Timing of Cervico-Vaginal Cytokine Collection during Pregnancy and Preterm Birth: A Comparative Analysis in the PRINCESA Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Preterm Birth Definition
2.3. Collection of Biological Samples
2.4. Quantification of Cytokines
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.-B.; Narwal, R.; Adler, A.; Garcia, C.V.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [Green Version]
- Walani, S.R. Global burden of preterm birth. Int. J. Gynaecol. Obstet. 2020, 150, 31–33. [Google Scholar] [CrossRef]
- Behrman, R.E.; Butler, A.S.; Institute of Medicine (U.S.). Committee on Understanding Premature Birth and Assuring Healthy Outcomes. In Preterm Birth: Causes, Consequences, and Prevention; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Goldenberg, R.L.; Mwatha, A.; Read, J.S.; Adeniyi-Jones, S.; Sinkala, M.; Msmanga, G.; Martinson, F.; Hoffman, I.; Fawzi, W.; Valentine, M.; et al. The HPTN 024 Study: The efficacy of antibiotics to prevent chorioamnionitis and preterm birth. Am. J. Obstet. Gynecol. 2006, 194, 650–661. [Google Scholar] [CrossRef]
- Lamont, R.F.; Duncan, S.L.B.; Mandal, D.; Bassett, P. Intravaginal Clindamycin to Reduce Preterm Birth in Women with Abnormal Genital Tract Flora. Obstet. Gynecol. 2003, 101, 516–522. [Google Scholar] [CrossRef]
- Ugwumadu, A.; Manyonda, I.; Reid, F.; Hay, P. Effect of early oral clindamycin on late miscarriage and preterm delivery in asymptomatic women with abnormal vaginal flora and bacterial vaginosis: A randomised controlled trial. Lancet 2003, 361, 983–988. [Google Scholar] [CrossRef]
- Carey, J.C.; Klebanoff, M.A.; Hauth, J.C.; Hillier, S.L.; Thom, E.A.; Ernest, J.M.; Heine, R.P.; Nugent, R.P.; Fischer, M.L.; Leveno, K.J.; et al. Metronidazole to Prevent Preterm Delivery in Pregnant Women with Asymptomatic Bacterial Vaginosis. N. Engl. J. Med. 2000, 342, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Joesoef, M.; Hillier, S.; Wiknjosastro, G.; Sumapouw, H.; Linnan, M.; Norojono, W.; Idajadi, A.; Utomo, B. Intravaginal clindamycin treatment for bacterial vaginosis: Effects on preterm delivery and low birth weight. Am. J. Obstet. Gynecol. 1995, 173, 1527–1531. [Google Scholar] [CrossRef]
- Klebanoff, M.A.; Carey, J.C.; Hauth, J.C.; Hillier, S.L.; Nugent, R.P.; Thom, E.A.; Ernest, J.; Heine, R.P.; Wapner, R.J.; Trout, W.; et al. Failure of Metronidazole to Prevent Preterm Delivery among Pregnant Women with AsymptomaticTrichomonas vaginalisInfection. N. Engl. J. Med. 2001, 345, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, G.M.; Bruinse, H.W. Prophylactic administration of clindamycin 2% vaginal cream to reduce the incidence of spontaneous preterm birth in women with an increased recurrence risk: A randomised placebo-controlled double-blind trial. Br. J. Obstet. Gynaecol. 1999, 106, 652–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, R.; Torloni, M.R.; Voltolini, C.; Torricelli, M.; Merialdi, M.; Betrán, A.P.; Widmer, M.; Allen, T.; Davydova, I.; Khodjaeva, Z.; et al. Biomarkers of Spontaneous Preterm Birth: An Overview of The Literature in the Last Four Decades. Reprod. Sci. 2011, 18, 1046–1070. [Google Scholar] [CrossRef]
- Romero, R.; Espinoza, J.; Gonçalves, L.F.; Kusanovic, J.P.; Friel, L.; Hassan, S. The Role of Inflammation and Infection in Preterm Birth. Semin. Reprod. Med. 2007, 25, 021–039. [Google Scholar] [CrossRef] [PubMed]
- Rankin, J.A. Biological Mediators of Acute Inflammation. AACN Adv. Crit. Care 2004, 15, 3–17. [Google Scholar] [CrossRef]
