong, V.; Chambers, E.; Chambers, D.H. Categorization of commercial orange juices based on flavor characteristics. J. Food Sci. 2003, 68, 722–725. [Google Scholar] [CrossRef]
- Costell, E. A comparison of sensory methods in quality control. Food Qual. Prefer. 2002, 13, 341–353. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; RWS Publications: Pittsburgh, PA, USA, 1980; ISBN 0-07.054371-2. [Google Scholar]
- Pipatprapa, A.; Huang, H.H.; Huang, C.H. Enhancing the effectiveness of AHP for environmental performance assessment of Thailand and Taiwan’s food industry. Environ. Monit. Assess. 2018, 190, 748. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Lu, B.; Ye, C.; Li, J.; Zhu, Z.; Zheng, L. Fraud vulnerability quantitative assessment of Wuchang rice industrial chain in China based on AHP-EWM and ANN methods. Food Res. Int. 2021, 140, 109805. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.O.; da Silva, E.M.; Lima-Júnior, F.R. A fuzzy AHP approach to select suppliers in the Brazilian food supply chain. Production 2020, 30, e20200013. [Google Scholar] [CrossRef]
- García-Melón, M.; Gómez-Navarro, T.; Acuña-Dutra, S. An ANP approach to assess the sustainability of Tourist strategies for the coastal national parks of Venezuela. Technol. Econ. Dev. Econ. 2010, 16, 672–689. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Dispersion of group judgments. Math. Comput. Model. 2007, 46, 918–925. [Google Scholar] [CrossRef]
- Iglesias, I.; Echeverría, G.; Soria, Y. Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight “Gala” apple strains. Sci. Hortic. 2008, 119, 32–40. [Google Scholar] [CrossRef]
- Moser, R.; Raffaelli, R.; Thilmany-Mcfadden, D. Consumer Preferences for Fruit and Vegetables with Credence-Based Attributes: A Review. Int. Food Agribus. Manag. Rev. 2011, 14, 121–142. [Google Scholar] [CrossRef]
- Campbell, B.L.; Nelson, R.G.; Ebel, R.C.; Dozier, W.A.; Adrian, J.L.; Hockema, B.R. Fruit quality characteristics that affect consumer preferences for satsuma mandarins. HortScience 2004, 39, 1664–1669. [Google Scholar] [CrossRef]
- Harker, F.R.; Kupferman, E.M.; Marin, A.B.; Gunson, F.A.; Triggs, C.M. Eating quality standards for apples based on consumer preferences. Postharvest Biol. Technol. 2008, 50, 70–78. [Google Scholar] [CrossRef]
- Iglesias, I.; Echeverría, G.; Lopez, M.L. Fruit color development, anthocyanin content, standard quality, volatile compound emissions and consumer acceptability of several “Fuji” apple strains. Sci. Hortic. 2012, 137, 138–147. [Google Scholar] [CrossRef]
- Echeverría, G.; Cantín, C.M.; Ortiz, A.; López, M.L.; Lara, I.; Graell, J. The impact of maturity, storage temperature and storage duration on sensory quality and consumer satisfaction of “Big Top®” nectarines. Sci. Hortic. 2015, 190, 179–186. [Google Scholar] [CrossRef]
- Lopez, G.; Hossein Behboudian, M.; Echeverria, G.; Girona, J.; Marsal, J. Instrumental and sensory evaluation of fruit quality for “Ryan’s sun” peach grown under deficit irrigation. Horttechnology 2011, 21, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Lázaro, A.; De Lorenzo, C. Texture analysis in melon landraces through instrumental and sensory methods. Int. J. Food Prop. 2015, 18, 1575–1583. [Google Scholar] [CrossRef]
- Magalhães, V.S.M.; Ferreira, L.M.D.F.; Silva, C. Using a methodological approach to model causes of food loss and waste in fruit and vegetable supply chains. J. Clean. Prod. 2021, 283, 124574. [Google Scholar] [CrossRef]