- Denney, J.M.; Nelson, E.L.; Wadhwa, P.D.; Waters, T.P.; Mathew, L.; Chung, E.K.; Goldenberg, R.L.; Culhane, J.F. Longitudinal modulation of immune system cytokine profile during pregnancy. Cytokine 2011, 53, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Peltier, M.R. Immunology of term and preterm labor. Reprod. Biol. Endocrinol. 2003, 1, 122. [Google Scholar] [CrossRef] [Green Version]
- Genc, M.R.; Witkin, S.S.; Delaney, M.L.; Paraskevas, L.; Tuomala, R.E.; Norwitz, E.R.; Onderdonk, A.B. A disproportionate increase in IL-1beta over IL-1ra in the cervicovaginal secretions of pregnant women with altered vaginal microflora correlates with preterm birth. Am. J. Obstet. Gynecol. 2004, 190, 1191–1197. [Google Scholar]
- Kemp, M.W.; Saito, M.; Newnham, J.P.; Nitsos, I.; Okamura, K.; Kallapur, S.G. Preterm Birth, Infection, and Inflammation Advances From the Study of Animal Models. Reprod. Sci. 2010, 17, 619–628. [Google Scholar] [CrossRef]
- Simhan, H.N.; Krohn, M.A. First-trimester cervical inflammatory milieu and subsequent early preterm birth. Am. J. Obstet. Gynecol. 2009, 200, 377.e1–377.e4. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Seybold, D.; Aladefa, K.P.; Miller, J.L.; Calhoun, B.C. Cytokines and cervical length: A pilot study of relationship to incidence of preterm birth. Immunol. Innov. 2013, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Goepfert, A.R.; Goldenberg, R.L.; Andrews, W.W.; Hauth, J.C.; Mercer, B.; Iams, J.; Meis, P.; Moawad, A.; Thom, E.; VanDorsten, J.; et al. The Preterm Prediction Study: Association between cervical interleukin 6 concentration and spontaneous preterm birth. Am. J. Obstet. Gynecol. 2001, 184, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Dibble, S.; Andersen, A.; Lassen, M.R.; Cunanan, J.; Hoppensteadt, D.; Fareed, J. Inflammatory and Procoagulant Cytokine Levels During Pregnancy as Predictors of Adverse Obstetrical Complications. Clin. Appl. Thromb. 2013, 20, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.S.; Kahn, S.R.; Platt, R.W.; Genest, J.; Chen, M.F.; Goulet, L.; Séguin, L.; Lydon, J.; McNamara, H.; Libman, M.; et al. Mid-trimester maternal plasma cytokines and CRP as predictors of spontaneous preterm birth. Cytokine 2010, 49, 10–14. [Google Scholar] [CrossRef]
- Ferguson, K.K.; McElrath, T.F.; Chen, Y.-H.; Mukherjee, B.; Meeker, J.D. Longitudinal Profiling of Inflammatory Cytokines and C-reactive Protein during Uncomplicated and Preterm Pregnancy. Am. J. Reprod. Immunol. 2014, 72, 326–336. [Google Scholar] [CrossRef] [Green Version]
- O’neill, M.S.; Osornio-Vargas, A.; Buxton, M.A.; Sánchez, B.N.; Rojas-Bracho, L.; Castillo-Castrejon, M.; Mordhukovich, I.B.; Brown, D.G.; Vadillo-Ortega, F. Air pollution, inflammation and preterm birth in Mexico City: Study design and methods. Sci. Total. Environ. 2013, 448, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Gilman-Sachs, A.; Dambaeva, S.; Garcia, M.D.S.; Hussein, Y.; Kwak-Kim, J.; Beaman, K. Inflammation induced preterm labor and birth. J. Reprod. Immunol. 2018, 129, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Green, E.S.; Arck, P.C. Pathogenesis of preterm birth: Bidirectional inflammation in mother and fetus. Semin. Immunopathol. 2020, 42, 413–429. [Google Scholar] [CrossRef]
- Pijnenborg, R.; Vercruysse, L.; Hanssens, M. The Uterine Spiral Arteries in Human Pregnancy: Facts and Controversies. Placenta 2006, 27, 939–958. [Google Scholar] [CrossRef]
- Menon, R.; Behnia, F.; Polettini, J.; Richardson, L.S. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin. Immunopathol. 2020, 42, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.K.; Goudar, S.S.; Kodkany, B.S.; Metgud, M.; Somannavar, M.; Okitawutshu, J.; Lokangaka, A.; Tshefu, A.; Bose, C.L.; Mwapule, A.; et al. Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): A randomised, double-blind, placebo-controlled trial. Lancet 2020, 395, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.T.; O’Connor, E.; Whitlock, E.P. Low-dose aspirin for prevention of morbidity and mortality from preeclampsia: A systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2014, 160, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Dahab, R.; Sakellariou, D. Barriers to Accessing Maternal Care in Low Income Countries in Africa: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4292. [Google Scholar] [CrossRef]
- Lori, J.R.; Munro, M.L.; Rominski, S.; Williams, G.; Dahn, B.T.; Boyd, C.J.; Moore, J.E.; Gwenegale, W. Maternity waiting homes and traditional midwives in rural Liberia. Int. J. Gynaecol. Obstet. 2013, 123, 114–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.Q.; Yang, F.-J.; Fraser, W.; Luo, Z.-C. 511: Inflammatory cytokines and spontaneous preterm birth in asymptomatic women: A systematic review. Am. J. Obstet. Gynecol. 2009, 201, S190–S191. [Google Scholar] [CrossRef]
- Buxton, M.A.; Meraz-Cruz, N.; Sanchez, B.N.; Gronlund, C.J.; Foxman, B.; Vadillo-Ortega, F.; O’Neill, M.S. Air pollution and inflammation: Findings from concurrent repeated measures of systemic and reproductive tract cytokines during term pregnancy in Mexico City. Sci. Total. Environ. 2019, 681, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Croghan, C.; Egeghy, P.P. Methods of Dealing with Values below the Limit of Detection using SAS. In Proceedings of the Southeastern SAS User Group, St. Petersburg, FL, USA, 22–24 September 2003. [Google Scholar]
Age | Term N (%) | Preterm N (%) |
---|---|---|
<20 | 13 (16.7) | 4 (33.3) |
20–35 | 52 (66.7) | 8 (66.7) |
>35 | 13 (16.7) | |
Pre-Pregnancy BMI | ||
<18.5 kg/m2 | 2 (2.6) | |
18.5–24.9 kg/m2 | 23 (29.5) | 6 (50.0) |
25–29.9 kg/m2 | 27 (34.6) | 3 (25.0) |
≥30 kg/m2 | 11 (14.1) | 1 (8.3) |
Missing | 15 (19.2) | 2 (16.7) |
Parity † | ||
Nulliparous | 19 (24.4) | 8 (66.7) |
Parous | 45 (57.7) | 4 (33.3) |
Missing | 14 (18.0) |
Period-Specific Median Cytokine Concentrations (pg/mL) by Preterm Birth Status | ||||||||
---|---|---|---|---|---|---|---|---|
First Trimester | Second Trimester | Third Trimester | Entire Pregnancy Average | |||||
Cytokine | Term n = 78 | Preterm n = 12 | Term n = 78 | Preterm n = 12 | Term n = 78 | Preterm n = 12 | Term n = 78 | Preterm n = 12 |
Eotaxin | 17.10 | 16.35 | 19.25 | 20.40 | 20.78 | 14.95 | 20.23 | 16.92 |
IL-10 | 5.18 | 8.73 | 7.41 | 11.34 | 6.67 | 4.44 | 9.66 | 12.71 |
IL-12p40 | 9.16 | 14.13 | 14.51 | 19.73 | 11.93 | 14.98 | 14.29 | 13.68 |
IL-17 | 1.41 | 3.20 | 2.61 | 3.39 | 2.72 | 3.20 | 2.62 | 2.74 |
IL-1α | 1393.75 | 369.68 | 1256.27 | 835.67 | 952.12 | 219.07 | 1312.24 | 465.72 |
IL-1β | 104.88 | 3564.54 * | 156.44 | 5126.72 * | 66.67 | 4211.86 * | 251.47 | 4225.49 * |
IL-1RA | 4350.24 | 10,010 * | 5322.43 | 9820.62 * | 5488.41 | 10010 | 5134.66 | 8530.72 * |
IL-2 | 3.19 | 6.82 * | 5.40 | 11.85 * | 4.97 | 6.22 | 6.24 | 10.71 * |
IL-6 | 11.29 | 137.79 * | 12.77 | 31.21 * | 10.25 | 33.11 * | 14.43 | 90.06 * |
IP-10 | 175.92 | 10,010 * | 346.96 | 3425.53 * | 193.19 | 2721.67 | 398.47 | 5081.50 * |
MCP-1 | 99.96 | 3491.90 * | 163.90 | 2939.19 | 161.12 | 1372.93 | 191.06 | 3460.61 * |