- Castle, W.S.; Baldwin, J.C. Young-Tree performance of juvenile sweet orange scions on swingle citrumelo rootstock. HortScience 2011, 46, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Karnal, N.; Machiels, C.J.A.; Orth, U.R.; Mai, R. Healthy by design, but only when in focus: Communicating non-verbal health cues through symbolic meaning in packaging. Food Qual. Prefer. 2016, 52, 106–119. [Google Scholar] [CrossRef]
- Machiels, C.J.A.; Karnal, N. See how tasty it is? Effects of symbolic cues on product evaluation and taste. Food Qual. Prefer. 2016, 52, 195–202. [Google Scholar] [CrossRef]
- van Rompay, T.J.L.; Deterink, F.; Fenko, A. Healthy package, healthy product? Effects of packaging design as a function of purchase setting. Food Qual. Prefer. 2016, 53, 84–89. [Google Scholar] [CrossRef]
- Marian, L.; Chrysochou, P.; Krystallis, A.; Thøgersen, J. The role of price as a product attribute in the organic food context: An exploration based on actual purchase data. Food Qual. Prefer. 2014, 37, 52–60. [Google Scholar] [CrossRef]
- Baselice, A.; Colantuoni, F.; Lass, D.A.; Nardone, G.; Stasi, A. Trends in EU consumers’ attitude towards fresh-cut fruit and vegetables. Food Qual. Prefer. 2017, 59, 87–96. [Google Scholar] [CrossRef]
- Wekeza, S.; Sibanda, M. Factors influencing consumer purchase intentions of organically grown products in shelly centre, port shepstone, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 956. [Google Scholar] [CrossRef] [Green Version]
- Carroll, K.A.; Samek, A.; Zepeda, L. Food bundling as a health nudge: Investigating consumer fruit and vegetable selection using behavioral economics. Appetite 2018, 121, 237–248. [Google Scholar] [CrossRef]
- Knight, J.; Holdsworth, D.; Mather, D. Determinants of trust in imported food products: Perceptions of European gatekeepers. Br. Food J. 2007, 109, 792–804. [Google Scholar] [CrossRef] [Green Version]
Criteria | Subcriteria | Weight (%) |
---|---|---|
C1. Touch | C11. Firmness | 2.44 |
C12. Skin roughness | 1.02 | |
C13. Defects in touch | 1.56 | |
C2. Aspect | C21. Visual defects | 4.25 |
C22. Skin color | 3.12 | |
C23. Pulp color | 1.37 | |
C24. Easy peeling | 2.65 | |
C25. Presence of seeds | 3.11 | |
C26. Slices compaction | 1.53 | |
C3. Smell | C31. Herbaceous | 2.50 |
C32. Fruity | 17.58 | |
C4. Flavor | C41. Sweetness | 16.10 |
C42. Acidity | 12.37 | |
C43. Bitter | 3.08 | |
C44. Astringent | 3.27 | |
C45. Residue in mouth | 7.54 | |
C46. Juiciness | 16.51 | |
TOTAL | 100.00 |
Sample | Priority | Ranking |
---|---|---|
M1 | 0.31 | 1 |
M2 | 0.23 | 2 |
M3 | 0.17 | 4 |
M4 | 0.21 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baviera-Puig, A.; García-Melón, M.; Ortolá, M.D.; López-Cortés, I. Proposal of a New Orange Selection Process Using Sensory Panels and AHP. Int. J. Environ. Res. Public Health 2021, 18, 3333. https://doi.org/10.3390/ijerph18073333
Baviera-Puig A, García-Melón M, Ortolá MD, López-Cortés I. Proposal of a New Orange Selection Process Using Sensory Panels and AHP. International Journal of Environmental Research and Public Health. 2021; 18(7):3333. https://doi.org/10.3390/ijerph18073333
Chicago/Turabian StyleBaviera-Puig, Amparo, Mónica García-Melón, María Dolores Ortolá, and Isabel López-Cortés. 2021. "Proposal of a New Orange Selection Process Using Sensory Panels and AHP" International Journal of Environmental Research and Public Health 18, no. 7: 3333. https://doi.org/10.3390/ijerph18073333
APA StyleBaviera-Puig, A., García-Melón, M., Ortolá, M. D., & López-Cortés, I. (2021). Proposal of a New Orange Selection Process Using Sensory Panels and AHP. International Journal of Environmental Research and Public Health, 18(7), 3333. https://doi.org/10.3390/ijerph18073333