MIP-1α | 12.30 | 66.42 * | 15.65 | 44.99 * | 8.69 | 41.80 | 19.96 | 891.88 * |
MIP-1β | 25.90 | 44.48 | 28.70 | 40.30 | 28.16 | 41.44 | 38.98 | 72.95 |
sIL-2Rα | 14.84 | 24.65 | 26.18 | 29.05 | 26.98 | 18.80 | 26.95 | 28.46 |
TNFα | 2.75 | 2.81 | 3.09 | 4.22 | 3.17 | 4.44 | 3.87 | 75.06 * |
VEGF | 186.15 | 10,010 * | 140.31 | 6706.56 * | 128.49 | 186.47 | 155.46 | 4575.92 * |
Trimester-Specific Estimates OR (95% CI) | Entire Pregnancy Average OR (95% CI) | |||
---|---|---|---|---|
Cytokine | First Trimester | Second Trimester | Third Trimester | |
Eotaxin | 1.40 (1.05, 1.87) * | 1.30 (0.99, 1.71) | 1.18 (0.88, 1.57) | 1.30 (0.97, 1.74) |
IL-10 | 1.41 (1.07, 1.84) * | 1.34 (1.02, 1.74) * | 1.21 (0.91, 1.62) | 1.37 (1.03, 1.83) * |
IL-12p40 | 1.40 (1.06, 1.84) * | 1.35 (1.03, 1.76) * | 1.25 (0.96, 1.62) | 1.35 (1.02, 1.78) * |
IL-17 | 1.39 (1.04, 1.86) * | 1.30 (0.98, 1.74) | 1.35 (0.99, 1.85) | 1.38 (1.01, 1.89) |
IL-1α | 0.79 (0.61, 1.02) | 0.72 (0.54, 0.97) * | 0.72 (0.54, 0.95) * | 0.69 (0.51, 0.94) * |
IL-1β | 1.44 (1.07, 1.92) * | 1.35 (1.03, 1.76) * | 1.26 (0.99, 1.60) | 1.40 (1.05, 1.87) * |
IL-1RA | 1.02 (0.79, 1.32) | 1.10 (0.81, 1.49) | 1.01 (0.79, 1.29) | 1.05 (0.78, 1.41) |
IL-2 | 1.59 (1.14, 2.21) * | 1.55 (1.13, 2.13) * | 1.40 (1.01, 1.94) | 1.61 (1.14, 2.29) * |
IL-6 | 1.76 (1.28, 2.42) † | 1.32 (0.97, 1.78) | 1.43 (1.11, 1.83) * | 1.53 (1.13, 2.07) * |
IP-10 | 1.68 (1.19, 2.38) † | 1.62 (1.12, 2.34) * | 1.35 (0.96, 1.88) | 1.66 (1.13, 2.43) * |
MCP-1 | 1.62 (1.17, 2.24) † | 1.31 (0.94, 1.82) | 1.26 (0.94, 1.70) | 1.45 (1.02, 2.06) * |
MIP-1α | 1.63 (1.23, 2.16) † | 1.41 (1.09, 1.83) * | 1.27 (1.01, 1.61) | 1.47 (1.12, 1.92) * |
MIP-1β | 1.43 (1.05, 1.96) * | 1.28 (0.96, 1.70) | 1.20 (0.90, 1.60) | 1.32 (0.98, 1.78) |
sIL-2Rα | 1.39 (1.05, 1.85) * | 1.32 (0.97, 1.79) | 1.22 (0.89, 1.66) | 1.34 (0.97, 1.84) |
TNFα | 1.34 (1.04, 1.73) * | 1.32 (1.01, 1.72) | 1.28 (0.97, 1.68) | 1.38 (1.04, 1.84) * |
VEGF | 2.11 (1.43, 3.10) † | 1.83 (1.29, 2.59) † | 1.49 (1.07, 2.09) * | 1.95 (1.34, 2.84) † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buxton, M.A.; Meraz-Cruz, N.; Sanchez, B.N.; Foxman, B.; Castillo-Castrejon, M.; O’Neill, M.S.; Vadillo-Ortega, F. Timing of Cervico-Vaginal Cytokine Collection during Pregnancy and Preterm Birth: A Comparative Analysis in the PRINCESA Cohort. Int. J. Environ. Res. Public Health 2021, 18, 3436. https://doi.org/10.3390/ijerph18073436
Buxton MA, Meraz-Cruz N, Sanchez BN, Foxman B, Castillo-Castrejon M, O’Neill MS, Vadillo-Ortega F. Timing of Cervico-Vaginal Cytokine Collection during Pregnancy and Preterm Birth: A Comparative Analysis in the PRINCESA Cohort. International Journal of Environmental Research and Public Health. 2021; 18(7):3436. https://doi.org/10.3390/ijerph18073436
Chicago/Turabian StyleBuxton, Miatta A., Noemi Meraz-Cruz, Brisa N. Sanchez, Betsy Foxman, Marisol Castillo-Castrejon, Marie S. O’Neill, and Felipe Vadillo-Ortega. 2021. "Timing of Cervico-Vaginal Cytokine Collection during Pregnancy and Preterm Birth: A Comparative Analysis in the PRINCESA Cohort" International Journal of Environmental Research and Public Health 18, no. 7: 3436. https://doi.org/10.3390/ijerph18073436
APA StyleBuxton, M. A., Meraz-Cruz, N., Sanchez, B. N., Foxman, B., Castillo-Castrejon, M., O’Neill, M. S., & Vadillo-Ortega, F. (2021). Timing of Cervico-Vaginal Cytokine Collection during Pregnancy and Preterm Birth: A Comparative Analysis in the PRINCESA Cohort. International Journal of Environmental Research and Public Health, 18(7), 3436. https://doi.org/10.3390/ijerph18073436